
Coded Secure Delivery for
Anonymous Information Retrieval

Omer Lauer
Viterbi Dept. of Electrical and Computer Engineering

Technion – Israel Institute of Technology
omer.lauer@campus.technion.ac.il

Yuval Cassuto
Viterbi Dept. of Electrical and Computer Engineering

Technion – Israel Institute of Technology
ycassuto@ee.technion.ac.il

Abstract—This paper proposes and studies a scheme of coded
secure delivery (CSD), where data objects are delivered upon
request in a way that only users that are allowed access can
recover them. The security of the scheme is driven by encryption
with keys that are pre-distributed to different subsets of the
users. As a result, the system can securely serve anonymous
requests, enhancing its users’ privacy. A CSD instance is defined
formally by two binary matrices, and our main result is an
algorithm to minimize the number of transmissions needed to
accomplish it. Coding allows transmission of linear combinations
of objects, and the power of coding is demonstrated by showing
instance families with large gaps to uncoded delivery. In addition
to minimizing communication costs, the paper studies the key-
distribution problem toward minimizing the users’ storage costs.

I. INTRODUCTION

Almost all of our digital lives these days rely on retrieving
information from centralized services, commonly known as
cloud services, used mainly for storage of data objects and
their delivery to users upon request. To maintain data privacy,
objects are delivered only to users that are allowed access,
typically using a mechanism of authentication and access
rights verification. A side effect of such mechanism is that
services have a full view of which user requests which objects,
compromising the privacy of the users. To protect user’s privacy,
services should offer anonymous information retrieval (AIR).

In the absence of access control, AIR can be trivially
implemented using a proxy that aggregates requests from many
users and forwards them to the service without user identities.
With access control, AIR can be provided by breaking the
delivery into two phases: 1) key distribution of secret keys
to authenticated users, and 2) object delivery of objects by
the service, after encrypting them with keys available only to
allowed access users. This encryption allows the service to
respond to object requests without any check of access rights,
and thus without knowledge of the requesting user’s identity.

A challenge in the 2-phase delivery approach lies in the
increased communication cost, as an object may need to be
transmitted multiple times (each encrypted with a different key),
to fulfill all access rights. In addition, there is a storage cost
associated with users holding the keys they received. The main
thrust of this paper is minimizing these costs, and exploring
interesting tradeoffs between them.

Work supported by the US-Israel Binational Science Foundation grant
2023627.

In this paper’s problem setting, a server receives an (anony-
mous) request for multiple objects, and its task is to broadcast
a batch of transmissions that will allow all users to recover the
objects to which they are allowed access. The server is also
bound by a security requirement: that users not allowed access
to an object will not be able to recover it. Minimizing the
communication cost is done by finding the smallest number of
transmissions fulfilling these requirements. Security is achieved
by using some standard symmetric encryption algorithm, with
a key shared (in advance) by the server and a subset of the
users. The proposed scheme employs coded transmissions, in
which the server encrypts and broadcasts linear combinations
of objects instead of single objects. Security is guaranteed
by a strict policy by which a key may be used to encrypt a
transmission if it is only held by users that are allowed access
to every object in the linear combination. The importance of
coding in this setting is in reducing communication costs, in a
similar way to the well-known problem called index coding [1].
In our setting, the object delivery task can be regarded as
covering the requested objects with a sequence of index-coding
instances, where delivered objects become side information for
subsequent transmissions.

In Section II we formally define the problem of coded secure
delivery (CSD), the delivery method, and the security policy. In
Section III we characterize the requirements for a CSD solution,
guaranteeing both recovery and security. Our main contribution
is a two-step approach for communication-cost minimization.
Section IV demonstrates the high power of coding in the CSD
problem, by showing a family of instances with a provable
gap between the communication costs with and without coding.
Section V addresses the key-distribution problem under a
storage-cost budget, and Section VI shows empirically the
performance benefits of the proposed algorithms.

Prior related schemes have been proposed within the
frameworks of broadcast encryption [2] and secure index-
coding/groupcast [3]–[5], [6]. However, none of the prior works
provides a scheme for secure delivery with a general access-
control structure.

II. THE MODEL

A central server stores n̄ data objects, which need to be
delivered, upon request, to subsets of its m client users
u1, u2, . . . , um. The objects are access controlled: to each

object some subset of users are allowed access. The server
responds to access requests, and delivers the requested objects.
Each requested object needs to be delivered to all of the users
that are allowed access to it (and no others), without identifying
a particular user requesting the object. For the server to fulfill
these requirements, it generates N keys k1, k2, . . . , kN and
distributes them to users ahead of the request phase. Each user
may hold a different subset of keys, and keys can be shared
by multiple users. We assume that in the set of N keys, for
each user there exists a unique, private key, given only to her
and to no other user (thus N ≥ m). This will guarantee that
any CSD instance is solvable.

A. Problem Definitions

In a CSD instance there are n ≤ n̄ requested objects
o1, o2, . . . , on. The instance is defined by two binary matrices:

Definition 1. The Access Control Set matrix ACS is an m×n
binary matrix, where ACSj,l = 1 if user uj is allowed access
to object ol, and ACSj,l = 0 if not.

Definition 2. The Key Holder Set matrix KHS is an N ×m
binary matrix, where KHSi,j = 1 if key ki is held by user uj ,
and KHSi,j = 0 if not.

B. Delivery Method and Security Policy

1) Delivery Method: It is assumed that communication from
server to users is via a broadcast channel: each message from
the server reaches all users. To deliver objects according to
the problem definitions, each server’s message is described by
the primitive S (x, ki), where x is the message’s data and ki
is the key with which the data is encrypted. We assume all
data to be transmitted to have the same length in bits, and thus
every transmission has a fixed communication cost of 1. Only
users holding ki can decrypt the message and recover x.

We distinguish between uncoded and coded transmissions,
as follows. In an uncoded transmission, x is one of the
objects: x = ol for some l ∈ [n] ≜ {1, 2, . . . , n}. In a coded
transmission, x is a linear combination of multiple objects
ol1 , ol2 , . . . , olD : x =

∑D
d=1 hdold , where the coefficients hd

are over some finite field Fq (with q a prime power). Note
that an uncoded transmission is a special case of a coded one
with D = 1 and h1 = 1. When calculating the communication
cost we neglect the overhead of sending the indices ld and the
coefficients hd, which is reasonable when the object size is
large relative to the logarithms of n and q.

2) Security Policy: To prevent object access by non-allowed
users, the server implements the following security policy. An
uncoded transmission S (ol, ki) can be sent only if all the users
that hold key ki are allowed access to object ol. This policy
can be translated to the following matrix called Primitive Key
Set (PKS) matrix, defining which objects can be encrypted
with which keys.

Definition 3. The Primitive Key Set matrix PKS is an N × n
binary matrix, where PKSi,l = 1 if for all j ∈ [m] such that
KHSi,j = 1 we have ACSj,l = 1, and PKSi,l = 0 if not.

Example 1. Consider an instance with n = 2,m = 4, N = 3:

ACS =


1 0
1 1
1 1
0 1

 ,KHS =

1 1 0 0
0 1 1 0
0 0 1 1

 ,PKS =

1 0
1 1
0 1

.

(1)
For compactness, we drop KHS rows of private keys.

The definition of PKS allows the following simple policy
for coded transmissions:

Policy 1. A transmission S
(∑D

d=1 hdold , ki

)
can be sent

by the server only if for every d ∈ [D] such that hd ̸= 0,
PKSi,ld = 1.

Policy 1 offers extrinsic security, that is, not relying on the
coding to hide objects from non-allowed users.

III. OBJECT DELIVERY

Given matrices ACS and KHS, it is upon the server to deliver
requested objects by transmitting primitive messages that adhere
to Policy 1, and are as few as possible to minimize the total
communication cost. In such a delivery, the server sends T
transmissions, numbered 1, 2, . . . T , with communication cost
of T , encrypted with keys whose indices are given in the vector
(i1, i2, . . . , iT) ≜ (it)

T
t=1, it ∈ [N]. This vector specifies that

coded message xt of transmission t is encrypted with kit , i.e.,
S (xt, kit). The linear combinations of the transmissions are
specified by the matrix H ∈ Fn×T

q . This leads to the following:

Definition 4. Given ACS and KHS matrices, a CSD Solution
is a combination of a vector of indices (it)

T
t=1 and a coefficient

matrix H ∈ Fn×T
q . If o = (o1, o2, . . . , on)

⊤ denotes the
requested objects and x = (x1, x2, . . . , xT)

⊤ the T coded
messages in the transmissions S (xt, kit), then x = H⊤o.

⊤ marks matrix transpose. With the definition above, we
present the main problem in this paper:

Problem 1. Given the instance’s ACS and KHS matrices, find
a CSD solution (it)

T
t=1 and H with minimal communication

cost T , such that the following conditions are met:
1) Recovery condition: every uj , j ∈ [m], can recover from

x every ol such that ACSj,l = 1, using keys held by uj .
2) Security condition: every S (xt, kit) satisfies Policy 1.

A. Validity of CSD Solutions

Toward solving Problem 1, in this subsection we formulate
alternative validity conditions that lend themselves better
to algorithmic optimization. For that we add a few more
notations. For j ∈ [m] let ACS(j) be the set of the object
indices uj is allowed access to: ACS(j) = {l | ACSj,l = 1},
likewise KHS(j) be the set of the key indices that uj holds:
KHS(j) = {i | KHSi,j = 1}. Also, regarding submatrices,
given r × s matrix A and two subsets R ⊆ [r] (rows) and
S ⊆ [s] (columns), denote the submatrix obtained from rows
R and columns S in A as A [R,S] (subvectors are defined
in a similar way). Furthermore, A [R, :] is short for A [R, [s]],
likewise for column selection A [:, S] ≜ A [[r] , S].

Proposition 1. The conditions for a valid solution under
Problem 1 are equivalent to:

1) For every j ∈ [m], there exists B(j) ⊆ [T], such
that {it}t∈B(j) ⊆ KHS(j),

∣∣B(j)
∣∣ =

∣∣∣ACS(j)∣∣∣ and

det
(
H

[
ACS(j), B(j)

])
̸= 0 (recovery).

2) For every t ∈ [T] , l ∈ [n] such that PKSit,l = 0, Hl,t =
0 (security).

We omit the formal proof, and instead note its main idea
of exploiting the favorable coupling between the recovery and
security conditions. That is, the security condition imposes
a structure on the matrix H, that allows a simple recovery
condition applying to individual users uj and the submatrices
of H corresponding to the objects in their access lists ACS(j).

Note 1. The last equation in the recovery condition, when
taken over all of the users, is equivalent to the product∏m

j=1 det
(
H

[
ACS(j), B(j)

])
̸= 0, which is a similar condi-

tion to the one considered in [7] for multicast network coding,
and in [8] for structured MDS codes (among others).

Proposition 1 gives concrete algebraic conditions for solution
validity, but another step is needed before getting to an
algorithm for finding H and (it)

T
t=1 with low communication

cost. We introduce more notation for this step: given an
r × s binary matrix M, the bipartite graph G = (VL, VR, E)
induced by M, denoted G = gr (M), is a graph with
left nodes VL = [r], right nodes VR = [s] and edges
E = {(i, j) | i ∈ VL, j ∈ VR,Mi,j = 1}.

We next formulate an objective to be pursued by the
algorithm presented in the next subsection. We use standard
definitions of graph matching [9].

Objective 1. Find key indices (it)
T
t=1 and n×T binary matrix

M such that:
1) For every j ∈ [m], there exists B(j) ⊆ [T], such that
{it}t∈B(j) ⊆ KHS(j),

∣∣B(j)
∣∣ =

∣∣∣ACS(j)∣∣∣ and Gj =

gr
(
M

[
ACS(j), B(j)

])
has a perfect matching.

2) For every t ∈ [T] , l ∈ [n] such that PKSit,l = 0, Ml,t =
0.

Note that while the second requirement for M is the same
as for H in Proposition 1, the first concerns graph matchings
instead of matrix determinants.

B. Greedy Algorithm for Perfect-Matching Objective

For brevity we denote the maximum matching size of graph
G by MMS(G). We present Algorithm 1 that for any CSD
instance outputs an n× T matrix M that meets Objective 1,
as well as the key indices (it)

T
t=1 and the subsets

(
B(j)

)m
j=1

.
Algorithm 1 maintains a matrix M, as well as additional m

graphs G′
j = gr

(
M

[
ACS(j), {t′|it′ ∈ KHS(j)}

])
, j ∈ [m].

The row indices of G′
j are indices of objects uj is allowed

access to, and the column indices are iteration indices that use
keys uj has. In every iteration t it successively adds a PKS row
of specific key as a column to M (line 9), where the chosen

Algorithm 1 Greedy Algorithm for Generating M

Require: ACS, KHS; calculate PKS
1: M← () , (it)← () , t← 1
2: repeat
3: for all i ∈ [N] do
4: M [:, t]← (PKS [i, :])

⊤, it ← i (temp)
5: ∀j ∈ [m], G′

j ← gr
(
M

[
ACS(j), {t′|it′ ∈ KHS(j)}

])
6: Di =

∑m
j=1 MMS

(
G′

j

)
7: end for
8: imax ← argmaxi∈[N] Di

9: M [:, t]← (PKS [imax, :])
⊤, it ← imax (final)

10: ∀j ∈ [m], G′
j ← gr

(
M

[
ACS(j), {t′|it′ ∈ KHS(j)}

])
11: t← t+ 1
12: until for every j ∈ [m], MMS

(
G′

j

)
=

∣∣∣ACS(j)∣∣∣
13: for all j ∈ [m] do
14: B(j) ← right nodes in maximum matching of G′

j

15: end for
16: return M, (it),

(
B(j)

)m
j=1

key index it (line 8) is the one whose PKS entries maximize
the sum of matching sizes over all m graphs. The main loop
terminates when every graph G′

j has a maximum matching of

size
∣∣∣ACS(j)∣∣∣, and the outputs

(
B(j)

)m
j=1

are the right nodes

in these maximum matchings (hence gr
(
M

[
ACS(j), B(j)

])
has a perfect matching). Since the matching condition is also
necessary for linear coding (proof omitted), the maximization in
line 8 implies a local-optimality property: that at every iteration
the added transmission maximizes the number of recoverable
objects given the previous transmissions.

Using M, a coefficient matrix H ∈ Fn×T
q can be easily

found, such that together with (it)
T
t=1 it is a valid CSD

solution with high probability. This is done using a randomized
algorithm similar to [7], where the success probability in our
setting is shown to be at least

(
1− m

q

)n

. This 2-step approach
has a major advantage: it allows the greedy Algorithm 1 to
decide only which key to use in every iteration (line 8), without
worrying about which objects to encode with it.

IV. POWER OF CODING

A natural question about the CSD problem is how much
coded transmissions can reduce communication cost over
uncoded ones. The answer clearly depends on the specific
instance, and in this section we give an extremal answer by
showing instance families with large coding advantages.

A. A Family of CSD Instances

We define a family of layered CSD instances specified by
their ACS and KHS matrices.

Family 1. Ad, Kd (ACS, transposed1 KHS of a d-layer
instance, respectively) are defined recursively:

1We specify the transpose of the KHS for convenience, so both Ad and
Kd have row dimension m, the number of users.

A1 = 1,

Ad+1 =



Ad [:, 1] Ad [:, 2] · · · Ad [:, d] 0
Ad [:, 1] Ad [:, 2] · · · 0 Ad [:, d]

...
...

. . .
...

...
Ad [:, 1] 0 · · · Ad [:, d− 1] Ad [:, d]

0 Ad [:, 1] · · · Ad [:, d− 1] Ad [:, d]
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1



d+1

d+1

d+1

,
(2)

K1 = 1,

Kd+1 =



Kd 0 · · · 0 0 0
0 Kd · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · Kd 0 0
0 0 · · · 0 Kd 0

Kd [−1, :] 0 · · · 0 0 1
0 Kd [−1, :] · · · 0 0 1
...

...
. . .

...
...

...
0 0 · · · Kd [−1, :] 0 1
0 0 · · · 0 Kd [−1, :] 1



d+1

d+1

d+1

.
(3)

d+ 1 is an abuse of notation for d + 1 matrix blocks, in
this case a column of the form Ad [:, l] (in Ad+1) or Kd [:, i]
(in Kd+1), and Kd [−1, :] denotes the last row of Kd.

B. Coded and Uncoded Communication Costs of Family 1

Denote by T
(d)
u and T

(d)
c the minimal communication costs

that can deliver Family 1’s d-layer instance with uncoded and
coded transmissions, respectively.

Proposition 2. T
(d)
c satisfies the following recursive formula

T (1)
c = 1; T (d+1)

c ≤ (d+ 1)T (d)
c + 1, ∀d ≥ 1. (4)

Proposition 3. T
(d)
u satisfies the following recursive formula

T (1)
u = 1; T (d+1)

u ≥ (d+ 1)T (d)
u + d+ 1, ∀d ≥ 1. (5)

Define the instance’s coding savings ratio as r(d) ≜
T

(d)
c /T

(d)
u . Substituting the upper bound on T

(d)
c from (4)

and the lower bound on T
(d)
u from (5) gives an upper bound

on r(d), which is a quantitative lower bound on the power of
coding.

While Proposition 2 is proved by showing a constructive
solution, Proposition 3 requires a tool for showing impossibility.
This tool is built upon the concept of essential keys.

Definition 5. ki is essential with respect to (w.r.t.) a user-
object pair (uj , ol) if {i′ | KHSi′,j = 1,PKSi′,l = 1} = {i}.
The essentiality of key ki with respect to a user uj is defined
as Essen (i, j) ≜ {l | ki is essential w.r.t. (uj , ol) }.

Let T (i) be the number of times ki is used in a solution of
a CSD instance. We next show that in any valid solution, T (i)
is lower bounded depending on the essentiality sets of ki, and
that this bound is different for coded and uncoded solutions.

Proposition 4. In any valid solution of a CSD instance with
key vector (it)

T
t=1, for any key index i: in a coded solution

T (i) ≥ maxj∈[m] |Essen (i, j)|, and in an uncoded solution

T (i) ≥
∣∣∣⋃m

j=1 Essen (i, j)
∣∣∣.

Remark 1. Proposition 4 (proof omitted) captures a fundamental
combinatorial gap between coded and uncoded solutions, which
may be useful beyond proving Proposition 3.

The following measures the power of coding in CSD.

Corollary 5. There exist CSD instances with coding savings
ratio tending to e−1

e ≈ 0.632.

The corollary can be proved by substituting into the ratio
T

(d)
c /T

(d)
u the closed-form expressions corresponding to the

recursive expressions in the right-hand sides of (4), (5).

V. KEY DISTRIBUTION

In this section the ACS is the full access-control matrix (of
all the system’s objects), thus n = n̄. The problem of key
distribution is how to determine the KHS given an ACS?

In the key-distribution phase, an N × m KHS matrix is
decided, and then key ki is given to user uj if and only if
KHSi,j = 1. We refer to the cumulative number of keys held
by all the users (including multiplicities of same keys held by
multiple users) as the KHS’s storage cost2:

Definition 6. The storage cost of a KHS matrix is the matrix’s
total weight:

∑N
i=1

∑m
j=1 KHSi,j .

A key-distribution algorithm chooses KHS given input ACS,
and is subject to a storage-cost budget. The key-distribution
problem therefore is as follows:

Problem 2. Given ACS and storage-cost budget τ , choose
KHS with storage cost at most τ that enables valid CSD
solutions with low communication costs.

Without the budget constraint, the problem is trivial because
a solution KHS = ACS⊤ enables delivering all n objects with
uncoded communication cost of n, which is the lowest possible.
Therefore, we will be interested in solutions with small budgets
τ ≪

∑m
j=1

∑n
l=1 ACSj,l. We evaluate our key-distribution

algorithm communication-cost performance, averaged over
random ACS matrices with a given density p, i.e., each ACSj,l
is 1 with probability p and 0 with probability 1−p. We restrict
the density to p < 1/2, as CSD instances with very dense
ACS matrices are less interesting due to high communication
cost for each object request.

A. ACS-Covering Key-Distribution Algorithms

In this subsection we propose key-distribution algorithms
that collectively cover the elements of the ACS. To this end,
the algorithms maintain an m×n cover matrix C, where Cj,l

equals the number of keys ki previously distributed to uj and
such that PKSi,l = 1. PKS and C are updated after each key
is distributed, and Cj,l =⊥ (undefined) throughout the run if
ACSj,l = 0. In principle, the algorithms will prefer choosing

2Note that this is also the cost of communicating the keys to the users, but we
use the term “storage” to distinguish from the object-delivery communication
cost.

keys that increase as many entries with small (e.g., 0) current
Cj,l values, because the aim toward low communication cost
is that as many uj , ol pairs will be covered by the distributed
keys. Define the key degree of ki as

∑m
j=1 KHSi,j .

1) Covering-Maximizing Algorithm: Initialize C. In each
iteration i first choose a key degree d . Find a size-d subset
of [m] for which a distributed key ki would result in C with
fewest zeros, and distribute ki to this subset. Continue to next
iteration if storage cost of KHS is less than τ .

A special case of interest for covering-maximizing algorithms
is distributing keys with degree d = 2. There are two main
motivations to consider a small d: 1) small key degrees typically
cover Cj,l entries of multiple object indices l, and 2) the key
selection is more tractable because the number of user sets to
consider grows as md.

2) Pair-Covering (d = 2) Algorithm: Initialize C. In each
iteration i find a size-2 subset {j1, j2} ⊂ {1, . . . ,m} that
maximizes∑

l∈ACS(j1)∩ACS(j2)

(2I (Cj1,l = 0,Cj2,l = 0)

+ I (Cj1,l = 1,Cj2,l = 0) + I (Cj1,l = 0,Cj2,l = 1)),

(6)

where I(·) is the indicator function of the event in its argument.
Distribute ki to uj1 , uj2 and continue to next iteration if storage
cost of KHS is less than τ .

Note that the condition under the sum in (6) guarantees
that Cj1,l > 0,Cj2,l > 0 after adding ki, because it implies
PKSi,l = 1; the first term has weight 2 because two entries
change from zero to non-zero. The algorithm counts not
only uncovered entries (with Cj,l = 0), but also ones with
Cj,l = 1, leading to Cj,l > 1 following the selection. This is
justified for coded solutions by the following lemma. For key ki
denote U (i) ≜ {j | KHSi,j = 1}, O (i) ≜ {l | PKSi,l = 1}:
the users who hold ki and the objects that can be delivered
with ki. Then:

Lemma 6. If Cj,l = 1 for every j ∈ U (i) , l ∈ O (i), then
coded transmissions using ki cannot reduce its communication
cost T (i) relative to uncoded transmissions.

Thus Lemma 6 (proof omitted) motivates keys that result
in Cj,l > 1. The selection criterion (6) allows that, but still
prioritizes covering j, l pairs that currently have Cj,l = 0.

VI. EMPIRICAL RESULTS

We implemented the algorithms presented in the paper 3,
and in this section we show their empirical performance. The
core of the presented results is Algorithm 1 for finding coded
CSD solutions, which is compared to uncoded solutions, found
by a greedy set-cover algorithm [11] for each object ol. The
main performance metric is the normalized communication
cost denoted T̄ , which is the communication cost T divided
by the weight (number of ones) of the ACS matrix. We also
define the normalized storage-cost budget τ̄ , which equals the
storage-cost budget τ divided by the weight of the ACS matrix.

3Simulation code is available at [10].

Our experiment evaluates the performance of algorithm V-A2
applied to random ACS instances with parameters m = n = 50,
p = 0.25. We plot these results in Fig. 1.

Fig. 1. Normalized communication cost versus normalized storage budget for
pair-covering and memoryless key distribution.

Fig. 1 demonstrates that coded CSD solutions achieve lower
communication cost compared to uncoded, even for random
i.i.d. ACS matrices. Alternatively, for a given communication
cost, coding allows significant reduction of storage budgets in
the practically interesting intermediate range (e.g., 0.1 < τ̄ <
0.3). For example, coded solutions achieve communication cost
of T̄ = 0.55 with 25% lower budget compared to uncoded. We
also plot in Fig. 1 the results of a key-distribution algorithm
that selects keys in a memoryless fashion, without attempting
to cover the ACS (details omitted). The large gap attests to
the strength of the proposed covering approach.

REFERENCES

[1] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Transactions on Information Theory, vol. 57, no. 3,
pp. 1479–1494, 2011.

[2] A. Fiat and M. Naor, “Broadcast encryption,” in Advances in Cryptol-
ogy—CRYPTO’93: 13th Annual International Cryptology Conference
Santa Barbara, California, USA August 22–26, 1993 Proceedings 13.
Springer, 1994, pp. 480–491.

[3] S. H. Dau, V. Skachek, and Y. M. Chee, “On the security of index coding
with side information,” IEEE Transactions on Information Theory, vol. 58,
no. 6, pp. 3975–3988, 2012.

[4] M. M. Mojahedian, M. R. Aref, and A. Gohari, “Perfectly secure index
coding,” IEEE Transactions on Information Theory, vol. 63, no. 11, pp.
7382–7395, 2017.

[5] V. Narayanan, J. Ravi, V. K. Mishra, B. K. Dey, N. Karamchandani,
and V. M. Prabhakaran, “Private index coding,” IEEE Transactions on
Information Theory, vol. 68, no. 3, pp. 2020–2049, 2021.

[6] H. Sun, “Compound secure groupcast: Key assignment for selected
broadcasting,” IEEE Journal on Selected Areas in Information Theory,
vol. 3, no. 2, pp. 379–389, 2022.

[7] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,” IEEE
Transactions on information theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[8] S. H. Dau, W. Song, Z. Dong, and C. Yuen, “Balanced sparsest generator
matrices for MDS codes,” in 2013 IEEE International Symposium on
Information Theory. IEEE, 2013, pp. 1889–1893.

[9] J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed.
Cambridge University Press, 2001.

[10] O. Lauer. (2025) Coded Secure Delivery. [Online]. Available:
https://github.com/omerlauer/csd for air

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2022.

https://github.com/omerlauer/csd_for_air

	Introduction
	The Model
	Problem Definitions
	Delivery Method and Security Policy
	Delivery Method
	Security Policy

	Object Delivery
	Validity of CSD Solutions
	Greedy Algorithm for Perfect-Matching Objective

	Power of Coding
	A Family of CSD Instances
	Coded and Uncoded Communication Costs of Family 1

	Key Distribution
	ACS-Covering Key-Distribution Algorithms
	Covering-Maximizing Algorithm
	Pair-Covering (d = 2) Algorithm

	Empirical Results
	References

