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Abstract—In-memory computing architectures highly improve
computation latency and power compared to von Neumann
architectures suffering the memory wall. However, maintaining
reliability is challenging due to the difficulty in implementing
error-correction coding within memory. We propose a scheme in
which strong codes can be used for in-memory computing, while
avoiding their costly decoding when error rates are sufficiently
small. The key idea and thrust of the paper is to complement
the design of LDPC codes to also provide accurate estimation of
the input bit-error rate (BER). Toward that, we derive analytical
results and give code-design insights for BER estimation in two
frameworks: minimizing the mean-squared error (MSE), and
estimating threshold crossing as a hypothesis-testing problem.

I. INTRODUCTION

In-memory computing is a paradigm aiming to address the
emerging bottlenecks of data-transfer rates and power to and
from the memory [1], termed as the memory wall [2]. This
capability is achieved by enabling the memory to perform
computational tasks without transferring data externally. Many
approaches have been explored for such architectures, ranging
from implementing logic gates within traditional charge-based
memories (mainly SRAM [3] and DRAM [4]), to utiliz-
ing inherent properties of resistance-based memories (mainly
RRAM [5] and MRAM [6]), with promising approaches to
enable logic-in-memory, such as MAGIC [7]. However, this
capability also presents challenges, one of them being main-
taining reliability. On the one hand, data integrity is challenged
and degraded by the dynamic nature of the data and frequent
read/write accesses, and on the other hand, error mitigation
becomes challenging due to resource and latency constraints
limiting the ability to employ powerful error-correction coding
(ECC). The traditional way in which ECC is used for memory
reliability is encoding before each write and decoding after
each read [8]. This method is problematic for in-memory
computing because of the fine access granularity and limited
computing resources that challenge this approach. There have
been proposals to implement ECC in memory (e.g. [9]),
however, modern coding techniques, such as LDPC [10], [11]
and polar [12], [13] codes, are difficult to decode with in-
memory logic, while more-traditional, easier-to-decode coding
schemes are costly in redundancy.

In this paper we propose a middle-ground architecture that
utilizes the strong capabilities of LDPC codes for error de-
tection and correction, while allowing their operation without
need to decode after each read. Since a certain fraction of
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errors is tolerable in many modern applications, such as ap-
proximate computing [14] and machine learning [15], allowing
a bit-error rate (BER) tolerance – under which no costly
decoding should be performed – is highly reasonable. Only
when the BER approaches this tolerance, data is transferred
to a processing unit which decodes the LDPC code, then re-
writing the correct codeword to memory. The advantages of
this architecture are: (1) it enables the use of efficient LDPC
codes for error protection, (2) it spares the in-memory logic
from complicated decoding, and (3) it reduces the required
frequency of data transfer without the risk of an error rate
that exceeds the correction capability of the code.

A key component in the proposed architecture is the use
of the sparse check equations for in-memory BER estimation,
providing a precise indication of when it is necessary to
transfer the data outside the memory for error decoding. BER
estimation from syndromes was studied in [16], and in [17]
that provided a closed-form expression for regular codes and
a Cramer-Rao bound analysis on the estimation mean squared
error (MSE). We revisit this problem, introducing: (1) a closed-
form expression for the estimator of irregular codes, based on
an approximate likelihood function, (2) an analysis of MSE
dependency on the degree distribution, using approximated
closed-form expressions, and (3) BER threshold-crossing es-
timation via hypothesis testing [18], and its performance
dependence on the degree distribution. Using these results,
we show that in the regime of small BER, right-regular codes
both minimize estimation MSE and maximize a lower bound
on threshold-crossing detection performance. These analytical
results and insights provide useful tools for designing reliable
in-memory computing architectures.

II. PROBLEM FORMULATION

A. Notations

We denote by C𝑛 (Λ,Ω) the ensemble of irregular LDPC
codes of length 𝑛 and degree distributions Λ(𝑥) ≜ ∑𝑑𝑣

𝑖=1 Λ𝑖𝑥
𝑖

and Ω(𝑥) ≜
∑𝑑𝑐

𝑖=1 Ω𝑖𝑥
𝑖 , with Ω𝑖 ,Λ𝑖 describing the relative

portion of variable and check nodes of degree 𝑖, respectively.
The class of right-regular codes, studied extensively in the
literature (e.g. [19]–[22]), has Ω(𝑥) = 𝑥𝑑𝑐 , and the ensemble
of such codes is denoted C𝑛 (Λ, 𝑑𝑐). 𝑚 ≜ 𝑛Λ

′ (1)/Ω′ (1)
denotes the number of check nodes. The parity-check matrix
of size 𝑚 × 𝑛 of 𝐶 ∈ C𝑛 (Λ,Ω) is denoted H. For any
word 𝒙 ∈ {0, 1}𝑛 the syndrome is defined by 𝒔𝒙 ≜ H𝒙𝑇

(with 𝒔𝒙 = 0 for codewords). The well known Hamming



weight and Hamming distance are denoted 𝑤𝐻 (·) and 𝑑𝐻 (·, ·),
respectively. P(𝑧),E[𝑧] denote the probability function (PMF
or PDF) and expectation of a random variable 𝑧. O(·) is the
big-O notation [23], and [𝑥]+ ≜ max{0, 𝑥}. 𝐹p (𝑥;𝜆) denotes
the CDF of a Poisson random variable with parameter 𝜆.

B. Memory Channel Model

For some word 𝒙 ∈ {0, 1}𝑛 stored in memory, we assume
the occurrence of bit-flips, replacing 𝒙 with 𝒙′, the result of
passing 𝒙 through a memoryless binary symmetric channel
(BSC) with crossover probability 𝑝 ∈ [0, 0.5). The BER
is defined by 𝒅𝐻 (𝒙, 𝒙′)/𝑛, where 𝒅𝐻 (𝒙, 𝒙′) is a Binomial
random variable with parameter 𝑝.

C. In-Memory BER Estimation Mechanism

Let 𝐶𝑖 ∈ C(Λ𝑖 ,Ω𝑖), 𝑖 = {1, 2}, be two codes such that
C1 ⊆ C2 (meaning H2 is obtained by a subset of 𝑚2 ≤ 𝑚1 rows
of H1). 𝐶1, 𝐶2 will be called the correction code and estimation
code respectively. Let 𝒖 ∈ {0, 1}𝑛−𝑚1 be an information word
to be stored. The proposed mechanism is as follows.

1) Encoding: use 𝐶1 to encode 𝒖 into 𝒄. Store 𝒄 in a logic-
in-memory capable memory.

2) Estimation: Perform a periodical in-memory computa-
tion of the syndrome 𝒔 ≜ 𝒔𝒄′ = H2𝒄

′𝑇 , and estimate 𝑝(𝒔)
(discussed in Section III). Estimate whether 𝑝 exceeds a
predefined tolerance 𝑝tol (discussed in Section IV), and move
to 3 if it does.

3) Decoding: Read 𝒄′ from the memory into a resourceful
processing unit, use 𝐶1 to decode it into 𝒄, and store it again.

III. BER ESTIMATION FROM SYNDROMES

In this section we derive a maximum-likelihood (ML)
estimator 𝑝(𝒔). For completeness, we revisit several results
from [17].

A. Unsatisfied Check Equations

Lemma 1. (From [17]) The probability 𝑝𝑢 (𝑖) that some check
node of degree 𝑖 is unsatisfied is given by

𝑝𝑢 (𝑖) =
1 − (1 − 2𝑝)𝑖

2
. (1)

As done in [17], and shown to be very reasonable, we will
assume that the satisfaction of different check nodes can be
treated as independent Bernoulli trials.

B. Maximum Likelihood Estimators

We first consider the ML-estimator for right-regular codes.
Based on the independent checks assumption, the syndrome’s
Hamming weight 𝑤𝒔 ≜ 𝑤𝐻 (𝒔) is Binomially distributed.

Proposition 2. (From [17]) For a right-regular code 𝐶 ∈
C𝑛 (Λ, 𝑑𝑐), the ML estimator for the BER is

𝑝reg (𝑤𝒔) ≜
1
2

(
1 − ([1 − 2𝑤𝒔/𝑚]+)1/𝑑𝑐

)
. (2)

We wish to generalize this result to irregular codes. In this
case, the Bernoulli trials of different check nodes have dif-
ferent probabilities, turning 𝑤𝒔 to a Poisson-Binomial random

variable, which we approximate as a Poisson random variable,
as justified by [24] when the probabilities 𝑝𝑢 (𝑖) are small.
Since the Binomial distribution is a special case of Poisson-
Binomial, this approximation remains relevant for the right-
regular case also.

Assumption 3. From hereon we assume 𝑤𝒔 ∼ Pois(𝜆), with

𝜆(𝑝) ≜
𝑑𝑐∑︁
𝑖=1

𝑚Ω𝑖 𝑝𝑢 (𝑖) =
𝑚

2
(1 −Ω(1 − 2𝑝)) , (3)

where 𝑚Ω𝑖 is the number of nodes with degree 𝑖.

Numerical examination shows that this assumption holds
with high accuracy, but will not be discussed further here.
Since Ω(𝑥) is monotone increasing for 𝑥 ≥ 0, it is clear
that 𝜆(𝑝) is also monotone increasing with 𝑝, and therefore
injective. We also see that 𝜆(𝑝) ∈ [0, 𝑚/2], and note that it
equals the expectation value under the exact Poisson-Binomial
distribution as well.

Proposition 4. Under Assumption 3, for an irregular code 𝐶 ∈
C𝑛 (Λ,Ω), the ML estimator for the BER is

𝑝irr (𝑤𝒔) ≜
1
2

(
1 −Ω−1 ( [1 − 2𝑤𝒔/𝑚]+)

)
, (4)

where Ω−1 (·) is the inverse function of the polynomial Ω(𝑥).

Proof: (sketch) Similar to the proof of Proposition 2 in
[17], using the Poisson rather than Binomial distribution and
calculating 𝜆∗ = arg max𝜆∈[0,𝑚/2] P(𝑤𝒔 = 𝑗 |𝜆).

Finding the inverse Ω−1 (·) as an algebraic expression is
generally not possible, but the inversion can be performed
numerically for values in [0, 1].
Observation 5. For a right-regular code 𝐶 ∈ C𝑛 (Λ, 𝑑𝑐), for
which Ω(𝑥) = 𝑥𝑑𝑐 , we have Ω−1 (𝑥) = 𝑥1/𝑑𝑐 . Substituting to (4)
we get (2), showing that the right-regular estimator (2) is a
special case of the irregular estimator (4).

C. Estimation Performance

We examine the estimation MSE, defined by

mse(𝑝) ≜ E
[
(𝑝 − 𝑝)2] = var(𝑝) + bias(𝑝)2,

where var(𝑝) and bias(𝑝) are the estimation variance and bias
respectively. We denote 𝜁 ≜ 1 − 2𝑝 (but use both 𝜁 and 𝑝 as
convenient), and then

𝜏(𝜁) ≜ P (𝑤𝒔 ≤ 𝑚/2) = 𝐹p (𝑚/2;𝜆 ((1 − 𝜁)/2)) , (5)

so that 1 − 𝜏 is the estimator’s truncation probability. The
following theorem describes the dependence of MSE on Ω(𝑥),
for the case of small truncation probability.

Theorem 6. For (1 − 𝜏) ≪ 𝜏, the MSE is given by

mse(𝑝;Ω) = 𝜏(𝜁)
4

1 −Ω(𝜁2)
𝑚Ω

′ (𝜁)2 + (1 − 𝜏(𝜁))
(
𝜁

2

)2
+ 𝜂(𝑝), (6)

where 𝜂(𝑝) represents terms that are empirically small.

Proof: See Appendix A for a proof sketch.
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Fig. 1: Left: MSE approximation terms (first and second terms in (6) - dashes and dash-dots, respectively) for different Ω(𝑥)
(colors), right: MSE Monte-Carlo simulations (circles and squares), assuming independent checks, vs. approximation (solid).

Discussion. The MSE arises from two distinct error mech-
anisms. The first term stems from the estimation variance,
dominating in the non-truncated region. The second term results
from estimation bias, dominating in the truncated region, given
by

(
1
2 − 𝑝

)
=

𝜁

2 and the variance is zero.

Fig. 1 illustrates the leftmost and middle terms in Eq. (6)
(left), and demonstrates that the approximation using these
terms fits tightly to corresponding Monte Carlo simulations
(right). The simulations were performed based on the as-
sumption of independent checks, by directly drawing random
weights from the Poisson-Binomial distribution corresponding
to Ω(𝑥).

D. Degree Effect on MSE

We examine the approximation provided by Eq. (6) to
explore the main trends of MSE dependence on Ω(𝑥). As
discussed after Theorem 6, the MSE is dominated by the
first or the second term in different regions, depending on
the truncation probability 1 − 𝜏. Moreover, it is clear from
Eq. (5) that as 𝜁 decreases from 1 (𝑝 increases), this truncation
probability increases. We use the following definition for
further exploiting these properties.

Definition 7. For a given Ω(𝑥) we define the cutoff 𝜁 as

𝜁cut (Ω) ≜ 𝜁 for which
𝜏(𝜁)

4
1 −Ω(𝜁2)
𝑚Ω

′ (𝜁)2 = (1 − 𝜏(𝜁))
(
𝜁

2

)2
.

This cutoff, seen empirically to be unique, partitions the
MSE into the different regions, and is important since it
defines the region in which the first MSE term is dominant
(𝜁 > 𝜁cut), which we aim to work in. Fig. 2-left demonstrates
this partitioning by showing the first term alone for 𝜁 ≥ 𝜁cut
(recall 𝑝 = (1 − 𝜁)/2), and the second term alone for
𝜁 < 𝜁cut, compared to the Monte-Carlo simulations from
previous section. In the region where 𝜁 > 𝜁cut, we can treat
𝜏(𝜁) as 1, and focus on the first term. We denote 𝑎R ≜ Ω

′ (1)
as the average check degree, and use the following expansions

Ω(𝜁2) = 1 − 2𝑎R (1 − 𝜁) +
(
𝑎R + 2Ω

′′ (1)
)
(1 − 𝜁)2 + 𝜖1,

Ω
′ (𝜁)−2 = 𝑎R

−2 + 2𝑎R
−3Ω

′′ (1) (1 − 𝜁) + 𝜖2,

where 𝜖1 = O
(
(1 − 𝜁)3) , 𝜖2 = O

(
(1 − 𝜁)2) . Through algebraic

manipulation we get that the MSE is dominated by

mse1 (Ω) =
1

4𝑚

[
1 − 𝜁2

𝑎R
+ 2(1 − 𝜁)2

𝑎R2 Ω
′′ (1)

]
. (7)

Two important dependencies now become apparent:
i For right-regular codes with 𝑑𝑐 = 𝑎R, Ω(𝑥) = 𝑥𝑎R ,
Ω

′′ (1) = 𝑎R (𝑎R − 1), we have

mse1 (Ω) =
1

4𝑚

[
3(1 − 𝜁) (𝜁 − 1/3)

𝑎R
+ 2(1 − 𝜁)2

]
,

which is clearly monotone decreasing with 𝑎R (note the
caveat that 𝜁cut also depends on 𝑎R, so 𝑎R cannot be
increased without bound.)

ii For codes with a fixed average degree 𝑎R, mse1 (Ω) is
monotone increasing with Ω

′′ (1). We denote var(Ω) ≜∑𝑑𝑐
𝑖=1 𝑖

2Ω𝑖 − 𝑎R
2 as the variance of the check distribution.

We notice that Ω
′′ (1) = var(Ω) + 𝑎R (𝑎R − 1) and con-

clude that mse1 (Ω) is monotone increasing with var(Ω),
making right-regular codes optimal for any given 𝑎R.

These dependencies are illustrated in Fig. 3, recalling that
𝑝 = (1 − 𝜁)/2. The cutoff 𝑝cut = (1 − 𝜁cut)/2 can be
observed as the inflection points after which the MSE increases
steeply. Numerical analysis shows that for right-regular codes,
𝜁cut (𝑥𝑎R ) is monotone increasing with 𝑎R (also apparent
in Fig. 3-left), limiting the maximal 𝑎R allowing effective
estimation for some target value of 𝑝.

IV. ESTIMATING BER-THRESHOLD CROSSING

The decoding stage in the mechanism from Section II-C is
based on detecting when the BER exceeds 𝑝tol. In this section
we examine such detection based on the ML estimators.
A. Hypothesis Testing for BER Threshold

Using the framework of hypothesis testing, and using 𝑝 as
a statistic for 𝑝, the detection problem is formalized to

𝐻0 : 𝑝 ≤ 𝑝tol, BER is within tolerance
𝐻1 : 𝑝 > 𝑝tol, BER exceeds tolerance.

We define 𝜓(𝑥) ≜ 𝑚
2 (1 −Ω(1 − 2𝑥)), and recall from

Eqs. (3), (4) that 𝜓(𝑝) = 𝜆 and 𝜓(𝑝) = 𝑤𝒔 . Since Ω(𝑥) is
monotone increasing, so is 𝜓(𝑥). We can thus reformulate the
setting by testing whether 𝜆 ≤ 𝜓(𝑝tol) or not, using 𝑤𝒔 as our
statistic. Following Assumption 3, 𝑤𝒔 is a Poisson random
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Fig. 3: Left: MSE for right-regular codes with different degrees, Right: MSE for fixed 𝑎R with different distributions, 𝑚 = 100.

variable with a CDF 𝐹p (𝑤𝒔;𝜆), that meets the condition of
Karlin-Rubin theorem [18]. Therefore, the test that rejects 𝐻0
if and only if 𝑤𝒔 > 𝑤T ≜ 𝜓(𝑝T) is uniformly most powerful.

This means that, following conventional notations

𝛼 ≜ P(reject 𝐻0 |𝐻0) = P (𝑤𝒔 > 𝜓(𝑝T) |𝜆 ≤ 𝜓(𝑝tol)) ,
𝛽 ≜ P(accept 𝐻0 |𝐻1) = P (𝑤𝒔 ≤ 𝜓(𝑝T) |𝜆 > 𝜓(𝑝tol)) ,

for every given significance level 𝛼, the power 1−𝛽 is maximal
with respect to any other test. We modify the type-I error into

𝛼(𝛿) = P (𝑤𝒔 > 𝜓(𝑝T) |𝜆 ≤ 𝜓(𝑝tol − 𝛿)) ,

that is, to include an estimation gap of width 𝛿 where both
hypotheses are “equally acceptable”, and neither counts as
error. The gap 𝛿 can have different practical justifications,
one of which is that decoding close to the threshold has a
benefit of improving data quality. Reasonably, it is desired to
set a maximum allowed value for 𝛽 since it represents the
probability of deciding not to decode when needed, which
may cause irreparable data corruption. Naturally, we will set
𝑝T < 𝑝tol, implying that

𝛽 < P (𝑤𝒔 ≤ 𝜓(𝑝T) |𝜆 = 𝜓(𝑝tol)) = 𝐹p (𝜓(𝑝T);𝜓(𝑝tol)) , (8)

where the inequality is due to 𝐹p (𝑥;𝜆) being monotone de-
creasing with 𝜆. Thus, to meet an upper bound 𝛽∗ we require

𝐹p (𝜓(𝑝T);𝜓(𝑝tol)) ≜ 𝛽𝜓 (𝑝T, 𝑝tol) ≤ 𝛽∗. (9)

We also have that

𝛼(𝛿) ≤ 1 − 𝐹p (𝜓(𝑝T);𝜓(𝑝tol − 𝛿)) ≜ 𝛼𝜓 (𝛿, 𝑝T, 𝑝tol). (10)

B. Degree Effect on Detection Performance

Since a minimal 𝛼(𝛿) is desired for any power 1 − 𝛽, we
define 𝐷𝜓 (𝛿, 𝑝T, 𝑝tol) ≜ 1− 𝛽 − 𝛼 as a detection performance
measure we aim to maximize. We now describe the main result
of this section. Denote Δ ≜ 𝜓(𝑝tol)−𝜓(𝑝tol−𝛿) > 0, and define

𝐷∗ (Δ) ≜
⌊𝜓 (𝑝T ) ⌋∑︁

𝑗=0

𝑒−𝜓 (𝑝tol )

𝑗!
[
𝑒Δ (𝜓(𝑝tol) − Δ) 𝑗 − 𝜓(𝑝tol) 𝑗

]
.

Theorem 8. For every (𝛿, 𝑝T, 𝑝tol) such that 0 < 𝛿 < 𝑝tol − 𝑝T,

1) it holds that 𝐷𝜓 (𝛿, 𝑝T, 𝑝tol) > 𝐷∗ (Δ),
2) for fixed ⌊𝜓(𝑝T)⌋, 𝐷∗ (Δ) is monotone increasing with Δ.

Proof: See Appendix B.

Lemma 9. It holds that

Δ = 𝑚𝛿
[
𝑎R − 2𝑝tolΩ

′′ (1)
]
+ O(𝑚𝑝2

tol). (11)

Proof: The result is obtained by expanding Δ and Ω
′ (1−2𝑝tol)

to a first-order Taylor series.
The importance of Lemma 9 is that given a tolerance param-

eter 𝛿, it shows that maximizing the term
[
𝑎R − 2𝑝tolΩ

′′ (1)
]

in (11) maximizes a lower bound on the detection perfor-
mance, because 𝐷∗ (Δ) is monotone increasing in Δ, and
1−𝛽−𝛼 ≥ 𝐷∗. Since the exact dependence of 1−𝛽−𝛼 on Ω(·)
is complicated, this lower-bound maximization becomes an
efficient and useful design tool. From Theorem 8 and Lemma 9
we learn that the detection performance bound depends on
Ω(𝑥) as follows:



i For right-regular codes an optimal performance bound is
obtained by 𝑎R

∗ = arg max𝑎R {𝑎R − 2𝑝tol𝑎R (𝑎R − 1)} =

(1 + 2𝑝tol)/(4𝑝tol).
ii For codes with a fixed average degree 𝑎R, Δ is monotone

decreasing with var(Ω), and optimal performance bound
is obtained for right-regular codes, as in the case of mse1
from Section III.

Fig. 2-right demonstrates these results.

V. IN-MEMORY BER ESTIMATION

Based on the theoretical results of the preceding sections,
we now propose a scheme for employing BER estimation for
in-memory computing.

A. Architecture

The estimation stage is based on embedding logic circuitry
in the memory, allowing to perform 𝑚2 parity computations
with at most 𝑑𝑐 −1 XORs per computation. Additional simple
logic is embedded to extract the weight 𝑤𝒔 (simple sum),
compare 𝑤𝒔 to the threshold 𝜓(𝑝T), and translate 𝑤𝒔 into 𝑝(𝒔).
The latter is needed only if we want an actual BER estimate,
while for some applications detection of threshold crossing is
sufficient. An illustration for this mechanism is given in Fig. 4.

Fig. 4: Illustration of in-memory BER estimation architecture.

Many works discuss efficient in-memory processing and
data placement (e.g [7], [9]). Exploring these considerations
is outside the scope of this work and left for future research.

The decoding stage is based on setting 𝑝tol smaller than the
correction capability [25] of 𝐶1, such that traditional message-
passing decoding [26] can reproduce 𝒄 with high probability.

B. Estimation Code Design

This section leverages the estimation and hypothesis testing
performance results from previous sections to design 𝐶1 and
decision threshold 𝑝T. We focus on the regime where 𝑝 is
sufficiently small, ensuring the accuracy of all approximations.
To best serve the proposed architecture, our strategy is to
optimize detection performance, while still working at the non-
truncated regime of MSE (below the inflection point).

We consider 𝑝tol, 𝛿 and 𝛽∗ as predefined system-level
parameters. The design procedure is as follows.

Procedure 1. (estimation code design)
1) Define 𝑝tol ≜ max𝑘∈N{2/(2𝑘 + 1)} s.t. 2/(2𝑘 + 1) ≤ 𝑝tol
2) Set 𝑑𝑐 = (1 + 2𝑝tol)/(4𝑝tol)
3) Set Ω(𝑥) = 𝑥𝑑𝑐

4) Calculate 𝑝cut ≜
(
1 − 𝜁cut

(
𝑥𝑑𝑐

) )
/2

5) Set 𝜇 = min{𝑝tol − 𝛿, 𝑝cut}
6) Set 𝑝T = max𝜌∈[0,𝜇]{𝜌} such that 𝛽𝜓 (𝜌, 𝑝tol) ≤ 𝛽∗

Discussion. In Eq. (7), (11) we saw that right-regular codes
have optimal performance, provided that 𝑎R

∗ = (1 +
2𝑝tol)/(4𝑝tol) is an integer and can serve as the actual degree.
We can take a lower tolerance 𝑝tol that ensures an integer
𝑑𝑐 = 𝑎R

∗, and ensure optimal detection performance in terms
of 𝐷∗ (Δ), while only slightly underestimating the code’s cor-
rection capability if 𝑝tol ≈ 𝑝tol. We then set 𝑝T. Since 𝛼(𝛿)
decreases as 𝑝T increases, we aim to maximize it, but need to
maintain Δ > 0 (requiring 𝑝T < 𝑝tol − 𝛿), 𝑝T < 𝑝cut so that the
MSE is not in the truncated region, and 𝛽 < 𝛽∗ as required.
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Proof: We denote 𝑔(𝑥) ≜ 1 − 2𝑥/𝑚, E𝑐 [𝑋] = E[𝑋 |𝑤𝒔 ≤
𝑚/2], and var𝑐 (𝑋) as the variance using E𝑐 [𝑋]. 𝜂1, 𝜂2 will
denote empirically small terms. Using Taylor’s expansion for
Ω−1 (𝑔(𝑤𝒔)) we get that E𝑐

[
Ω−1 (𝑔(𝑤𝒔))

]
= 𝜁 +𝜂1 (𝑝). It can

be then shown that

bias(𝑝)2 =(
𝜁

2

)2
− 𝜁

2
𝜏E𝑐

[
Ω−1 (𝑔(𝑤𝒔))

]
+ 𝜏2

4
E𝑐

[
Ω−1 (𝑔(𝑤𝒔))

]2
,

var(𝑝) = 𝜏

4
var𝑐

(
Ω−1 (𝑔(𝑤𝒔))

)
+ 𝜏 − 𝜏2

4
E𝑐

[
Ω−1 (𝑔(𝑤𝒔))

]2
.

Finally, it can be shown that

var𝑐
(
Ω−1 (𝑔(𝑤𝒔))

)
=

4var(𝑤𝒔)[
𝑚Ω

′ (
Ω−1 (𝑔(𝜆))

) ]2 + 𝜂2 (𝑝),

var(𝑤𝒔) = 𝑚/4
[
1 −Ω(𝜁2)

]
.

Taking mse(𝑝) = bias(𝑝)2 + var(𝑝) completes the proof.

APPENDIX B
PROOF OF THEOREM 8

From Eq. (8), (9), (10), we have

𝐷𝜓 (𝛿, 𝑝T, 𝑝tol) > 1 − 𝛽𝜓 (𝑝T, 𝑝tol) − 𝛼𝜓 (𝛿, 𝑝T, 𝑝tol)
= 𝐹p (𝜓(𝑝T);𝜓(𝑝tol − 𝛿)) − 𝐹p (𝜓(𝑝T);𝜓(𝑝tol))

=

⌊𝜓 (𝑝T ) ⌋∑︁
𝑗=0

𝑒−𝜓 (𝑝tol−𝛿 ) 𝜓(𝑝tol − 𝛿) 𝑗
𝑗!

− 𝑒−𝜓 (𝑝tol ) 𝜓(𝑝tol) 𝑗
𝑗!

=

⌊𝜓 (𝑝T ) ⌋∑︁
𝑗=0

𝑒−𝜓 (𝑝tol )−Δ (𝜓(𝑝tol) − Δ) 𝑗
𝑗!

− 𝑒−𝜓 (𝑝tol ) 𝜓(𝑝tol) 𝑗
𝑗!

,

which is exactly 𝐷∗ (Δ). Taking the derivative while keeping
⌊𝜓(𝑝T)⌋ fixed gives

𝑑𝐷∗

𝑑Δ
=

⌊𝜓 (𝑝T ) ⌋∑︁
𝑗=0

𝑒−𝜓 (𝑝tol )

𝑗!
[
𝑒Δ (𝜓(𝑝tol) − Δ) 𝑗 (𝜓(𝑝tol) − Δ − 𝑗)

]
,

we notice that for every 𝛿 < 𝑝tol−𝑝T it holds that 𝑗 ≤ 𝜓(𝑝T) <
𝜓(𝑝tol − 𝛿) < 𝜓(𝑝tol) − Δ, ensuring all terms remain positive.
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