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Abstract—We propose a novel low-complexity Noise-Recycle-
based Decoder (NRD) for Multi-Level Cells (MLC) to obtain
high storage rates. Our proposed scheme utilizes Block Partition
(BP) mapping in multi-level flash memory. Based on multi-stage
decoding, NRD method decodes layers sequentially, starting
from the MSB (layer 1) to improve noise robustness. Specifically,
a digital noise realization is estimated utilizing already decoded
layers. This estimated noise is then recycled by subtraction in
the subsequent layers pre-decoding to improve Bit Error Rate
(BER). Noise Recycling (NR) approach assumes simultaneous
reading of an entire MLC, ensuring a fixed correlated noise
realization for decoding all layers within a cell. For noise shifts
across multiple representation levels, we establish a reliability
bound and show via simulations that the proposed NRD solution
outperforms Independent Decoding (ID) with both BP and
Gray mappings without NR. For a single-level noise shift,
we analytically and through simulations demonstrate that the
proposed scheme outperforms the baseline ID scheme with BP
mapping and no NR, while achieving equal performance to ID
with Gray mapping and no NR. We introduce new capacity
and reliability bounds for MLC NAND flash memory using BP
mapping under single-level noise shifts.

I. INTRODUCTION

Flash memory is crucial for modern storage but strug-
gles with rising error rates as multi-level cell (MLC) ar-
chitectures handle greater data volumes. Unlike single-level
cells storing one bit, MLCs store m bits per cell, and the
stored value is referred to as a multi-layered symbol (MLS).
Higher density in cells reduces voltage margins, making
MLCs more prone to noise-induced errors. Approaches to
improve MLC reliability and storage rate have focused on
strategies like: 1) Using error correction methods, such
as Bose—Chaudhuri—-Hocquenghem (BCH) and Low-Density
Parity Check (LDPC) codes [1]-[3]. 2) Adjusting read-
ing/writing voltages to mitigate noise [2], [3] and using more
reading voltages with soft decoders for finer MLS estimation
[1], [2], [4], [5]. 3) Optimizing verify operations and MLS
mappings to reduce inter-cell noise caused by high voltages
[5]1-[7]. 4) Employing practical encoding strategies, such
as independent encoding with low complexity progressive
reading [1].

In this work, we introduce a new low-complexity decoding
approach that exploits noise correlation between multiple bits
of the same MLS. The decoder employs the concept of noise
recycling (NR) [9], and is called NR-based decoder (NRD).
It works by efficiently estimating and correcting noise from
previously decoded layers, as illustrated in Fig 1. This sig-
nificantly enhances reliability and increases storage capacity.
The proposed decoder works within the scheme of multi-level
coding [8], which in this paper we call multi-layer coding. In
particular, it uses the block partition (BP) mapping, in which
the layers are ordered in decreasing significance (from MSB
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Fig. 1: Our decoding scheme is illustrated with solid black lines rep-
resenting the ID baseline (see [8]) and dashed blue lines highlighting
the components of the proposed Noise-Recycling-based scheme.
The quantized reading of a string, denoted as QR, yields noisy
digital cell representation levels, denoted as X = (X1,...,Xn) €
{1,...,2™}". M(-) represents the mapping function from the
binary vector written to a cell to the cell levels, and M™1(-) its
inverse. The decoding process for the t¢-th layer is denoted by
Cdec,t. V, is the input to the ¢-th decoder, representing the t-th
codeword based on X and the NR corrections from previous layers.
The decoded message from the ¢-th layer is U,. After decoding
layer ¢, the estimated digital noise Zd, is computed using U . and
V,. This noise is subtracted from the quantized cell readings X,
along with noise estimates from prior layers, improving the BER
for subsequent layers. Specifically, Cqec,: Operation is performed on
the input V, = M1 (K — Zf;ll EJ where the estimated digital
noise is calculated using the logical steps illustrated by Al in the
figure and detailed in the colored box of Algorithm 1.

to LSB). The algorithm works purely in the digital domain,
assuming readout of “hard” MLS values without any soft
information. Therefore, its main task is estimation of digital
noise and correction of MLS values between layer decodings.
Thanks to the regularity of the BP mapping, the algorithm
can work with general noise intensities, but we mostly discuss
the special cases where the noise shifts an MLS by up to &
levels (in any direction), where k € {1,2}.

The novelty of the algorithm is in providing a low-
complexity method for multi-stage decoding of multiple bits
in MLC flash. Relative to the original NR algorithm [9] that
defined the noise correlation explicitly, it takes advantage of
an implicit and more subtle noise correlation between the
MLS bits. Compared to prior multi-layer coding schemes
with multi-stage decoders such as [10], it does not require soft
information or likelihood calculations for passing information
between layers. Finally, it is also advantageous when compar-
ing to a popular scheme using Gray mapping and independent
decoding (ID) of each layer, thanks to its effectiveness beyond
1-shift noise intensities. In fact, we show analytically that
under 1-shift noise intensity the effective layer error rates of
NRD are identical to Gray with ID, which is a significant



improvement from BP mapping without NRD that is much
inferior to ID with Gray in that regime. More importantly, we
show that in 2-shift intensities, NRD with BP is superior to
ID with Gray: analytically by showing lower bit-error rates
in the last layer, and empirically by showing superior block-
error rate performance.

The structure of this paper is as follows. In Section II,
we describe the system model and the problem formulation.
In Section III, we present the proposed NRD algorithm, and
in Section IV we provide the analytical results. Finally, we
describe an experimental study exemplifying the performance
of the proposed method in Section V.

II. SYSTEM MODEL & PROBLEM FORMULATION
A. Flash Memory System

In flash memory systems, a string is a series of N cells
sharing a common bulk. An MLC with m layers is a transistor
that can be programmed to any of 2™ distinct threshold
voltage levels. A binary vector (b1,ba,...,by,) € {0,1}™
stored at an MLC is called a multi-layered symbol (MLS).
We will also refer to an MLS as the digital representation
level of the cell’s threshold voltage within {1,...,2™}. This
representation is based on a mapping, discussed later, in
which b; (layer 1) is the most significant bit (MSB) and b,
(layer m) is the least significant bit (LSB).

An MLS value ¢ € {1,...,2™} is mapped to a real-valued
cell voltage level A by a function W, where A = W(i) £ (i—
0.5)-D, and D is the equal voltage spacing between adjacent
MLS representation voltages. A is also called the write value,
as it directly represents the data written to the cell. The noisy
cell voltage of an MLS is A + Z, where Z ~ N(0,02) is a
Gaussian random variable modeling the cumulative read/write
noise affecting the cell [1], [2]. A + Z is not read directly
as a real number; instead, we define 2™ — 1 sensing levels
Vigp.y) £1-D wherel € {1,...,2™ —1}. The output digital
valueis 1if A+7 < ‘/(RDxl)’ 2™ if ‘/(RD,gmfl) < A+Z, or
the value [ if V(RDJ_U < A+Z < V(RD,[) for any I > 2 (see
Fig. 2.c). The quantized reading is achieved via a sense-amp
comparator, producing a quantized threshold voltage.

The probability that the wrong MLS is read from a cell
due to a noise shift will be called read error probability and
denoted as Pieaq. The read error probability of the t-th layer,
denoted as PFleadt), 1S the probability that noise shifts the
MLC threshold voltage level to represent an MLS differing
in the ¢-th bit from the originally written value. As a model
of system reliability, we assume that the noise variance is
sufficiently small, such that with high probability an MLS
value 7 is read as a value in {i — k,...,i,...,i+ k}, for
some integer k. We call this assumption the k-shift noise
limit. An interesting case in practice is k = 1, in which shifts
beyond 1 are considered negligible, but we also treat the case
k = 2 applicable to less reliable high-density memories.

B. Multi-layer Coding Scheme

The encoding process follows the classic multi-level coding
scheme (see [11, Section II.B] and [8]), which we rename
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Fig. 2: Ilustrated is a TLC (8-level cell) with BP mapping and
the corresponding partitioning tree. The 23-ary version of the MLS
values is enumerated from 1 to 8, and the binary version is
displayed as the corresponding column vector positioned above the
enumeration. Each MLS value is obtained by traversing the tree
based on the already decoded prefix from the preceding layers. Errors
that are found and subsequently corrected are framed in blue dashed
lines. The two-sided arrows indicate bit flips between adjacent MLS
values. The gap between MLS levels, D, is highlighted. The real-
valued noise distribution Z within the cell follows a Gaussian
distribution centered around each write level, resulting in the final
threshold voltage distribution of A + Z based on the voltage level
A of the desired MLS. The read voltages V( RD,j) are also marked.

here to multi-layer coding to avoid confusion with the cell
voltage levels. In multi-layer coding each bit b; of an MLS
is part of a different length-N codeword, and these m
codewords are encoded independently. Moreover, multi-layer
coding allows performing a multi-stage decoding process,
whereby the decoding outcomes of layer ¢ are used to refine
the inputs for the decoders of subsequent layers > ¢. We
defer discussing the decoding to Section III, and define
the encoder first. Let U, € {0,1}V"* be the ¢-th layer’s
binary message of length Nu, < N. For a message U,
with encoding rate R; = Nu;/N, we define the layer-
t encoder function by Cenc:(U,, R:); The encoder output,
denoted as Lu, € {0,1}", represents the codeword of the
t-th layer. The j-th bit of this codeword is denoted as L, .
Thus, the MLS value of the j-th cell is (by,ba,...,b0y) =
(LU(L]'), e ,LU(mJ)) .

A key component in multi-layer coding is the mapping
between the binary representation (by,...,b,,) of the MLS
and its 2™-ary digital value that is written to the cell. In
this paper we define this mapping by the function M(-) that
maps (b1, ...,by) directly to a write value a € {1,...,2™},
which (according to Section II-A) is in turn mapped to
a voltage level A = (a — 0.5)D (see Fig. 2.b and 2.c).
Following the encoding, the j-th cell’s digital write value
is thus a; = M (Lug j), ..., Lugny ;). The inverse of this
mapping function is denoted as M~1(-). With a slight abuse
of notation, if a = M (by, ..., b,,), we write M; ' (a) = b;.

C. Problem formulation

Following the multi-layer encoding and mapping of the
previous sub-section, each write value A; is corrupted by a
noise value Z; and the result is mapped to a read value X; €



{1,...,2™} using 2™ — 1 sensing levels (see Section II-A).
For decoding, each read value X; is mapped back to binary:
(Y jys-- - Yim,j)) = M™1(X;), where Y{; ;) is the read bit
at layer ¢ of cell 7. Thus, the full binary read word of layer
t, without any noise corrections applied, is denoted Y,. A
decoder in this setting is a function C4e. that gets as input
(Y,,...,Y, ) (or equivalently (Xi,...,Xy)), and outputs
estimates of the m information messages. For layer ¢ the
estimated codeword is denoted @t. The performance of Cge.
is measured by two probabilities: the system error probability:

Pux £ P(3t € [m] : Lut # Lu,) and the error probability of
the t-th layer P(mt) = (@t # Lu,).

Our goal is to design a novel decoding scheme that
enhances noise robustness in multi-level flash memory with
minimal computational complexity. That is, by efficiently
exploiting the noise corelation within the cells, we aim
to minimize Py and Py, to increase overall decoding
reliability or increase the total storage rate R = ,~ | R;.

III. PROPOSED NOISE-RECYCLING (NR) DECODER

We now present our proposed algorithm, NRD, for the
multi-layer decoding problem defined in Section II-C. Before
that, we note a common alternative solution of using a
Gray code [1], [2], [10] for the mapping function M(-),
and performing independent decoding (ID) in each layer.
In our solution, we employ a powerful multi-stage decoding
process, and choose the mapping to allow effective transfer
of decoding outcomes to subsequent layers. For the mapping
function M(-) we choose the standard binary mapping, which
maps binary vectors to MLS values 1,...,2" in increasing
order where by is taken as the MSB and b,,, as the LSB (See
Fig. 2.b). In multi-layer coding literature, this mapping is
called Block Partitioning (BP) [8], also referred to by other
names in modulation and coding contexts.

Our proposed decoder uses as building blocks binary
decoding functions for the codes used in the m layers; for
layer t we denote this function by Cyec,t(V,, R:), where V, is
a binary length-N word, possibly corrupted by errors. These
decoders are simple hard-decision decoders providing at the
output an estimated binary message.

The full formal description of the proposed decoder is
given in Algorithm 1 and is illustrated in Fig. 1. For clarity,
we also describe its main ideas in text. In the following
sections, we present key results, outline essential operations
and analyze NRD performance under the noise-limit model
defined in Section II-A.

A. Algorithm Description

The input to Algorithm 1, X, is assigned to a vector
variable g(l), where agt) is the estimated MLS value of cell
j before decoding layer t. The main idea of the algorithm
is that after decoding each layer ¢, the digital noise @t is
estimated based on the decodings of layers 1 to ¢. Since it is
the same noise sample Z; that affects the bits of all layers
in the j-th cell, a noise estimate from decoding outcome of
one layer can be recycled for subsequent layers'. The sum

'Note, in MLC, the analog noise estimation is given by Z . = @t - D.

Algorithm 1 Noise Recycling Decoding for MLC with BP[*!

1: Read data from string
2: M =(a1,...,an) =X € {1,...,2m}N
3: Decode layer by layer
4: Imit: S; =0, Vje{l,...,N}
5: fortfrom 1t0m—1d0
6: Uy =Cact( My (X —XIZ} Zd;), Re) < Apply NR
7 Re-encode thehestlmated message
8: Qt = Cenc,t(gt 5 Rt)
9: For each cell, calculate Z d(,5) for NR in next layer
10: for j from 1 to N do
11: if Lug, ;) — My " (X — SiZ1 Zdg jy) < 0 then
12: NR Check 1: Positive shift — Negative correction
13: otV = 5; 4 gmt
14: else if Lu, j) — M; " (X; — S1Z! Zdg j)) > 0 then
15: NR Check 2: Negative shift — Positive correction
16: aft) =55 +2m~t +1
17: else
18: NR ?heck 3: Ng shift detected — No correction
19:
20: end lf “ R
21: Update subset shift and Zd; ;)
22: Sj+ = (2m7Y) - Lug 5
23: Zd<t = a(t) = agﬂrl) < NR Correction for next layer
24: end for
25: end for
26: Decode last layer
27: U, = Caceom( My (X = 37" 7" Zd,), Rm) < Apply NR
28: return U = (U,,0,,...,U, )

[*] NRD operates in the discrete domain. i.e., without any soft information.

of noise estimates from layers 1,...,¢ is in turn subtracted
from the input X (line 6), before decoding the (¢ + 1)-
th layer. This reduces the BER of these layers. The noise
estimation is done as follows: when a layer-t bit is corrected
from 1 to O (line 11), we infer that the noise shifted the
MLS level to the right, and thus the noise estimate is the
distance to the highest representation level with b, = 0 and
prefix (bi,....bi—1) = (Luig),..., Lu—1,)- This level
is §; +2m~ ¢ (line 13). S; is a Varlable that holds the inte-
ger value of the prefix: M(Lu(ld) Lu(t 15),0,...,0).
Meaning, it serves as the path to the root in the BP mapping
tree (see Fig. 2.a, [8]), and is updated after decoding each
layer. Similarly, when the correction is from O to 1 (line 14),
we infer that the noise shifted to the left, and thus the noise
estimate is the distance to the lowest level with b; = 1 and
the same prefix. This level is S;+2™ " +1 (line 16). That is,
assuming the message U . 1s decoded correctly, any difference
between M1 (& — Zf;i @0 and Lu, = Conet(U, , Ry)
identifies noisy cells. This difference, used in the marked
box of Algorithm 1, provides the indexes of noisy cells and
the direction of the required correction for the next layer.
Correctness proofs for the proposed NR algorithm, due to
the space limitation, are given in [11, Section IX].

The proposed NR scheme based on BP mapping can handle
noise shifts between any MLS values. Assuming correct
decoding of previous layers, this process improves BER. For
example, let us consider a noise shift under 1-shift noise
limit in a TLC with BP mapping (illustrated in Fig. 2). If
the original write value was 4, but the noise shifts it to 5
(MLC values differing in by, and all other bits), the shift is



detected after decoding the first layer (see Fig. 2.b). Using
NRD, the shift is corrected, preventing errors in subsequent
layers. For an example of noise correction under 2-shift
noise limit refer to [11, Section V.A]. Algorithm 1 involves
only re-encoding and basic arithmetic, similar to [9] when
the channel correlation is fixed and given. Since encoder
complexity for linear codes is typically much lower than that
of the decoder, the added complexity of NRD is negligible.
For a full complexity analysis, see [11, Section IV.C].

1) Simplified NRD (assuming I-shift noise limit): Under
the 1-shift noise limit, we can simplify Algorithm 1. Since
we know that an error results in a shift of exactly 1 level,
instead of a full noise estimate ﬁt, we may implement a
+1 correction for a corrected bit, and such a correction can
happen in at most one layer in every decoding instance. That
is, we can skip all the lines in the shaded box and substitute
directly Zd, = M;" (X — Y1) Zd,) — Lu,.

IV. ANALYTICAL RESULTS

We will now focus on analyzing our proposed NRD
scheme. Although our scheme works under any Signal-to-
Noise Ratio (SNR), the number of possible errors to analyze
increases exponentially with the possible MLS shifts that can
be caused by noise. Therefore, we will only provide bounds
under k-shift noise limits for & € {1,2}. The proofs for the
bounds in Theorems 1-7 given in this section are deferred to
an extended version [11], due to lack of space.

For a k-shift noise limit, we assume that the probability of a
shift of exactly k levels equals the tail probability of shifting
> k levels. Given the Gaussian noise distribution with stan-
dard Q(I, h) function,” when k = 1 let £~ = Q(—o0, —D/2)
denote the probability of a leftward shift causing a reading
error. By symmetry, the probability of a rightward shift is
identical (€T = ¢~ £ &), making the total read error
probability 2¢. For k = 2 we define £, = Q(—3D/2,—D/2)
to be the probability of a left shift of one level, and from
symmetry £ = & 2 & for the right shift. Similarly, let
&5 = Q(—00,—3D/2) denote the probability of a two-level
shift to the left, and from symmetry 5;' =& £ ¢, for
the right shift. Thus, the total probability of a read error is

2(& + &2), and we note that £ = & + &o.

Let Cenct(-,Ry) represent a non-random  structured
code—such as LDPC [1], [2], BCH [2], or Hamming [5],
characterized by a fixed, equal error probability for each
codeword.> This code is assumed to be at least d;-error-
correcting code, meaning it guarantees to correct at least up
to d; bit errors in a codeword of length N. Thus, similar to
[10] and [12], the error probability is upper bounded by

P < Z P(err t) < Zl - Z (N) P(read,t))NikP(I?ead,t)'

t=1 k=0
)]
1) Analytical Results Under I-shift noise limit: The
achievability results for ID and NRD are given by the

following theorems.
2

z
The standard function is given by Q(I, h) fl 2 o1 e 29% dz.
TFCT
3If codewords have unequal error probabilities, the worst-case distribution

can serve as an upper bound for error probability analysis.

Theorem 1. Consider an ID scheme with BP mapping under
1-shift noise, the ¢-th layer read error probability determining
the upper bound on P in (1) is

gt—1 n £(2071-1) a

_ 1D (BP)
P(read,t) = f2m71 om—1 P

(read,t) "

Theorem 2. Consider an NRD scheme with BP mapping
under 1-shift noise, the t-th layer read error probability
determining the upper bound on Py in (1) is

NRD (BP)
(read,t)

P(read,t) = % £
Theorem 2 can be interpreted as a read error probability
reduction, compared to Theorem 1. In MLC, each reading
voltage for layer ¢ distinguishes two MLS levels that differ
in the ¢-th bit. With BP mapping, once levels differ in the
t-th bit, they continue to differ in all subsequent bits. For ID
with BP mapping, no noise correction is applied, so such a
noise shift affects Preqq,r) for all 7 > ¢. However, for NRD
with BP mapping, the error is found and corrected in layer ¢.
As a result, the noise shift impacts Paq,-) only for 7 = ¢.
This reduces the read error probability per layer.

Corollary 1. Consider a scheme with BP mapping under 1-
shift noise. The upper bound on the system error probability
is strictly smaller when using NRD rather than ID.

The resulting capacity bounds are the following. The first
result is a direct consequence of [8], while the next one is
our main analytical result for NRD with BP mapping.

Theorem 3. Consider an ID scheme with BP mapping under
1-shift noise. The capacity of the ¢-th layer is

- ID (BP)
Ct=1- Hy (P(read t))

The proof of Theorem 3 is obtained using similar tech-
niques for parallel channels in [8] with the derived P(HZ a((?lt)))
in Theorem 1. The complete proof is in [11, Appendix D].

Theorem 4. Consider an NRD scheme with BP mapping
under 1-shift noise. The capacity of the ¢-th layer is

_ NRD (BP)
Ct=1-H, (P(Wl : ) .

Our main analytical analysis for the capacity proof in
Theorem 4 can be interpreted as a generalization of analysis
for parallel channels (e.g., as in [8] and Theorem 3) to
correlated channels and channels with feedback [15, Chapts.
9.4-9.6], using the derived P(NRDS)SP) in Theorem 2. The
complete proof is in [11, Section VIII.A]. Now, given that
CTet = 357" | C*, from Theorems 1-4 we obtain the following
corollary.

Corollary 2. Consider a scheme with BP mapping under 1-
shift noise limit. The system capacity with NRD is strictly
greater than that achieved with ID.

Proof Sketch:, In the interval [0, %], the binary entropy
function is monotonically increasing. Hence, under 1-shift
noise limit, i.e., for £ < % (see [11, Section VIILB]),
CHNRDBP) > OtID(BP) - Equality holds only when ¢t = 1,
as in this case the error probabilities are identical. For all
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Fig. 3: Performance evaluation. Capacity (left) and Achievability (middle) under 1-Shift-Noise in a TLC under a Gaussian noise [13], and
Achievability (right) under 2-Shift-Noise in a DLC under Student’s-T noise, which mimics Gaussian noise but with more outliers [14].

subsequent layers (¢t > 1), the inequality becomes strict,
highlighting the advantage of NR-based decoding. O

Now, we compare NRD with BP mapping to ID with Gray
mapping in a flash memory system.

Theorem 5. Consider an ID scheme with Gray mapping
under 1-shift noise, the upper bound on P in (1) is equal
to that of an NRD scheme with BP mapping.

Note, since all read voltages are utilized during the reading
process, both mapping methods require the same quantity
and values of read voltages to read an entire MLS. Each
read voltage, necessary for layer ¢ distinguishes neighboring
MLS levels that differ in the ¢-th bit. Thus, BP and Gray
mappings offer equivalent potential capabilities to find errors.
However, BP mapping (without NRD) is less noise robust
than Gray mapping, and gains from additional post-decoding
error correction provided by NR for 1-shift noise. Theorem 5
shows that for £ = 1 BP mapping with NR performs equally
to Gray mapping, while BP mapping without NR performs
worse (analysis for k > 1 presented next).

Remark 1. It is important to note that if the 1-shift noise
limit is violated, i.e., noise shifts across multiple representa-
tion levels, both mappings (BP and Gray) can gain from post-
decoding error correction, highlighting the value of our NR-
based scheme for large noises as shown in the next section.

2) Analytical Results Under 2-shift noise limit: The
achievability is given by the following theorems.

Theorem 6. Consider an ID scheme with Gray mapping
under 2-shift noise, the upper bound on error probability P,
in (1) is given by the read error probability of the ¢-th layer

(&142¢€ ),2’;—1 2 pID (Gray) )
P(read t) % B P(read,t) DG Jif £ <m,
7 51 + 52 (2 o 2’"%1) 2 P(rea(d,;ral};) 7if t=m.

A straightforward algebraic comparison of Theorems 5 and
6 shows a higher read error probability in the ¢-th layer due
to increased noise.

Theorem 7. Consider an NRD scheme with BP mapping
under 2-shift noise, the upper bound on error probability P,
in (1) is given by the read error probability of the ¢-th layer

ID (Gray) .
P( = (read ) Af t <m,
read,t) — NRD (BP :
&4 & Ppigny ift=m.

As with 1-shift noise limit, the upper bounds on error
probability for layers ¢ < m are the same between ID

with Gray mapping and NRD with BP mapping. However,
NRD with BP mapping shows better performance in the last,
most noise-sensitive layer. Ongoing work focuses on NR
improvements under k-shift noise for k > 3.

V. PERFORMANCE EVALUATION

Here, we evaluate the proposed scheme by simulation

results in Matlab. We focus on analyzing TLCs (m = 3)
and DLCs (m = 2), though our approach extends to any
m. In Fig. 3, we present the performance evaluation for the
following simulations, when comparing to binary reflected
Gray mapping, as done in [2], [16].
Simulation for Capacity and Achievability Under 1-Shift
Noise: In this simulation we use the simplified version of
NRD, presented in Section III-A1l. For ease of comparison,
we use BCH codes, which are suitable for flash memory
systems and compatible with ID schemes [2], [10]. Their
computable minimum distance simplifies comparison to the-
oretical bounds®.

Both the left and middle plots in Fig. 3 present results for

a fixed block-error rate (BLER) of Per 1y = 0.001 across all
layers in a TLC. The left plot shows the rate as a function
of SNR, where NRD with BP (dark blue) outperforms ID
with BP (black) and matches ID with Gray (light blue). Both
BP-based schemes fall short of capacity (NRD in red, ID in
purple), likely due to BCH code limitations, though NRD’s
rate advantage remains evident. The middle plot evaluates the
BER for each layer, showing alignment of all schemes with
their predicted Peaq,t), derived from Theorems 1, 2, and 5.
These results highlight the performance benefits of the NR-
based scheme with BP mapping, achieving parity with ID
using Gray mapping.
Simulation for Performance Under 2-Shift-Noise: In
this simulation NRD is implemented based on Algorithm 1.
This simulation models a strained MLC, achieved either by
increasing the number of levels (m) or reducing the MLS
margins (D). For simplicity, we opted for the latter. To
evaluate performance under significant noise, we introduced
Student’s-T distributed noise, increasing large noise events,
and used LDPC coding. For fixed rates R; = 0.25 and
Ry = 0.15 in a DLC, as presented in the right plot in
Fig. 3, NRD with BP (circles) achieves a lower BLER
compared to ID with BP (line with asterisks) and ID with
Gray (diamonds), confirming our theoretical results.

40ur method extends beyond BCH codes and is applicable to other,
potentially stronger, structured codes, paving the way for future research.



[1]

[2

—

[4

=

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

N. Wong, E. Liang, H. Wang, S. V. Ranganathan, and R. D. Wesel,
“Decoding flash memory with progressive reads and independent vs.
joint encoding of bits in a cell,” in 2019 IEEE Global Communications
Conference (GLOBECOM). 1EEE, 2019, pp. 1-6.

J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang,
H. Shankar, and R. Wesel, “Enhanced precision through multiple reads
for LDPC decoding in flash memories,” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 5, pp. 880-891, 2014.

A. Asmani, S. Galijasevic, and R. D. Wesel, “Write voltage optimiza-
tion to increase flash lifetime in a two-variance Gaussian channel,”
in 2024 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2024, pp. 1143-1148.

J. Wang, T. Courtade, H. Shankar, and R. D. Wesel, “Soft infor-
mation for LDPC decoding in flash: Mutual-information optimized
quantization,” in 2011 IEEE Global Telecommunications Conference-
GLOBECOM 2011. IEEE, 2011, pp. 1-6.

K. Mizrachi, I. Bloom, and Y. Cassuto, “Memory reliability for cells
with strong bit-coupling interference,” in Proceedings of the Interna-
tional Symposium on Memory Systems, 2017, pp. 196-204.

Y. Kim, J. Kim, J. J. Kong, B. K Vijaya Kumar, and X. Li, “Verify
level control criteria for multi-level cell flash memories and their
applications,” EURASIP Journal on Advances in Signal Processing,
vol. 2012, pp. 1-13, 2012.

G. Hemink and A. Goda, “NAND Flash technology status and perspec-
tives,” Semiconductor Memories and Systems, pp. 119-158, 2022.

U. Wachsmann, R. Fischer, and J. Huber, “Multilevel codes: theoretical
concepts and practical design rules,” IEEE Transactions on Information
Theory, vol. 45, no. 5, pp. 1361-1391, 1999.

A. Cohen, A. Solomon, K. R. Duffy, and M. Médard, “Noise recycling,”
in 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2020, pp. 315-320.

H. Imai and S. Hirakawa, “A new multilevel coding method using error-
correcting codes,” IEEE Transactions on Information Theory, vol. 23,
no. 3, pp. 371-377, 1977.

G. Horowitz Hadayo, Y. Cassuto, and A. Cohen, “Noise Recycling
Based Multi-level Flash Memory,” arXiv preprint.

A. Solomon and Y. Cassuto, “Error-correcting WOM codes: Concate-
nation and joint design,” IEEE Transactions on Information Theory,
vol. 65, no. 9, pp. 5529-5546, 2019.

Wikipedia contributors, “Normal distribution — Wikipedia, the free
encyclopedia,” 2024, [Online; accessed December 2024]. [Online].
Available: https://en.wikipedia.org/wiki/Normal_distribution

——, “Student’s t-distribution — Wikipedia, the free encyclopedia,”
2024, [Online; accessed December 2024]. [Online]. Available:
https://en.wikipedia.org/wiki/Student%27s_t-distribution

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New-York: Wiley, 2006.

J.-P. Thiers, D. N. Bailon, and J. Freudenberger, “Bit-labeling and
page capacities of TLC non-volatile flash memories,” in 2020 IEEE
10th International Conference on Consumer Electronics (ICCE-Berlin).
IEEE, 2020, pp. 1-6.


https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution

	Introduction
	System Model & Problem Formulation
	Flash Memory System
	Multi-layer Coding Scheme
	Problem formulation

	Proposed Noise-Recycling (NR) Decoder
	Algorithm Description
	Simplified nrmlc (assuming 1-shift noise limit)


	Analytical Results
	Analytical Results Under 1-shift noise limit
	Analytical Results Under 2-shift noise limit


	Performance Evaluation
	References

