
In-Memory Noise Estimation using LDPC Codes
for Reliable Edge Matrix-Vector Multiplication

Yotam Gershon Yuval Cassuto
The Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology

Email: {yotamgr@campus, ycassuto@ee}.technion.ac.il

Abstract—Reliable matrix-vector multiplication (MVM) in
edge devices is a key enabler for modern computational tasks
such as AI inference. Novel memory technologies, such as
MRAMs, enable highly efficient analog computation of MVM.
While significantly improving speed and power consumption,
these architectures suffer from reduced reliability. We introduce
a coding scheme in which the parity constraints of the code
are employed toward in-memory noise estimation, in addition
to their traditional role of error correction. Our scheme relies
on objects we call analog syndromes, which on one hand can be
efficiently computed in memory, and on the other hand are shown
analytically to provide more accurate estimation than classical
logical syndromes. The scheme utilizes a previously introduced
bilayer LDPC design with sub-block locality, and describes how
to design the degree distributions.

I. INTRODUCTION

Matrix-vector multiplication (MVM) is one of the most
widely used operations in modern computing systems, serving
as the primary computationally intensive task in domains
such as artificial intelligence (AI) and, in particular, ma-
chine learning (ML) [1]. A major bottleneck in MVM speed
and power consumption is data transfer from memory to
processing units (PU), a challenge known as the memory
wall [2]. This provides a constant drive for the introduc-
tion of accelerated computing capabilities, with in-memory
computing being one of the most promising candidates [3].
Specifically, by employing the unique properties of novel
memory technologies, such as magneto-resistive random ac-
cess memories (MRAM) [4], dot-product (DP) operations
can be performed in the analog domain. One of the most
efficient approaches is to store the desired matrix as a memory
array, drive the rows simultaneously based on some input
vector’s values, and measure the accumulated conductance at
each column (e.g. [5]). Thanks to the highly parallel nature
of such mechanisms, they provide a significant reduction in
MVM latency and power. This may be especially useful for
edge devices performing AI tasks [6], [7]. However, these
architectures suffer from challenging reliability, due to the
combination of inherently less accurate analog computations
and highly limited error control methods that can be embedded
in-memory. A widely used technique is to encode the data
being stored (in our case, the matrix) and transfer it to a PU for
error-correction decoding. When performed frequently, this
technique adversely affects the efficiency gain provided by
the in-memory computing methodology.

Work supported in part by the US-Israel BSF under grant number 2023627.

Another promising technique is introduced by Roth in [8],
and further generalized in [9], where redundancy columns
are added to the desired matrix such that the resulted vector
will follow parity constraints allowing error correction. This
elegant methodology effectively utilizes the MVM already
performed in-memory. The drawbacks are the expansion of
the output vector and the non-trivial code design.

In this paper, we introduce a middle-ground approach: we
propose a scheme that periodically estimates the noise level
affecting the memory cells, and when too high, transfers
the data to an external PU for error correction and re-write.
The key ingredient in this scheme is accurate estimation of
the noise standard deviation from in-memory DP-computable
objects we call analog syndromes. The estimation of bit-flip
probability using the classical (here called logical) syndromes
of linear codes was studied in [10], and further generalized
in [11] to enable in-memory error estimation in general-
purpose (not MVM) memories. Nevertheless, we show an-
alytically that the analog syndromes offer superior estimation
performance over logical syndromes.

In Section II we formulate the model of in-memory DP
computations and the problem of DP reliability. Then, in
a similar vein to [10], [11], in Section III we perform
a maximum likelihood (ML) estimation of the noise level
("channel parameter") from the Hamming weight of the analog
syndrome. We analyze the proposed estimator using the Fisher
information, and show its performance as a function of the
noise parameter and the degree of the parity constraints.
In Section IV we introduce a construction of low-density
parity check (LDPC) codes [12] that enable such in-memory
estimation, along with out-of-memory error correction of the
entire matrix. This construction is based on bilayer LDPC
codes [13], incorporating sub-block locality over columns to
enable parity-based syndrome calculation in each column,
along with additional global layer enabling strong error cor-
rection between columns. We describe how to design the
check degree for the local sub-graphs for good estimation
performance over different regions of noise levels, and how to
design the other degree distributions for good error correction
capability. Finally, in Section V we employ the tools from
previous sections and suggest an architecture for reliable DP.

II. PROBLEM FORMULATION

We assume an 𝑛 × 𝑚 binary memory array capable of
performing in-memory MVM. 𝜙(𝑥),Q(𝑥) denote the standard

normal distribution’s density and tail functions, respectively.
[𝑥1, . . . , 𝑥𝑚] mod 2 denotes the element-wise modulo 2 for
any length-𝑚 ≥ 1 integer vector. 0, 1 denote the all-zeros
and all-ones vectors with length that will be clear from
the context. 𝑤𝐻 (𝒙) denotes the usual Hamming weight. We
treat logical XOR between logical elements in {0, 1} and 1-
bit multiplication between elements in {1,−1} as the same
under the mapping 0 ↔ 1, 1 ↔ −1. For an irregular
LDPC code [12] with a parity check matrix 𝐻, Λ𝑖 and
Ω𝑖 denote the fractions of variable and check nodes of
degree 𝑖 in the Tanner graph [14] corresponding to 𝐻, and
𝚲 = [Λ1, . . . ,Λ𝑑𝑣], 𝛀 = [Ω1, . . . ,Ω𝑑𝑐], are the code’s degree
distributions. 𝑎R ≜

∑𝑑𝑐
𝑖=1 𝑖Ω𝑖 denotes the average check degree.

A. System Model

As a basis for our model we will use a binary MVM
architecture, like the one described in [5] using the magnetic
tunnel junction (MTJ)-MRAM technology. The cells represent
the logical bits of the matrix through parallel (P) and anti-
parallel (AP) states, with low and high resistance, respectively,
in a complementary bit-cell structure (each cell implements
both its primary and complementary values). AP and P states
represent −1 and 1 respectively. The 1-bit multiplication
between an input element and a matrix element is given by
the cell’s conductance. We model the conductance of the cell
in the 𝑖-th row and 𝑗-th column of a 𝑛 × 𝑚 array as

𝐺𝑖 𝑗 = 𝑔𝑖 𝑗 + Δ𝑖 𝑗 , 𝑔𝑖 𝑗 ∈ {𝐺P, 𝐺AP} , Δ𝑖 𝑗 ∼ N
(
0, 𝜎2

)
,

with 𝐺P > 𝐺AP representing the conductance in P and AP
states respectively, and Δ𝑖 𝑗 describing a normally distributed
conductance disturbance [15]. Different Δ𝑖 𝑗 elements are
modeled as independent and identically distributed. These
disturbances are thought of as the result of accumulated,
slowly drifting, physical error mechanisms having spatial
random distribution. At each MVM instance, 𝑛 rows are
activated simultaneously by the input vector 𝒗: 𝑣𝑖 = 1 selects
the primary and 𝑣𝑖 = −1 the complementary value of the cell
in the 𝑖-th row. The accumulated column conductance is

𝐺̄ 𝑗 ≜
𝑛∑︁
𝑖=1

𝐺𝑖 𝑗 (𝑣𝑖) =
𝑛∑︁
𝑖=1

𝑔𝑖 𝑗 (𝑣𝑖) +
𝑛∑︁
𝑖=1

Δ𝑖 𝑗 ≜ 𝑔̄ 𝑗 + Δ̄ 𝑗 ,

𝑔̄ 𝑗 = 𝑛e𝐺P + 𝑛o𝐺AP = 𝑛eΔ𝐺 + 𝑛𝐺AP , Δ̄ 𝑗 ∼ N(0, 𝑛𝜎2),

with 𝑛e being the number of even products (−1/1 input with
−1/1 cell) and 𝑛o = 𝑛 − 𝑛e the number of odd products
(−1/1 input with 1/−1 cell), and Δ𝐺 ≜ 𝐺P −𝐺AP. We notice
that by flipping a single matrix cell, 𝑔̄ 𝑗 is shifted by Δ𝐺. At
the bottom of each column, a current sampler translates the
conductance to a quantized value based on regions of 𝐺̄ 𝑗 . We
assume a linear mid-tread quantizer [16] to 𝑛e (equivalent to
the result of the original binary DP result), of the form

𝑦 𝑗 ≜
⌊
𝐺̄ 𝑗 − 𝑛𝐺AP

Δ𝐺
+ 1

2

⌋
=

⌊
𝑛eΔ𝐺 + Δ̄ 𝑗

Δ𝐺
+ 1

2

⌋
∈ Z, (1)

which can be achieved (for example) by a flash ADC [17].
For the purpose of noise estimation, we disregard the fact that
noise-free values of 𝑦 𝑗 are bounded to {0, 1, . . . , 𝑛}, while

actual readout could truncate the result to this region. All the
results can be generalized to any quantizer form with minor
technical adjustments, which are not the main focus of this
work. Under these considerations, 𝑦 𝑗 represents the result of a
noisy binary DP between the input vector and the 𝑗-th column.
From this point we take Δ𝐺 = 1, without loss of generality,
but keep in mind that 𝜎 should be replaced with 𝜎/Δ𝐺 for the
general case, providing a degree of freedom for the design.

B. Dot Product Reliability

We wish to evaluate the reliability of DP operations, com-
promised by the accumulation of disturbances Δ𝑖 𝑗 .

Definition 1. 𝑥 𝑗 denotes the desired DP result, obtained by
replacing 𝐺̄ 𝑗 with the noiseless 𝑔̄ 𝑗 in Eq. (1). Then, |𝑦 𝑗−𝑥 𝑗 | ≥ 𝑡

with 𝑡 ≥ 1 is defined as a DP error of magnitude 𝑡.

Lemma 2. The probability of a DP error of magnitude 𝑡 is

𝜉𝑛,𝑡 (𝜎) ≜ 2Q
(
𝑡 − 0.5
√
𝑛𝜎

)
. (2)

Proof: 𝑦 𝑗 differs from 𝑥 𝑗 by 𝑡 or more when
��Δ̄ 𝑗

�� > (𝑡−1)+0.5,
shifting the quantizer’s output.
It is clear from Eq. (2) that the probability of error grows (fast)
with the number 𝑛 of rows participating in the DP. This is a
known challenge [5] restricting row parallelism, and therefore
the efficiency gain from computing in-memory. Our goal is to
perform an efficient in-memory noise estimation for 𝜎. This
allows to decide when to perform read, decode and re-write
for noise reduction, so that a certain level of DP reliability,
𝜉𝑛,𝑡 (𝜎) ≤ 𝜉max is ensured.

III. IN-MEMORY NOISE ESTIMATION

In this section we develop the framework of in-memory
noise estimation. The idea is to employ the MVM architecture
for evaluating the syndrome of chosen matrix elements with
respect to an LDPC code protecting the matrix. Throughout
this section we assume that a set of 𝑑 activated rows satisfy a
parity constraint (as described ahead) in every column. Code
design ensuring that property is discussed in Section IV.

A. Analog Syndromes

We define the notion of a syndrome in the analog DP
domain. First, a parity constraint in that domain should be
defined, analogous to the traditional XOR parity equations.

Definition 3. We say that a set of 𝑑 cells satisfies a parity
constraint if it contains an even number of P-state cells.

Following Definition 3, if we activate this set of 𝑑 cells
with 1 in the corresponding rows (without activating any more
cells), the resultant 𝑔̄ 𝑗 will have an even 𝑛e (i.e., 𝑛e mod 2 =

0). We assume, as discussed above, that some set of 𝑑 rows
satisfies a parity constraint on every column simultaneously.
We denote this 𝑑 × 𝑚 memory sub-array by 𝐸 .

Definition 4. The analog syndrome of 𝐸 is defined by
𝒔A (𝐸) ≜ [𝑦1, . . . , 𝑦𝑚] mod 2, when 𝑦 𝑗 are the values from (1)
obtained with 𝒗 = 1.

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

Fig. 1: Left: unsatisfied-analog-check probability 𝜌𝑢 as a function of 𝜎 for 𝑑 = {4, 16, 64}. Right: ML estimator 𝜎̂𝐴 as a
function of 𝑤𝐴

𝒔 /𝑚 for the same 𝑑 values. 𝑚 = 128 in both plots.

Remark 5. Notice that 𝒔𝐴(𝐸) ∈ {0, 1}𝑚. Based on the assump-
tion above, in the noiseless case (Δ𝑖 𝑗 = 0) we have 𝒔A (𝐸) = 0.
These properties make the analog syndrome naturally analo-
gous to the traditional logical syndrome.

B. Maximum Likelihood Noise Estimation

In close relation to the framework in [10], [11], we derive
an ML estimator for 𝜎 based on the syndrome’s Hamming
weight, but here using the analog syndrome: 𝑤𝐴

𝒔 ≜ 𝑤𝐻 (𝒔A).
Definition 6. An unsatisfied analog check is defined as a
syndrome element that satisfies 𝑦 𝑗 mod 2 = 1.

Lemma 7. The probability of an unsatisfied analog check is

𝜌𝑢 (𝜎; 𝑑) ≜ 2
∞∑︁
ℓ=0
(−1)ℓQ

(
ℓ + 0.5
√
𝑑𝜎

)
, 0 < 𝜎 < ∞. (3)

Proof: A syndrome element satisfies 𝑦 𝑗 mod 2 = 1 when Δ̄ 𝑗

shifts the quantizer an odd number of steps. That is, when
(2ℓ + 0.5) ≤

��Δ̄ 𝑗

�� < (2ℓ + 1.5), with ℓ ∈ N.

For brevity, we use 𝜌𝑢 or 𝜌𝑢 (𝜎) to denote 𝜌𝑢 (𝜎; 𝑑) when the
inputs are clear from the context. Now, since Δ̄ 𝑗 over different
columns are statistically independent, the syndrome’s weight
𝑤𝐴
𝒔 follows a Binomial distribution of 𝑚 trials and probability

𝜌𝑢 (𝜎). It can be readily seen that lim𝜎→0 𝜌𝑢 (𝜎) = 0 since
all terms vanish. Moreover, lim𝜎→∞ 𝜌𝑢 (𝜎) is equivalent to
the probability of randomly choosing an odd integer, which
is clearly 1/2. Numerical evaluation of 𝜌𝑢 (𝜎) shows that it
monotonically increases between these limits, thus 𝜌𝑢 (𝜎) is
an invertible function.

Theorem 8. The analog ML estimator for 𝜎 is

𝜎̂𝐴(𝑤𝐴
𝒔 ; 𝑑) = 𝜌−1

𝑢

(
𝑤𝐴
𝒔 /𝑚 ; 𝑑

)
, 0 < 𝑤𝐴

𝒔 < 𝑚/2 , (4)

where 𝜌−1
𝑢 (𝑥; 𝑑) is the inverse function of 𝜌𝑢 (𝜎; 𝑑).

Proof: We have P
(
𝑤𝐴
𝒔 = 𝑤 |𝜎

)
=
(𝑚
𝑤

)
𝜌𝑢 (𝜎)𝑤 (1− 𝜌𝑢 (𝜎))𝑚−𝑤 .

Setting the derivative to 0 gives 𝑤 = 𝑚𝜌𝑢 (𝜎).
Fig. 1 depicts 𝜌𝑢 (𝜎; 𝑑) and 𝜎̂𝐴(𝑤𝐴

𝒔 ; 𝑑) for different values
of 𝑑. For 𝜌𝑢, the vanishing and saturation can be observed
with regions that significantly depend on 𝑑. For 𝜎̂𝐴, it can
be seen that different effective ranges of 𝜎 can be estimated
by different values of 𝑑. This will be further discussed in
Section III-C. Moreover, based on the limiting behavior of

𝜌𝑢 (𝜎), it is natural to set 𝜎̂𝐴(0; 𝑑) = 0 and 𝜎̂𝐴(≥ 𝑚/2; 𝑑) =
𝜎max (𝑑) for some

𝜎max (𝑑) ≥ 𝜎̂𝐴(𝑚/2 − 1; 𝑑). (5)

C. Estimation Performance

We now wish to study the estimation performance of (4).
Like in [10], we rely on the fact that ML estimators are asymp-
totically efficient [18], that is, they are asymptotically unbi-
ased and their asymptotic variance approaches the Cramer-
Rao lower bound (CRLB) [19]. The CRLB is obtained from
the reciprocal of the Fisher information of 𝜎, which is derived
in the following lemma (proof in Appendix A).

Lemma 9. The Fisher information of 𝜎 with respect to 𝑤𝐴
𝒔 is

I𝐴(𝜎; 𝑑) = 𝑚

𝜌𝑢 (1 − 𝜌𝑢)

[
2
∞∑︁
ℓ=0
(−1)ℓ 𝑐ℓ√

𝑑𝜎2
𝜙

(
𝑐ℓ√
𝑑𝜎

)]2

,

where 𝑐ℓ ≜ (ℓ + 0.5).

We notice that I𝐴(𝜎; 𝑑) includes the well-known 𝑚/[𝜌𝑢 (1 −
𝜌𝑢)] term that stems from the Binomial nature of 𝑤𝐴

𝒔 . The
additional term is induced by the need to further estimate
𝜎 from the Binomial probability 𝜌𝑢. This term introduces
interesting behavior that diverges significantly from the stan-
dard Binomial estimation, shown in the following proposition
(proof in Appendix B).

Proposition 10. The Fisher information I𝐴(𝜎; 𝑑) satisfies the
following limiting behavior.

I𝐴(𝜎; 𝑑) ∝
{
𝑚(𝑑𝜎2)−2.5 exp

{
− 1

8𝑑𝜎2

}
,
√
𝑑𝜎 ≪ 1

𝑚/(𝑑𝜎4) ,
√
𝑑𝜎 ≫ 1.

Based on Proposition 10, it can be seen that I𝐴(𝜎; 𝑑) decays
exponentially to zero as 𝜎 → 0, and decays polynomially to
zero as 𝜎 → ∞. Taking the reciprocal and using CRLB, we
conclude that the estimator becomes ill-conditioned (variance
diverges) for very small or large values of 𝜎. This happens
due to the vanishing or saturation of 𝜌𝑢 at these regimes,
causing a loss of observability on the value of 𝜎. It can also
be seen that as 𝑑 increases, the decay of Fisher information
for 𝜎 → 0 gets slower, whereas the decay for 𝜎 → ∞ gets
faster. This suggests that as 𝑑 increases, the estimator becomes

better suited for smaller values of 𝜎. These observations are
apparent in Fig. 1 (right) showing the different ranges of 𝜎

"covered" by each 𝑑; see further discussion in the next section.

D. Criterion for Good Estimation

Based on the CRLB, 1/
√︁
I𝐴(𝜎; 𝑑) is a lower bound on the

estimation standard deviation of 𝜎. We can therefore introduce
the following criterion of an estimator.

Definition 11. Let 𝛼 ∈ (0, 1). An estimator 𝜎̂𝐴(𝜎; 𝑑) is said to
be 𝛼-accurate for a value 𝜎0 if

1/
√︁
I𝐴(𝜎0; 𝑑) ≤ 𝛼𝜎0.

Definition 11 is illustrated in Fig. 2, where 1/
√︁
I𝐴(𝜎; 𝑑)

normalized by 𝜎 is shown as a function of 𝜎 for different
values of 𝑑.

0 0.1 0.2 0.3 0.4

10
-1

10
0

Fig. 2: 1/
√︁
I𝐴(𝜎; 𝑑) normalized by 𝜎 for different 𝑑 values,

for 𝑚 = 128. 𝛼 = 0.1 is shown as vertical dashed line.

It can be seen that for 𝛼 = 0.1, 𝑑 = 4, 16, 64 provide 𝛼-
accurate estimators for 𝜎 ∈ (0.03, 0.06), 𝜎 ∈ (0.055, 0.14)
and 𝜎 ∈ (0.1, 0.28), respectively.

E. Comparison to Syndromes from Cell-Wise Hard Decision

As a baseline for estimation performance, we examine the
case in which we take a hard decision on each cell’s state and
XOR the results. Recall we use Δ𝐺 = 1.

Definition 12. A cell’s hard decision is defined by

𝑧𝑖 𝑗 ≜

{
0, 𝐺𝑖 𝑗 − 𝐺AP ≤ 0.5
1, 𝐺𝑖 𝑗 − 𝐺AP > 0.5

.

It is clear from Definition 12 that the probability of a state
flip (bit-flip) is 𝑝(𝜎) = Q

(
0.5
𝜎

)
. We assume 𝑝(𝜎) < 0.5.

Definition 13. The logical syndrome 𝒔L is defined as usual by
𝑠𝐿
𝑗
=
⊕𝑑

𝑖=1 𝑧𝑖 𝑗 , where ⊕ denotes the logical XOR.

A set that satisfies the parity constraint from Definition 3
results in 𝑠𝐿

𝑗
= 0 in the noiseless case. As shown in [10],

the probability of unsatisfied logical parity constraint is

𝑝𝑢 (𝜎) =
1
2

(
1 − (1 − 2𝑝(𝜎))𝑑

)
. (6)

It is further shown in [10] that the ML estimator for 𝑝(𝜎) is
𝑝 = 𝑝−1

𝑢

(
min{2𝑤𝐿

𝒔 /𝑚, 1}
)
, where we defined 𝑤𝐿

𝒔 ≜ 𝑤𝐻 (𝒔L).
Since 𝑝(𝜎) is monotone increasing, the ML estimator for 𝜎

is extracted from 𝑝(𝜎).

Lemma 14. The logical ML estimator for 𝜎 is 𝜎̂𝐿 = 0.5
Q−1 (𝑝̂) ,

and the Fisher information of 𝜎 with respect to 𝑤𝐿
𝒔 is

I𝐿 (𝜎; 𝑑) = 𝑚

𝑝𝑢 (1 − 𝑝𝑢)

[
𝑑 (1 − 2𝑝)𝑑−1 0.5

𝜎2 𝜙

(
0.5
𝜎

)]2
.

Proof: For the ML derivation, see [10] (discussing a similar
case). The Fisher information is derived in a similar way to
the proof of Lemma 9.

Fig. 3 shows a comparison between inverse square-root Fisher
information of analog and logical syndromes, for 𝑑 = 4, 64.
It can be seen that the logical syndrome does not provide
observability of low 𝜎 values. This is a problem for MVM
because a DP error of significant magnitude (𝑡 = 3) occurs
with non-negligible probability at low 𝜎 values (see vertical
line marking the maximal 𝜎 for which 𝜉𝑛,𝑡=3 (𝜎) < 10−3).

0 0.1 0.2 0.3 0.4

10
-1

10
0

Fig. 3: Comparison between 1/
√︁
I𝐴(𝜎; 𝑑) and 1/

√︁
I𝐿 (𝜎; 𝑑)

normalized by 𝜎 for 𝑑 = 4, 64. The maximal 𝜎 for which
𝜉𝑛,3 (𝜎) < 10−3 is shown in the vertical dashed line.

IV. CODE CONSTRUCTION AND DESIGN

We aim to design a code that will enable both in-memory
estimation and out-of-memory error correction. The key idea
is to incorporate additional parity rows that are used as
follows: (1) During standard MVM operation, the parity rows
are not being activated and are transparent, (2) during in-
memory noise estimation, a set of information and parity rows,
satisfying a parity constraint (Definition 3) in all columns, are
activated together, and (3) during error-correction, the entire
matrix is read (information and parity rows) and decoding
is performed. This is achieved through a bilayer LDPC code
with a local-global structure, as introduced in [13], [20].

A. Bilayer Code Construction

To describe the code construction, we consider the 𝑛 × 𝑚

stored matrix 𝐶 as composed from 𝑘 information rows, that is,
the original user-defined binary matrix 𝐵, and 𝑟 ≜ 𝑛− 𝑘 parity

rows. We further consider 𝑟 = 𝑟1+𝑟2 such that 𝑟1 is defined as
the number of column-local parity rows, and 𝑟2 as the number
of matrix-global parity rows. We use the column-stack vector
of length 𝑛𝑚 of the matrix to define the parity-check matrix
structure. We use the following useful terminology for the
construction ahead.

Definition 15. Denote 𝑣𝐵, 𝑣𝐶 as the column-stack 1 × 𝑘𝑚 and
1 × 𝑛𝑚 vectors of the matrices 𝐵, 𝐶, respectively. A generator
matrix 𝑈 of size 𝑘𝑚 × 𝑛𝑚 is said to be in column-systematic
form if given 𝑣𝐶 = 𝑣𝐵𝑈, the first 𝑘 rows of 𝐶 equal 𝐵.

Construction 1. Let 𝐻L be a parity check matrix of size
𝑟1 × (𝑘 + 𝑟1). Let 0𝑟1 ,𝑟2 be the all-zeros matrix of size 𝑟1 × 𝑟2.
Let 𝐻J be a parity matrix of size 𝑟2×𝑛𝑚. Let the parity check
matrix be defined by

𝐻 =



[𝐻L, 0𝑟1 ,𝑟2]
. . .

[𝐻L, 0𝑟1 ,𝑟2]
− − − −− − − −

𝐻J


. (7)

Let 𝑈 be the generator matrix corresponding to 𝐻, in a
column-systematic form. Encode an input matrix 𝐵 to the
matrix form of 𝑣𝐶 = 𝑣𝐵𝑈.

Discussion. By analyzing the Tanner graph corresponding to
𝐻 in Eq. (7), we can see that 𝐻L provides a sub-graph that
connects each column of length 𝑘 in 𝐵 to 𝑟1 column-local check
nodes. Note that 𝐻L is identical for all columns. The additional
𝑟2 parity nodes are connected to variable nodes within different
columns through 𝐻J, to provide strong correction capability
when decoding the full array. Note that the check equations
of 𝐻L also participate in the full-array decoding, in addition to
their role in noise estimation.

The use of Construction 1 to achieve the estimation and
correction mechanism will be further described in Section V.

B. Check Degrees for Good Estimation

The check equations in 𝐻L are used for noise estimation, as
will be discussed in details in Section V. We therefore wish the
check degrees in 𝐻L to provide good estimation performance
over interesting values of 𝜎.

Definition 16. Given a check-degree distribution 𝛀 for 𝐻L
define 𝐷Ω = {𝑑 : ⌊𝑟1 · Ω𝑑⌋ ≥ 1} as the set of active degrees.
We assume 𝐷Ω is ordered with increasing degrees.

Definition 17. Let Σ = {𝜎𝜈}𝑁𝜈=1 with 0 < 𝜎1 < · · · < 𝜎𝑁 . A
set of active degrees 𝐷Ω is said to be 𝛼-accurate for Σ if

∀𝜈 ∈ [1, . . . , 𝑁] : ∃𝑑 ∈ 𝐷Ω s.t 1/
√︁
I𝐴(𝜎𝜈; 𝑑) ≤ 𝛼𝜎𝜈 .

Definition 17 follows directly from Definition 11, while
specifically ensuring that the set of check degrees in 𝛀
provides estimators that "cover" together the set of 𝜎 values
in Σ in terms of 𝛼-accuracy. For example, in Fig. 2, if 𝐷Ω =

{4, 64}, any value 𝜎 ∈ (0.07, 0.105) would not be covered

by 𝛀 in the sense that none of the estimators for 𝑑 = 4, 64
provide 𝛼-accuracy in this range (with 𝛼 = 0.1). However,
for 𝐷Ω = {4, 16, 64}, the entire range 𝜎 ∈ (0.03, 0.28) is
covered. We can now design the check distribution of 𝐻L,
using Algorithm 1. Since the average check degree 𝑎R plays
a vital role in coding rate, the design is set to provide 𝑎R as
close as possible to a desired value 𝑎R

∗.

Algorithm 1: Design of Local Check Degrees
Input : 𝑟1, 𝑎R

∗, Σ, 𝛼
Do :
• Find 𝐷Ω = {𝑑1, ..., 𝑑ℓ } which is 𝛼-accurate for Σ.
• Solve the quadratic integer programming problem:

minimize (∑ℓ
𝑖=1 𝛽𝑖/𝑟1 · 𝑑𝑖 − 𝑎R

∗)2

subject to 0 < 𝛽𝑖 ∈ Z,
ℓ∑︁
𝑖=1

𝛽𝑖 = 𝑟1.

Output: Check deg. dist.
{
Ω𝑑𝑖 = 𝛽𝑖/𝑟𝑖

}ℓ
𝑖=1

C. Degree-Distribution Design

We now describe in high level the stages of designing de-
gree distributions for 𝐻L and 𝐻J, to provide strong correction
capability in decoding. We employ the efficient, low complex-
ity and capacity approaching design technique introduced in
[13]. As will be discussed in Section V, the decoding will
be performed over the AWGN channel. Therefore, the design
will be done for that channel, using EXIT charts [21].

We first set the check-degree distribution of 𝐻L using
Algorithm 1. We then design the variable-degree distribution
of 𝐻L, following the steps in [22, Chapter 4.10.1], with a
fixed local threshold 𝜎

(𝐿)
𝑇

. Then, we design 𝐻J as described
in [13, Section IV] to meet a global threshold 𝜎

(𝐺)
𝑇

. A detailed
exploration of this technique is outside the scope of this work.

V. RELIABLE DOT PRODUCT ARCHITECTURE

In this section we employ the tools from previous sec-
tions to design an architecture for reliable in-memory DP
operations. The key ingredient in the proposed architecture
is to periodically estimate the noise level. If the estimated
noise suggests a compromised DP reliability, the matrix is re-
written to memory after read and decoding operations. The
mechanism is implemented using the following:

1) Encode: given a desired matrix 𝐵𝑘×𝑚, encode it using
the code from Construction 1 to get 𝐶𝑛×𝑚. Write 𝐶 to
the memory array using the mapping 0→ 1, 1→ −1.

2) Compute and Estimate: perform MVM operations.
Once in a predefined number of MVM cycles, perform
noise estimation for 𝜎̂𝐴 using Algorithm 2. If 𝜉𝑛,𝑡 (𝜎̂𝐴) >
𝜉max, for some predefined 𝑡, perform 3).

3) Read, decode and re-write: read the matrix from mem-
ory. Use the belief propagation (BP) algorithm [23] over
the log-likelihood ratio values 2𝐺𝑖 𝑗/𝜎̂𝐴, using the global
parity-check matrix 𝐻. Use the result 𝐵̂ and return to 1).

Algorithm 2: In-Memory Noise Estimation
Input : 𝐶 from memory, parameters 𝐻L, 𝐷Ω

Do :
• Set 𝜎̂tmp = 𝜎max (𝑑1) // Eq. (5)
• For 𝑖 ∈ 1, . . . , ℓ: // ℓ ≜ |𝐷Ω |

– Choose a row ℎ in 𝐻L with check degree 𝑑𝑖 .
– Set 𝐸 as the sub-array containing the rows from 𝐶

for which ℎ is 1.
– Calculate 𝑠𝐴(𝐸) and its weight 𝑤𝐴

𝒔 . // Def. 4

– If 𝑤𝐴
𝒔 ≥ 𝑚/2, break

– If 𝑤𝐴
𝒔 > 0, update 𝜎̂tmp ← 𝜎̂𝐴(𝑤𝐴

𝒔 ; 𝑑𝑖) // Eq. (4)

• If 𝑖 = ℓ and 𝑤𝐴
𝒔 = 0, update 𝜎̂tmp ← 0

• Update 𝜎̂ ← 𝜎̂tmp

Output: Noise estimation 𝜎̂

Discussion. Algorithm 2 considers the different ranges of 𝜎

that can be accurately estimated for each check degree. It goes
through different degrees in 𝐷Ω of 𝐻L, and tries to estimate 𝜎

in each. If 𝑑 is too large and 𝜎 is in the right divergent region of
the estimator, 𝑤𝐴

𝒔 ≥ 𝑚/2 is obtained with high probability, and
there is no need to further increase 𝑑. If 𝑑 is too small and 𝜎 is
in the left divergent region of the estimator, 𝑤𝐴

𝒔 = 0 is obtained
with high probability, and 𝑑 is increased, or if 𝑖 = ℓ, 𝜎̂ = 0 is
returned. Anytime 0 < 𝑤𝐴

𝒔 < 𝑚/2 is obtained, 𝜎̂ is updated.

APPENDIX A
PROOF OF LEMMA 9 - FISHER INFORMATION

Proof: Since 𝑤𝐴
𝒔 is Binomial with probability 𝜌𝑢 (𝜎),

𝜕 log P
(
𝑤𝐴
𝒔 = 𝑤 |𝜎

)
𝜕𝜎

=

[
𝑤

𝜌𝑢
− 𝑚 − 𝑤

1 − 𝜌𝑢

]
𝜕𝜌𝑢

𝜕𝜎

=
𝑤 − 𝑚𝜌𝑢

𝜌𝑢 (1 − 𝜌𝑢)
· 2

∞∑︁
ℓ=0
(−1)ℓ 𝜕

𝜕𝜎
Q
(
ℓ + 0.5
√
𝑑𝜎

)
.

We use 𝜕𝑄 (𝑥/𝜎)
𝜕𝜎

= 𝑥

𝜎2 𝜙
(
𝑥
𝜎

)
, and by substituting ℓ + 0.5 = 𝑐ℓ ,

squaring and taking the expectation we get

IA (𝜎; 𝑑) =
E
[
(𝑤𝐴

𝒔 − 𝑚𝜌𝑢)2 |𝜎
]

𝜌2
𝑢 (1 − 𝜌𝑢)2

[
2
∞∑︁
ℓ=0

(−1)ℓ𝑐ℓ√
𝑑𝜎2

𝜙

(
𝑐ℓ√
𝑑𝜎

)]2

.

Noticing that E
[
(𝑤𝐴

𝒔 − 𝑚𝜌𝑢)2 |𝜎
]
= var(𝑤𝐴

𝒔) = 𝑚𝜌𝑢 (1− 𝜌𝑢),
we complete the proof.

APPENDIX B
PROOF OF PROPOSITION 10 - LIMITING BEHAVIOR

Proof: We begin with the case where
√
𝑑𝜎 ≪ 1, where the

argument of the 𝑄(·) terms in 𝜌𝑢 (𝜎) are very large. In this
regime 𝑄(𝑥) is well approximated by 𝜙(𝑥)/𝑥. Moreover, the
decay of terms in the sum with ℓ is very sharp. Thus, we have

𝜌𝑢 (𝜎) ≈ 2𝑄
(

0.5
√
𝑑𝜎

)
≈ 4
√
𝑑𝜎 · 𝜙

(
0.5
√
𝑑𝜎

)
.

From the same considerations of decaying terms, we have[
2
∞∑︁
ℓ=0

(−1)ℓ𝑐ℓ√
𝑑𝜎2

𝜙

(
𝑐ℓ√
𝑑𝜎

)]2

≈
[

1
√
𝑑𝜎2

𝜙

(
0.5
√
𝑑𝜎

)]2
.

Plugging into I𝐴(𝜎; 𝑑) provides the desired expression.
Now, for

√
𝑑𝜎 ≫ 1, we have 𝜌𝑢 (𝜎) ≈ 1/2 (as discussed

after Lemma 7), and the sum can be expressed as (𝑐/
√
𝑑𝜎2)2,

with 𝑐 = 2
∑∞

ℓ=0 (−1)ℓ𝑐ℓ𝜙(𝑐ℓ/
√
𝑑𝜎) < ∞ (due to the decaying

exponential terms in summation).

REFERENCES

[1] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, vol. 6, no. 3, 2020.

[2] S. A. McKee, “Reflections on the memory wall,” Conference on
Computing Frontiers, 2004.

[3] A. Sebastian, M. Le-Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnology, Vol. 15, 2020.

[4] Y. Li, T. Bai, X. Xu, Y. Zhang, B. Wu, H. Cai, B. Pan, and W. Zhao, “A
survey of MRAM-centric computing: From near memory to in memory,”
IEEE Trans. on Emerging Topics in Computing, vol. 11, no. 2, 2023.

[5] P. Deaville, B. Zhang, and N. Verma, “A fully row/column-parallel
MRAM in-memory computing macro with memory-resistance boosting
and weighted multi-column ADC readout,” IEEE Journal of Solid-State
Circuits, 2024.

[6] M. Suri, A. Gupta, V. Parmar, and K. H. Lee, “Performance enhance-
ment of edge-ai-inference using commodity MRAM: IoT case study,”
in 2019 IEEE 11th International Memory Workshop (IMW), 2019.

[7] X. Yang, Y. Mao, L. Chang, H. Wei, Y. Wang, J. Wang, C. Fan, Z. Wu,
S. Peng, and J. Zhou, “Edge-optimized ai architecture: MRAM-based
near memory computing macro balancing between memory capacity
and computation,” Integrated Circuits and Systems, 2025.

[8] R. M. Roth, “Fault-tolerant dot-product engines,” IEEE Trans. on
Information Theory, vol. 65, no. 4, 2019.

[9] ——, “Analog error-correcting codes,” IEEE Trans. on Information
Theory, vol. 66, no. 7, 2020.

[10] G. Lechner and C. Pacher, “Estimating channel parameters from the
syndrome of a linear code,” IEEE Communications Letters, Vol. 17,
No. 17, 2013.

[11] Y. Gershon and Y. Cassuto, “In-memory BER estimation using syn-
dromes of LDPC codes,” 2025 IEEE Int. Symp. on Information Theory
(ISIT), to Appear, 2025.

[12] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Informa-
tion Theory, Vol. 8, No. 1, 1962.

[13] E. Ram and Y. Cassuto, “Design of bilayer and multi-layer LDPC
ensembles from individual degree distributions, vol. 67, no. 11,” IEEE
Trans. on Information Theory, 2021.

[14] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
on Information Theory, vol. 27, no. 5, 1981.

[15] E. Dupraz, F. Leduc-Primeau, K. Cai, and L. Dolecek, “Turning to
information theory to bring in-memory computing into practice,” IEEE
BITS the Information Theory Magazine, Vol.3, No. 3, 2023.

[16] L. Tan and J. Jiang, Digital signal processing: fundamentals and
applications. Academic press, 2018.

[17] R. J. van de Plassche, Integrated Analog-to-Digital and Digital-to-
Analog Converters. Springer Science & Business Media, 2012.

[18] G. Casella and R. L. Berger, Statistical Inference. Thomson Learning,
2002.

[19] F. Nielsen, Cramér-Rao Lower Bound and Information Geometry.
Hindustan Book Agency, Gurgaon, 2013.

[20] E. Ram and Y. Cassuto, “LDPC codes with local and global decoding,”
in 2018 IEEE Int. Symp. on Information Theory (ISIT), 2018.

[21] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. on
Communications, vol. 52, no. 4, 2004.

[22] T. Richardson and R. Urbanke, Modern coding theory. Cambridge
university press, 2008.

[23] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. on Information Theory, vol.
47, no. 2, 2001.

