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Abstract
Distributed inference is a promising paradigm in machine learning,

but errors from participants may corrupt the inference result. To

mitigate this in binary-classification tasks, we study the problem

of detecting erroneous classifiers. Each classifier in a distributed

ensemble provides a batch of classification outputs to a central node,

and the proposed detectors aim to find the erroneous ones among

them. Two types of detectors are studied: 1) blind detectors that

know nothing about the statistics of the classifiers, and 2) informed-

statistics detectors that know the classifiers’ pair-wise agreement

statistics. We develop analytical tools for evaluating the detection

performance, and demonstrate the tools for ensembles following

the Bernoulli-Mixture model. In addition, we provide empirical

results to validate the improvement in classification accuracy on

real neural-network based classifiers.

CCS Concepts
• Computing methodologies→ Distributed artificial intelli-
gence; Ensemble methods.
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1 Introduction
Distributed inference is a setting in which an inference operation is

performed by multiple entities residing in different locations, and it

is an important building block in general distributed machine learn-

ing [7], in particular in federated learning (FL). Given a data point

𝒙 , rather than performing inference using one (centralized) func-

tion (also called model) 𝐹 (𝒙), the data point (or features thereof) is
distributed across multiple nodes, each employing a partial model

ℎ𝑖 (𝒙). The outputs of the partial models are sent to an aggregating

node, which combines the partial inferences into one final inference.

The advantages of distributed inference are significant; principal

among them are: communication reduction and data-privacy en-

hancement. The challenge, however, is the possibility that some

partial inferences will reach the aggregating node with errors.
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We focus in this paper on the inference task of binary classifica-
tion. In the studied problem, each ℎ𝑖 (·) is a binary-output partial-
classification function trained using some ensemble method in ma-

chine learning (e.g., bagging, boosting, decision forests), and𝑀 such

outputs are aggregated by a simple majority rule to obtain the final

classification output. Some partial-classification outputs are flipped
before reaching the aggregating node, leading to degraded clas-

sification performance. Several recent works have addressed the

issue of erroneous classifiers in distributed inference: [10] proposed

resource-allocation algorithms when classifiers are aggregated with

heterogeneous weights, [2] developed post-training algorithms to

optimize the transmission powers and aggregation weights, and [3]

provided adaptive-boosting [5] training algorithms that take into

account classifier errors happening at inference time. To this miti-

gation toolbox we add another method in this paper: detection of

erroneous classifiers prior to aggregation.

Prior work on erroneous classifiers made classification more

robust to errors, without attempting to detect errors at inference

time before aggregation. Indeed, when classifying a single data

point at a time, it is not clear how this can be done. However,

when we classify a batch of data points, we can potentially use

the larger amount of available information to detect a classifier

that is likely erroneous. We follow this approach in this paper,

focusing on detecting a single erroneous classifier out of the size-𝑀

ensemble, where it is assumed that the erroneous classifier flips

outputs i.i.d. with probability 𝜖 . The problem of detecting erroneous

classifiers from a batch is related to the well-known problem of

outlier detection [1, 6], in particular outlier hypothesis testing [13]

and robust learning from batches [8]. While these prior works

provide good intuitions on the problem, they are not immediately

applicable since erroneous classifiers may not necessarily skew the

symbol distribution in the batch. Indeed, batches with balanced 0/1

labels remain balanced even with arbitrary flipping probability by

the erroneous classifier. To address that problem, our scheme uses

pair-wise statistics on classifier outputs, either inferred from the

batch or known a-priori.

We propose three detectors: one is “blind”: it needs no prior

information on the classification statistics of the ensemble. It works

by measuring the discrepancy between every classifier and the ma-

jority of the other classifiers. The other two detectors are from

a class we call “informed statistics”: they have knowledge of the

pair-wise agreement distribution of the classifiers without errors.

For the blind detector, we analyze the detection-success proba-

bility by deriving the distribution of the batch discrepancies. For

the informed-statistics likelihood-based detector, we analyze the

false-negative probability by deriving an approximation of the log

likelihood ratio. In both cases we specialize the analysis for classi-

fier outputs that follow a Bernoulli-Mixture (BM) distribution [4],
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whose key property is that classifier outputs are independent given
the data-point’s ground-truth label. Detection performance depends

on four parameters: the ensemble size 𝑀 , the accuracy of individual

classifiers 𝛼 , the flipping rate 𝜖 , and the batch size 𝑁 . We validate

the results using a numerical evaluation in Section 4, including on

an implementation of neural-network classifier ensembles for an

image classification task.

2 Problem and Detector Formulation
In a distributed-classification setting, we have an ensemble of 𝑀

base classifiers. Each base classifier implements a binary classifica-

tion function ℎ𝑖 (·), computing a value in {0, 1} for an input data

point. In normal operation, these functions are aggregated into a

final classification value by a majority rule:

𝐻 (𝒙) =


1 if

∑𝑀
𝑖=1 ℎ𝑖 (𝒙) > 𝑀/2

0 if

∑𝑀
𝑖=1 ℎ𝑖 (𝒙) < 𝑀/2

𝑢 ∼ Bern

(
1

2

)
otherwise

(1)

The aggregation rule makes a deterministic 1/0 decision if there is

strict majority, and in cases of ties draws the output randomly as a

Bernoulli variable with parameter 1/2.
An (unknown) member of the ensemble may be erroneous: its

outputs reach the aggregator node flipped with probability 𝜖 , inde-

pendently between data points. Defined formally,

Definition 2.1. Let 𝑖′ be an index of an erroneous classifier, then

the value it delivers to the aggregator on data point 𝒙 (𝑛) isℎ𝑖′ (𝒙 (𝑛))+
𝑧 (𝑛), where 𝑧 (𝑛) is a Bernoulli random variable with parameter 𝜖 ,

and + denotes modulo-2 addition.

For notation simplicity, in the sequel we replace ℎ𝑖 (𝒙 (𝑛)) by
𝑥𝑖 (𝑛) and by 𝑋𝑖 when the identity of the data point is clear from

the context. In order to avoid contaminating the classification with

erroneous inputs, detection of erroneous base classifiers is desired.

Classification and detection are performed in batches of 𝑁 data

points each, and the crux of detection is to use the information in a

batch to detect a base classifier that is likely erroneous. The action

taken following detection depends on the specific practical setting:

we may conservatively decide to completely block the detected

classifier, that is, remove the index of the suspect from the sum

in (1), or alternatively take a milder measure. We pursue in this

paper two types of detectors: 1) blind detectors that have no prior

information on the classifiers, and 2) informed-statistics detectors
that have some statistical information on the classifiers (for example,

from a training dataset).

2.1 Blind Detection by Majority Discrepancy
The proposed blind detector works by comparing the classifier

outputs to the majority of the remaining classifiers. A classifier that

differs from the majority on many data points may indicate it being

erroneous. We formalize this by the measure of discrepancy:

Definition 2.2. For some data point, define 𝑋 𝑗 as the value deliv-

ered by classifier 𝑗 , and let 𝑆𝑖 ≜
∑
𝑗≠𝑖 𝑋 𝑗 . Then the discrepancy of

classifier 𝑖 on this data point is defined as

𝑌𝑖 ≜

{
1 if 𝑋𝑖 ≠ 1𝑆𝑖≥𝑀/2
0 otherwise.

where 1 is the indicator function.

The discrepancy 𝑌𝑖 is 1 if and only if classifier 𝑖’s output is

different from the majority value of the other 𝑀 − 1 classifiers.

Let [𝑚] ≜ {1, . . . ,𝑚}, and now define the following detector for a

single erroneous classifier.

Detector 1. Define 𝑦𝑖 (𝑛) to be the discrepancy of classifier 𝑖 on
data point 𝑛. Then, the detector output is the index

𝑖 = argmax

𝑖∈[𝑀 ]

𝑁∑︁
𝑛=1

𝑦𝑖 (𝑛). (2)

Detector 1 estimates the index of the erroneous classifier as the

one that has the largest sum discrepancy over the 𝑁 -batch.

2.2 Informed-Statistics Detection through
Pair-Wise Agreement

The detectors defined in this sub-section use more refined statis-

tics than Detector 1, in particular, they have some prior statistical

knowledge on the pair-wise classifier correlations under normal

(non-erroneous) operation. The following agreement variable is a
pair-wise counterpart of the discrepancy defined in Section 2.1.

Definition 2.3. For a given data point with classifier outputs

{𝑋𝑖 }𝑀𝑖=1, define the agreement variable for classifiers 𝑖, 𝑗 as

𝑊𝑖, 𝑗 =

{
1, if 𝑋𝑖 = 𝑋 𝑗

0, otherwise.

Note that the discrepancy 𝑌𝑖 in Section 2.1 is a negative corre-

lation measure (disagreement), while the agreement𝑊𝑖, 𝑗 here is

a positive correlation measure: equals 1 when 𝑋𝑖 and 𝑋 𝑗 have the

same value. A probabilistic model for the classifiers specifies

𝑝𝑊𝑖,𝑗
≜ 𝑃 (𝑊𝑖, 𝑗 = 1) = 𝑃 (𝑋𝑖 = 0, 𝑋 𝑗 = 0) + 𝑃 (𝑋𝑖 = 1, 𝑋 𝑗 = 1) .

We assume that the probabilities 𝑝𝑊𝑖,𝑗
, for all pairs {𝑖, 𝑗}, 𝑖 ≠ 𝑗

are known to the detector, and 𝑝𝑊𝑖,𝑗
≠ 0.5. Toward defining the first

informed-statistics detector, we use𝑤𝑖, 𝑗 (𝑛) to denote the empirical

agreement of classifiers 𝑖, 𝑗 on data point 𝑛.

Detector 2. Given the prior classifier statistics {𝑝𝑊𝑖,𝑗
}𝑀𝑖,𝑗=1

𝑖≠𝑗

and

the𝑁 -batch {(𝑥1 (𝑛), . . . , 𝑥𝑀 (𝑛))}𝑁
𝑛=1

, calculate𝑤𝑖, 𝑗 (𝑛) for each {𝑖, 𝑗}𝑀𝑖,𝑗=1
𝑖≠𝑗

and 𝑛 = 1, . . . , 𝑁 . Then, the detector output is the index

𝑖 = argmax

𝑖∈[𝑀 ]

1

𝑀 − 1

∑︁
𝑗≠𝑖

(
𝑝𝑊𝑖,𝑗

− 1

𝑁

∑𝑁
𝑛=1𝑤𝑖, 𝑗 (𝑛)

2𝑝𝑊𝑖,𝑗
− 1

)
. (3)

Detector 2 uses the known probabilities 𝑝𝑊𝑖,𝑗
, unlike Detector 1

that is blind to the classifier statistics. The following proposition jus-

tifies the use of Detector 2, at least in the case of a single erroneous

classifier (proof omitted).

Proposition 2.4. Let 𝑓 (𝑖) be the function maximized by Detec-
tor 2 in (3). Then for a single erroneous classifier 𝑖′, the expectation of
𝑓 (𝑖′) equals the flipping probability 𝜖 , and for every 𝑖 ≠ 𝑖′ it equals
𝜖/(𝑀 − 1).

By Proposition 2.4, the function of Detector 2 has a multiplicative

gap of factor𝑀−1 (in expectation) between the erroneous classifier
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and all the others, hence it is a good candidate for detection. We can

further use this function as an estimate for the flipping probability

of the erroneous classifier.

For a more systematic statistical treatment of the detection prob-

lem, we now pursue detectors using the tool of likelihood tests [12].
Given an𝑁 -batch of classifier outputs {(𝑥1 (𝑛), . . . , 𝑥𝑀 (𝑛))}𝑁

𝑛=1
and

the agreement values calculated from them: {𝑤𝑖, 𝑗 (𝑛)}𝑁𝑛=1, we wish
to decide which classifiers in {1, . . . , 𝑀} are likely erroneous and

which are not. Toward that, we are given the same agreement

probabilities 𝑝𝑊𝑖,𝑗
given to Detector 2, as well the classifier biases:

𝑝𝑋𝑖
≜ 𝑃 (𝑋𝑖 = 1), for every 𝑖 . We assume for non-erroneous classi-

fiers that independently for each data point 𝑛, 𝑃 (𝑥𝑖 (𝑛) = 1) = 𝑝𝑋𝑖

and 𝑃 (𝑤𝑖, 𝑗 (𝑛) = 1) = 𝑝𝑊𝑖,𝑗
(and their complements 𝑃 (𝑥𝑖 (𝑛) = 0) =

1 − 𝑝𝑋𝑖
, 𝑃 (𝑤𝑖, 𝑗 (𝑛) = 0) = 1 − 𝑝𝑊𝑖,𝑗

).

Now, we want to decide whether classifier 𝑖 is erroneous. To-

ward that, we define the 𝑖-th classifier’smarginal likelihood function
𝑃 (𝑋𝑖 )

∏𝑀
𝑗=1
𝑗≠𝑖

𝑃 (𝑊𝑖, 𝑗 ). Looking at this task as a binary hypothesis-

testing problem, the null hypothesis 𝐻0 is that classifier 𝑖 is not

erroneous, and we want to distinguish it from the alternative hy-
pothesis 𝐻1 in which 𝑖 is erroneous. In both cases we assume that

the remaining classifiers are not erroneous. In the case of 𝐻0 the

distribution of the batch’s data points is known: 𝑃 (𝑋𝑖 ) = 𝑝𝑋𝑖
and

𝑃 (𝑊𝑖, 𝑗 ) = 𝑝𝑊𝑖,𝑗
. Denote 𝑄𝑖 ≜

∑𝑁
𝑛=1 𝑥𝑖 (𝑛) and 𝑄𝑖, 𝑗 ≜

∑𝑁
𝑛=1𝑤𝑖, 𝑗 (𝑛);

from the independence between data points, we get that the mar-

ginal likelihood of the 𝑁 -batch for 𝐻0 is

𝐿
batch−𝑖 |null =

(
𝑝𝑋𝑖

)𝑄𝑖
(
1 − 𝑝𝑋𝑖

)𝑁−𝑄𝑖

𝑀∏
𝑗=1
𝑗≠𝑖

(
𝑝𝑊𝑖,𝑗

)𝑄𝑖,𝑗
(
1 − 𝑝𝑊𝑖,𝑗

)𝑁−𝑄𝑖,𝑗

.

(4)

For the 𝐻1 hypothesis, we need to replace 𝑃 (𝑋𝑖 ) and 𝑃 (𝑊𝑖, 𝑗 )
in the marginal likelihood by different probabilities 𝑞𝑖 and 𝑞𝑖, 𝑗 ,

respectively. Since the true probabilities are unknown, we take

the probabilities that maximize the likelihood of the batch. It is

well known [12, Ch.14] that these equal 𝑞𝑖 ≜ 𝑄𝑖/𝑁 , and similarly

𝑞𝑖, 𝑗 ≜ 𝑄𝑖, 𝑗/𝑁 . This gives the batch maximum likelihood of 𝐻1

max𝐿
batch−𝑖 = (𝑞𝑖 )𝑄𝑖 (1 − 𝑞𝑖 )𝑁−𝑄𝑖

𝑀∏
𝑗=1
𝑗≠𝑖

(
𝑞𝑖, 𝑗

)𝑄𝑖,𝑗
(
1 − 𝑞𝑖, 𝑗

)𝑁−𝑄𝑖,𝑗 .

(5)

We define classifier 𝑖’s batch likelihood ratio (LR) as the ratio

between (5) and (4)

𝐿𝑅
batch−𝑖 ≜

max𝐿
batch−𝑖

𝐿
batch−𝑖 |null

=

(
𝑞𝑖

𝑝𝑋𝑖

)𝑄𝑖
(
1 − 𝑞𝑖

1 − 𝑝𝑋𝑖

)𝑁−𝑄𝑖 𝑀∏
𝑗=1
𝑗≠𝑖

(
𝑞𝑖, 𝑗

𝑝𝑊𝑖,𝑗

)𝑄𝑖,𝑗
(
1 − 𝑞𝑖, 𝑗

1 − 𝑝𝑊𝑖,𝑗

)𝑁−𝑄𝑖,𝑗

.

Taking the log of the batch likelihood ratio, we get

𝐿𝐿𝑅
batch−𝑖 = 𝑄𝑖 log

(
𝑞𝑖

𝑝𝑋𝑖

)
+ (𝑁 −𝑄𝑖 ) log

(
1 − 𝑞𝑖

1 − 𝑝𝑋𝑖

)
+
𝑀∑︁
𝑗=1
𝑗≠𝑖

[
𝑄𝑖, 𝑗 log

(
𝑞𝑖, 𝑗

𝑝𝑊𝑖,𝑗

)
+ (𝑁 −𝑄𝑖, 𝑗 ) log

(
1 − 𝑞𝑖, 𝑗

1 − 𝑝𝑊𝑖,𝑗

)]
.

(6)

Equivalently,𝐿𝐿𝑅
batch−𝑖 = 𝑁 [𝐷𝐾𝐿 (𝑄̂𝑋𝑖

∥𝑃𝑋𝑖
)+∑𝑀

𝑗=1
𝑗≠𝑖

𝐷𝐾𝐿 (𝑄̂𝑊𝑖,𝑗
∥𝑃𝑊𝑖,𝑗

)],

where 𝐷𝐾𝐿 (·∥·) are the Kullback–Leibler (KL) divergences between
the binary distributions in the arguments: 𝑄̂𝑋𝑖

is Bern(𝑞𝑖 ), 𝑃𝑋𝑖
is

Bern(𝑝𝑋𝑖
), 𝑄̂𝑊𝑖,𝑗

is Bern(𝑞𝑖, 𝑗 ) and 𝑃𝑊𝑖,𝑗
is Bern(𝑝𝑊𝑖,𝑗

). Note that
from the non-negativity of the KL divergence, 𝐿𝐿𝑅

batch−𝑖 is always

non-negative; the larger it is, the lower is the likelihood that the null

hypothesis is true. We are now ready to specify the next detector.

Detector 3. Given {𝑄𝑖 }𝑀𝑖=1 and {𝑄𝑖, 𝑗 }𝑀𝑖,𝑗=1
𝑖≠𝑗

calculated from the

𝑁 -batch, and given the prior classifier statistics {𝑝𝑋𝑖
}𝑀
𝑖=1

and {𝑝𝑊𝑖,𝑗
}𝑀𝑖,𝑗=1

𝑖≠𝑗

:

find

𝑖 = argmax

𝑖∈[𝑀 ]
𝐿𝐿𝑅

batch−𝑖 . (7)

Then declare classifier 𝑖 erroneous if 𝐿𝐿𝑅
batch−𝑖 > 𝜂, for some speci-

fied threshold 𝜂 (𝑀).

Detector 3 first identifies the classifier 𝑖 that is most “anoma-

lous” with respect to the likelihood ratio test, and then declares

it erroneous if this ratio is above the threshold. This thresholding
step offers the advantageous choice to not declare any erroneous

classifier when not needed, while the previous Detectors 1,2 by

definition always declare an erroneous classifier.

3 Analysis of the Detectors
In this section we derive analytical results for the detection per-

formance of Detectors 1 and 3. For concreteness, we focus in the

analysis on classifier ensembles modeled as Bernoulli Mixtures (BM),
hence we first include the definitions of the BM model (BMM).

3.1 The Bernoulli Mixture Model (BMM)
Classifier Distribution

The BMM is a common model for binary data [9], where in this

paper we use it to model the outputs of the functions {ℎ𝑖 }𝑀𝑖=1 on
a data point, which we recall to be denoted (𝑋𝑖 )𝑀𝑖=1 in this paper.

At a high level, the BMM captures the dependence between the

𝑀 classifiers when predicting the label of the data point. Let 𝑿 =

(𝑋1, . . . , 𝑋𝑀 ) be an 𝑀-variate BM random vector with parameters

𝛼 ∈ [0, 1] and 𝜋 ∈ [0, 1]. This defines the following: first a label is
chosen to be 1 with probability 𝜋 and 0 with probability 1−𝜋 . Then

each 𝑋𝑖 is drawn independently as a Bernoulli random variable

with the following rule:

𝑃 (𝑋𝑖 = 1) =
{
𝛼 if label is 1

1 − 𝛼 if label is 0

, 𝑃 (𝑋𝑖 = 0) =
{
1 − 𝛼 if label is 1

𝛼 if label is 0

The label models the ground-truth classification of each data point.

The shared rule introduces dependence between the variables, but

conditioned on the label the classifier outcomes 𝑋1, . . . , 𝑋𝑀 are inde-

pendent. We say that classifier 𝑖 is correct if𝑋𝑖 agrees with the label,

which happens with probability 𝛼 , and incorrect if otherwise, which
happens with probability 1 − 𝛼 . Hence the value of 𝛼 represents

the accuracy of the individual classifier functions. Unless otherwise

noted, we fix 𝜋 = 0.5 to model the case where the 1-labels and

0-labels are balanced in the dataset. The above model we consider

in the paper is a special case of the general BM model where each

variable can have a different parameter 𝛼𝑖 .

3.2 Analysis of the Blind Detector under BMM
The key statistic used by Detector 1 is the discrepancy defined in

Definition 2.2, and summed in (2). We analyze the detection-success

probability of Detector 1 under BMM in three steps: 1) deriving
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the distribution of the discrepancy random variables, 2) writing the

parameters of the batch’s sum-of-discrepancies random variable

from (2), and 3) assuming the 𝑀 sum random variables form a

Normal random vector (from the central-limit theorem), deriving a

closed-form expression for the approximated success probability.

3.2.1 Deriving discrepancy probabilities. We first derive the dis-

tribution of the discrepancy under the BMM (without erroneous

classifiers), as well as the joint probabilities between pairs of dis-

crepancies. For simplicity of analysis we assume in this sub-section

that𝑀 is even. We denote by 𝑍𝑚 (𝛼, 𝑠) the probability that the out-

come of a BM with parameter 𝛼 and 𝑚 classifiers has 𝑠 correct

classifiers, which gives 𝑍𝑚 (𝛼, 𝑠) =
(𝑚
𝑠

)
𝛼𝑠 (1 − 𝛼)𝑚−𝑠

, known as the

𝑠-th binomial term of order𝑚 and parameter 𝛼 .

Let 𝑌𝑖 ∈ {0, 1} be the random variable for classifier 𝑖’s discrep-

ancy under the BM model. From symmetry, the distribution of

the discrepancy random variable is independent of 𝑖 , so we use

𝑝𝑌 ≜ 𝑃 (𝑌 = 1) to denote it. Then, with the notation 𝑀𝑟 ≜ 𝑀 − 𝑟 ,

we have the following (proof omitted).

Proposition 3.1.

𝑝𝑌 =

𝑀/2−1∑︁
𝑠=0

[
𝛼𝑍𝑀1

(𝛼, 𝑠) + (1 − 𝛼)𝑍𝑀1
(1 − 𝛼, 𝑠)

]
.

Denote by 𝑝𝑌𝑌 ≜ 𝑃 (𝑌𝑖 = 1, 𝑌𝑗 = 1) the probability that classifiers
𝑖 and 𝑗 (𝑖 ≠ 𝑗 ) both have discrepancy equal to 1. Then we have the

following (proof omitted).

Proposition 3.2.

𝑝𝑌𝑌 =

𝑀/2−2∑︁
𝑠=0

[
𝛼2𝑍𝑀2

(𝛼, 𝑠) + (1 − 𝛼)2𝑍𝑀2
(1 − 𝛼, 𝑠)

]
+2𝛼 (1−𝛼)𝑍𝑀2

(𝛼,𝑀2/2) .

We need to derive similar discrepancy probabilities in the case

of a single erroneous classifier, whose index we assume to be 𝑖′.
We denote by 𝑌𝑖 the discrepancy random variable of index 𝑖 ≠

𝑖′ (a non-erroneous classifier), and by 𝑌 ′
the discrepancy of the

erroneous classifier 𝑖′. We denote by 𝑍𝑚 (𝛼, 𝑠) the probability that

the outcome of a BM with parameter 𝛼 and𝑚 classifiers, one of

which is erroneous with parameter 𝜖 , has 𝑠 correct classifiers. We

have the following (proof omitted).

Proposition 3.3.

𝑍𝑚 (𝛼, 𝑠) =
(
𝑚 − 1

𝑠 − 1

)
𝛼 ′𝛼𝑠−1 (1 − 𝛼)𝑚−𝑠+

(
𝑚 − 1

𝑠

)
(1 − 𝛼 ′)𝛼𝑠 (1 − 𝛼)𝑚−1−𝑠 ,

where 𝛼 ′ ≜ 𝛼 (1 − 𝜖) + (1 − 𝛼)𝜖 is the probability that the erroneous
classifier is correct.

Denote 𝑝
𝑌
≜ 𝑃 (𝑌𝑖 = 1), which from symmetry is the same for

any 𝑖 ≠ 𝑖′. Denote 𝑝
𝑌 ′ ≜ 𝑃 (𝑌𝑖′ = 1). Then we have (proof omitted):

Proposition 3.4.

𝑝
𝑌
=

𝑀/2−1∑︁
𝑠=0

[
𝛼𝑍𝑀1

(𝛼, 𝑠) + (1 − 𝛼)𝑍𝑀1
(1 − 𝛼, 𝑠)

]
,

𝑝
𝑌 ′ = (1 − 𝜖)𝑝𝑌 + 𝜖 (1 − 𝑝𝑌 ) = (1 − 2𝜖)𝑝𝑌 + 𝜖,

where 𝑝𝑌 is given in Proposition 3.1.

Moving to joint probabilities, denote 𝑝
𝑌𝑌
≜ 𝑃 (𝑌𝑖 = 1, 𝑌𝑗 = 1),

which from symmetry is the same for any 𝑖 ≠ 𝑗 both of which ≠ 𝑖′.
Denote 𝑝

𝑌𝑌 ′ ≜ 𝑃 (𝑌𝑖 = 1, 𝑌𝑖′ = 1), for some 𝑖 ≠ 𝑖′. Now we have

(proof omitted):

Proposition 3.5.

𝑝
𝑌𝑌

=

𝑀/2−2∑︁
𝑠=0

[
𝛼2𝑍𝑀2

(𝛼, 𝑠) + (1 − 𝛼)2𝑍𝑀2
(1 − 𝛼, 𝑠)

]
+2𝛼 (1 − 𝛼)𝑍𝑀2

(𝛼,𝑀2/2) ,

𝑝
𝑌𝑌 ′ =

𝑀/2−2∑︁
𝑠=0

[
𝛼𝛼 ′𝑍𝑀2

(𝛼, 𝑠) + (1 − 𝛼) (1 − 𝛼 ′)𝑍𝑀2
(1 − 𝛼, 𝑠)

]
+[

𝛼 (1 − 𝛼 ′) + (1 − 𝛼)𝛼 ′
]
𝑍𝑀2

(𝛼,𝑀2/2).

3.2.2 Distribution parameters of the batch’s average discrepancies.
Given a batch of 𝑁 data points, each following the BM model in-

dependently, we wish to evaluate the probability that Detector 1

succeeds in declaring the erroneous classifier. This probability de-

pends on the system parameters: 𝑀,𝛼, 𝜖 , and also 𝑁 . Detection

success occurs when the erroneous classifier has a larger sum in (2)

than every non-erroneous classifier. For analysis convenience, we

replace the sum of (2) by the average over the batch, which is equiv-

alent (the constant factor of 𝑁 does not affect the detection). Define

the random variable 𝐹𝑖 =
1

𝑁

∑𝑁
𝑛=1 𝑌𝑖 (𝑛) for a non-erroneous clas-

sifier 𝑖 , and 𝐹 ′ = 1

𝑁

∑𝑁
𝑛=1 𝑌𝑖′ (𝑛) for the erroneous one 𝑖′. For any 𝑖 ,

𝐹𝑖 has the same distribution, thus we sometime simplify its notation

to 𝐹 . We then use the results of Section 3.2.1 to get the first and

second moments (mean: 𝜇, variance: 𝜎2, covariance: cov(·, ·)) of 𝐹
and 𝐹 ′:

𝜇
𝐹
= 𝑝

𝑌
, 𝜎2

𝐹
=
𝑝
𝑌
− 𝑝2

𝑌

𝑁
, cov(𝐹𝑖 , 𝐹 𝑗 ) =

𝑝
𝑌𝑌

− 𝑝2
𝑌

𝑁
,

𝜇
𝐹 ′ = 𝑝

𝑌 ′ , 𝜎
2

𝐹 ′
=
𝑝
𝑌 ′ − 𝑝2

𝑌 ′

𝑁
, cov(𝐹, 𝐹 ′) =

𝑝
𝑌𝑌 ′ − 𝑝

𝑌
𝑝
𝑌 ′

𝑁
,

where all the probabilities in the right-hand sides above are derived

from BMM in Section 3.2.1.

3.2.3 Approximation with Joint Normal distribution. Inspired by

the multivariate (Lindeberg-Feller) central limit theorem [15], we

assume the random variables 𝐹𝑖 , 𝑖 ≠ 𝑖′ and 𝐹 ′ to be jointly normal,

even for 𝑁 that is finite (but not too small). Denote by F̃ the𝑀 × 1

random vector whose 𝑖-th element is 𝐹𝑖 , where in position 𝑖′ it has
the special random variable 𝐹 ′. This random vector has a mean vec-

tor 𝝁
𝐹
that has 𝜇

𝐹 ′ in position 𝑖′ and 𝜇
𝐹
in all other positions. The

covariance matrix 𝚺𝑁 of this vector has the variances 𝜎2
𝐹
and 𝜎2

𝐹 ′

on the diagonal, and cov(𝐹𝑖 , 𝐹 𝑗 ) and cov(𝐹, 𝐹 ′) off-diagonal. With

the aforementioned assumption, we have that F̃ ∼ N
(
𝝁
𝐹
, 𝚺𝑁

)
,

where N stands for the (multivariate) Normal distribution.

For convenient evaluation of the success probability, we apply

the linear transform D̃ = CF̃, where C is a (𝑀−1)×𝑀 matrix where

𝐶𝑖,𝑖 = 1 for all 𝑖 ∈ {1, . . . , 𝑖′−1},𝐶𝑖,𝑖+1 = 1 for all 𝑖 ∈ {𝑖′, . . . , 𝑀 −1},
𝐶𝑖,𝑖′ = −1 for all 𝑖 ∈ {1, . . . , 𝑀−1}, and zeros elsewhere. In words,C
simply subtracts variable 𝑖′ from every other variable, and removes

the 𝑖′-th variable. As a result of this linear transformation, we get

D̃ ∼ N
(
C𝝁

𝐹
,C𝚺𝑁C𝑇

)
. Note that D̃ has 𝑀 − 1 random variables
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that are identically distributed and equicorrelated, that is, they

all have the same mean 𝜇
𝐷
, the same variance 𝜎2

𝐷
, and the same

correlation 𝜌
𝐷
for every pair.

We now write the detection-success probability using D̃.

𝑃

(
Detector 1

success

)
= 𝑃

(
𝑖 = 𝑖′

)
= 𝑃

(⋃
𝑖≠𝑖′

{
𝐹𝑖 < 𝐹𝑖′

})
= 𝑃

(⋃
𝑖≠𝑖′

{
𝐹𝑖 − 𝐹𝑖′ < 0

})
≈ 𝑃

(
D̃ < 0

)
,

where the < in the last argument is element-wise. The ≈ in the last

equation captures the normal assumption. The last probability is

called the multivariate-normal (negative) orthant probability.
Finally, we now approximate the orthant probability of D̃ using

its quoted symmetries, ultimately yielding a closed-form expression.

We define a Normal (univariate) random variable 𝑈 with mean

𝜇𝑢 ≜ 𝜇
𝐷
/(𝜎

𝐷

√
𝜌
𝐷
) and variance 𝜎2𝑢 ≜

(
1 − 𝜌

𝐷

)
/𝜌
𝐷
. We use 𝜙 (·)

and Φ(·) to denote, respectively, the probability density function

(PDF) and cumulative distribution function (CDF) of the standard

zero-mean unit-variance Normal distribution. We also define the

normal tail function 𝑄 (𝑥) ≜ 1 − Φ(𝑥). Toward getting a closed-

form expression, we use a 2-term approximation of 𝑄 (·) using
exponential functions from [14]: 𝑄 (𝑥) ≈ 𝑄̂ (𝑥) ≜ ∑

2

𝑖=1 𝑎𝑖𝑒
−𝑏𝑖𝑥2

,

where {𝑎1, 𝑏1, 𝑎2, 𝑏2} are constants optimized in [14]. We can now

write the final result (proof omitted).

Theorem 3.6.

𝑃

( Detector 1
success

)
≈ 𝜎𝑢√

2

𝑀−1∑︁
𝑠=0

(
𝑀 − 1

𝑠

)
𝑇 (𝑠), (8)

where

𝑇 (𝑠) = 𝑔 (𝑀 − 1, 𝑠) Φ
(
− 𝛽
√
2𝜂 (𝑀 − 1, 𝑠)

)
+

(−1)𝑠
𝑠∑︁
𝑟=0

(
𝑠

𝑟

)
𝑔(𝑠, 𝑟 )Φ

(
𝛽

√
2𝜂 (𝑠, 𝑟 )

)
,

using the auxiliary parameters and functions 𝛽 ≜ −𝜇𝑢𝜎𝑢 ,𝛾 ≜ −𝜇2𝑢/2,

𝜂 (𝑚,𝑛) ≜
√︃
𝜎2𝑢/2 + 𝑏1 (𝑚 − 𝑛) + 𝑏2𝑛 and𝑔(𝑢, 𝑣) =

𝑎𝑢−𝑣
1

𝑎𝑣
2

𝜂 (𝑢,𝑣) 𝑒
𝛽2

4𝜂2 (𝑢,𝑣) +𝛾 .

The accuracy of Theorem 3.6 in approximating the detection-

success probability can be evidenced in Fig. 1 of Section 4.

3.3 Analysis of the Likelihood-Ratio Detector
We define a false-negative (FN) detection event to occur when a

classifier 𝑖 is erroneous (with parameter 𝜖), but Detector 3 fails to

detect that. This happens when 𝐿𝐿𝑅
batch−𝑖 ≤ 𝜂 (𝑀) while 𝑖 is erro-

neous. Denote by 𝑄 any 𝑄𝑖 or 𝑄𝑖, 𝑗 appearing in 𝐿𝐿𝑅
batch−𝑖 in (6),

and set 𝑝 ≜ 𝑄/𝑁 . We now write each component of 𝐿𝐿𝑅
batch−𝑖 ,

where the notatioñ designates the erroneous case:

˜𝑙 (𝑁, 𝑝) = 𝑁𝑝 log

(
𝑝

𝑝

)
+ 𝑁 (1 − 𝑝) log

(
1 − 𝑝

1 − 𝑝

)
.

𝑝 is a known probability representing 𝑝𝑋𝑖
or 𝑝𝑊𝑖,𝑗

. Next we expand

Taylor’s series for 𝑓 (𝑝) = 𝑝 log

(
𝑝̃
𝑝

)
around a point 𝑝′ ≜ 𝑎 · 𝑝 + 𝑏

and write

𝑓 (𝑝) = 𝑓 (𝑎𝑝 + 𝑏) + 𝑓 (1) (𝑎𝑝 + 𝑏) (𝑝 − 𝑎𝑝 − 𝑏) +𝑂
[
(𝑝 − 𝑎𝑝 − 𝑏)2

]
,

where 𝑓 (1) represent the first derivative. Neglecting terms of order

2 or more and setting 𝑝′ ≜ (1 − 2𝜖)𝑝 + 𝜖 (equiv. 𝑎 = 1 − 2𝜖 , 𝑏 = 𝜖):

˜𝑙 (𝑁, 𝑝) = 𝑁𝑝′ log
(
𝑝′

𝑝

)
+ 𝑁

(
log

(
𝑝′

𝑝

)
+ 1

)
(𝑝 − 𝑝′)

+ 𝑁 (1 − 𝑝′) log
(
1 − 𝑝′

1 − 𝑝

)
− 𝑁

(
log

(
1 − 𝑝′

1 − 𝑝

)
+ 1

)
(𝑝 − 𝑝′) .

Neglecting the high terms is justified since the expected value of

𝑝 is 𝑝′, so as 𝑁 → ∞ the values 𝑝 concentrate around 𝑝′. With

further simplification, we get

˜𝑙 (𝑁, 𝑝) ≈ 𝑁𝑙1 (𝑝) + 𝑁𝑙2 (𝑝)𝑝,

where 𝑙1 (𝑝) ≜ log

(
1−𝑝′
1−𝑝

)
and 𝑙2 (𝑝) ≜ log

(
1−𝑝
1−𝑝′ ·

𝑝′

𝑝

)
. Summing

over all terms in (6), we can write

𝐿𝐿𝑅
batch−𝑖 ≈ 𝑁𝑙1 (𝑝𝑋𝑖

) + 𝑙2 (𝑝𝑋𝑖
)𝑄𝑖 +

𝑀∑︁
𝑗=1
𝑗≠𝑖

[
𝑁𝑙1 (𝑝𝑊𝑖,𝑗

) + 𝑙2 (𝑝𝑊𝑖,𝑗
)𝑄𝑖, 𝑗

]
≜ 𝑉 +

𝑀−1∑︁
𝑗=1

𝑊𝑗 .

(9)

Each of𝑉 , {𝑊𝑗 } is a random variable that is a linear transformation

of a corresponding binomial random variable 𝑄 . The random vari-

ables𝑉 ,𝑊𝑗 ,𝑊𝑗 ′ , . . . are dependent, due to the dependence between

𝑋𝑖 ,𝑊𝑖, 𝑗 ,𝑊𝑖, 𝑗 ′ , . . .. In the limit 𝑁 → ∞, we approximate 𝑉 ,{𝑊𝑗 } to
be Normally distributed (correlated) random variables.

We begin by writing the means of 𝑉 , {𝑊𝑗 }

E[𝑉 ] = 𝑁𝑙1 (𝑝𝑋𝑖
) + 𝑙2 (𝑝𝑋𝑖

)E[𝑄𝑖 ] = 𝑁𝑙1 (𝑝𝑋𝑖
) + 𝑁𝑙2 (𝑝𝑋𝑖

)𝑝′𝑋𝑖

E[𝑊𝑗 ] = 𝑁𝑙1 (𝑝𝑊𝑖,𝑗
) + 𝑙2 (𝑝𝑊𝑖,𝑗

)E[𝑄𝑖, 𝑗 ] = 𝑁𝑙1 (𝑝𝑊𝑖,𝑗
) + 𝑁𝑙2 (𝑝𝑊𝑖,𝑗

)𝑝′𝑊𝑖,𝑗
,

where 𝑝′
𝑋𝑖
≜ (1 − 2𝜖)𝑝𝑋𝑖

+ 𝜖 and 𝑝′
𝑊𝑖,𝑗
≜ (1 − 2𝜖)𝑝𝑊𝑖,𝑗

+ 𝜖 . We can

similarly derive the variances of 𝑉 , {𝑊𝑗 } (proofs omitted):

Var(𝑉 ) = 𝑁
(
𝑙2 (𝑝𝑋𝑖

)
)
2

𝑝′𝑋𝑖
(1 − 𝑝′𝑋𝑖

)

Var(𝑊𝑗 ) = 𝑁

(
𝑙2 (𝑝𝑊𝑖,𝑗

)
)
2

𝑝′𝑊𝑖,𝑗
(1 − 𝑝′𝑊𝑖,𝑗

),

as well as the covariances (omitted).

3.3.1 Approximation with Normal random variable. We take the

random variables defined in the right-hand side of (9) as a length-𝑀

vector [𝑉 ,𝑊1, . . . ,𝑊𝑀−1], and approximate it to be an 𝑀-variate

Normal random vector with the parameters derived in the previous

sub-section. We get that the distribution of 𝐿𝐿𝑅
batch−𝑖 – summing

the vector elements – is approximately a Normal (uni-variate) ran-

dom variable with meanE[𝑉 ]+∑𝑀−1
𝑗=1 E[𝑊𝑗 ] and variance Var(𝑉 )+∑𝑀−1

𝑗=1 Var(𝑊𝑗 ) + 2

∑𝑀−1
𝑗=1 cov(𝑉 ,𝑊𝑗 ) + 2

∑
𝑗< 𝑗 ′ cov(𝑊𝑗 ,𝑊𝑗 ′ ). Spe-

cializing this to the BMM, we get the following (proof omitted):

Proposition 3.7. For any positive integer 𝑀 , when the classi-
fier outputs {𝑋𝑖 }𝑀𝑖=1 follow a BMM with parameters 𝜋 = 0.5 and
𝛼 , then the random variable 𝐿𝐿𝑅

batch−𝑖 under 𝐻1 (𝑖 erroneous with
probability 𝜖) can be asymptotically approximated asN(𝜇𝜖 , 𝜎2𝜖 ) with

𝜇𝜖 = (𝑀 − 1)𝑁
[
𝑙1 (𝑝𝑊 ) + 𝑝′𝑊 𝑙2 (𝑝𝑊 )

]
𝜎2𝜖 = (𝑀 − 1)𝑁 (𝑙2 (𝑝𝑊 ))2

(
𝑝′𝑊 (1 − 𝑝′𝑊 ) + (𝑀 − 2)cov𝑊 ′

)
,
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Figure 1: Analytical blind-detection success probability for
𝛼 = 0.7, 𝑁 = 200, and𝑀 = 4 (blue), 6 (orange), 10 (green).

Figure 2: FN of BMM ensembles, simulated and analytical,
for two detection thresholds (left) and two batch sizes (right).

with 𝑝𝑊 = 𝛼2 + (1 − 𝛼)2, 𝑝′
𝑊

= (1 − 2𝜖)𝑝𝑊 + 𝜖 and cov𝑊 ′ =

(1−𝜖) (𝛼3 + (1−𝛼)3) +𝜖 ((1−𝛼)𝛼2 +𝛼 (1−𝛼)2) − ((1−2𝜖)𝑝𝑊 +𝜖)2.

Proposition 3.7 allows to calculate the approximate FN probabil-

ity by simply evaluating the standard Normal CDF at the specified

decision threshold: Φ((𝜂 (𝑀) − 𝜇𝜖 )/𝜎𝜖 ). The accuracy of this ap-

proximation is demonstrated in Fig. 2 of Section 4.

4 Numerical Results
Fig. 1 plots Detector 1’s success probability under the joint-normal

assumption, as a function of 𝜖 for 𝛼 = 0.7, 𝑁 = 200, and three

values of𝑀 . On the same plot we show both the exact numerical

calculation (solid) and the closed-form approximation (8) (dashed).

It can be seen that, as expected, the detection probability increases

with 𝜖 , while for 𝜖 = 0 it is roughly 1/𝑀 . It can also be seen that for

the higher values of 𝜖 , the performance improves as the ensemble

size 𝑀 is increased. The closed-form approximation is extremely

close to the exact numerical values. Fig. 2 plots for𝑀 = 5, 𝛼 = 0.8,

the FN probability of Detector 3 as a function of 𝜖 , comparing the

empirical simulated FN rate (solid) to the analytical approximation

(dashed) using Proposition 3.7. The left plot compares two values of

detection threshold 𝜂. As expected, the lower 𝜂 (blue) has smaller

FN probability than the higher (orange). However, 𝜂 also affects the

false-positive probability (not shown here), in the reversed ordering.

The right plot compares two values of batch size 𝑁 = 500 (blue) and

𝑁 = 1000 (green). Departing from the BM model toward practical

setups, we implemented the classifiers using neural networks (NNs)

trained for binary image classification. We independently trained

𝑀 = 4 classifiers to distinguish between even and odd digits on
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Figure 3: Experimental NN accuracy. 𝑁 = 100, 200, 300 in solid,
dashed, and dotted green curves, respectively. Zoomed inset
provided for the interesting region.

the MNIST dataset [11]. At inference time, for each pair of 𝑁, 𝜖 val-

ues we sampled 10,000 𝑁 -batches from the test set, evaluated the

NN-models on these inputs and applied the flipping by classifier 𝑖′

chosen uniformly from [𝑀] in each 𝑁 -batch. We recorded the clas-

sification accuracy after blocking the declared erroneous classifier

on each 𝑁 -batch. The results appear in Fig. 3. The plot depicts an

average of 50 ensembles that were trained and evaluated indepen-

dently. The figure compares the accuracy of Detector 1 (green) to a

no-detection scheme (blue) that picks the label randomly in case

of tie among the 𝑀 = 4 classifiers. It also compares to an ‘oracle’

scheme (orange) that always blocks the true 𝑖′. It can be seen that

Detector 1 approaches the oracle when 𝜖 is large enough, while in

the no-detection scheme the accuracy drops linearly with 𝜖 .
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