
Coding on Dual-Parameter Barrier Channels
Yuval Ben-Hur and Yuval Cassuto

The Andrew and Erna Viterbi Department of Electrical and Computer Engineering
Technion - Israel Institute of Technology

Technion City, Haifa 3200003, Israel
Email: {yuvalbh@campus, ycassuto@ee}.technion.ac.il

Abstract—This paper studies coding on channels with the
barrier property: only errors to and from a special barrier
symbol are possible. This model is motivated by information
systems that have heterogeneous symbol structure, not admitting
the usual multi-bit scaling principle of representation levels. This
work is the first that addresses a barrier channel with separate
parameters for the transitions into and out of the barrier symbol.
Earlier work addressed special-case single-parameter models,
and focused primarily on the worst-case coding performance.
Our contributions for the general dual-parameter model include
derivation of the channel capacity, guaranteed-correction con-
ditions and code-size bounds, a code construction method, and
several decoders that correct beyond the guaranteed worst-case
capability. A key structural feature of our construction method
enables reduction of the decoding problem to a cooperation
between two decoders for codes in the Hamming metric.

I. INTRODUCTION

Nowadays, many digital information systems, such as data-
storage devices, data processing units and communication
systems, represent information using the binary alphabet.
Although convenient for hardware implementation, binary
representations use only Q = 2 levels and thus impose severe
limitations on the system efficiency (e.g., information den-
sity/rate and power consumption). Even non-binary systems
usually employ multi-bit representations, in which an integer
power of 2 number of levels are uniformly spaced across
the system’s dynamic range. However, many next-generation
systems are able to span multiple representation levels/states,
but without the regularity of the multi-bit scaling principle.

In this paper we study a family of Q-ary channels we call
barrier channels. Out of the Q symbols of the alphabet, one is
designated as the barrier symbol, and errors are introduced as
transitions only to and from the barrier symbol. Two variants
of the barrier channel are studied: the probabilistic model
WQ(p, q) where p, q are the transition probabilities to and from
the barrier symbol, respectively, and the combinatorial model
WQ(td, tu) where td, tu are the numbers of errors in a block
to and from the barrier symbol, respectively.

One practical motivation for the ternary (Q = 3) barrier
channel is a (symbol dependent) AWGN channel as described
in Fig. 1. Transitions are dominant to and from the barrier (‘0’)
symbol in the middle, while transitions between the extreme
(‘1’ and ‘2’) symbols occur with negligible probability. Such

Part of the results in this paper was presented at the 2021 IEEE Global
Communications Conference (GLOBECOM) and at the 2023 IEEE Interna-
tional Symposium on Information Theory (ISIT).

Figure 1: Ternary barrier-channel example: the dominant tran-
sitions are to and from the center level. The corresponding
barrier parameters are p = 9 · 10−3, q = 1.3 · 10−1.
The transition probability between the extreme symbols is
negligible.

a channel may apply in memory technologies that scale from
binary to ternary cells while maintaining the same dynamic
range in the analog domain. The paper studies the general
Q-ary barrier channel as an interesting generalization from
theoretical perspective, which may also find practical future
applications for Q > 3. Inspirations for such applications
can be found in data storage: magnetic media with multiple
stable states [1] representing non-barrier symbols, to which
a less-stable barrier state can potentially be added as the
barrier symbol, and in communications: by introducing a low-
power barrier signal to a constellation of Q − 1 orthogonal
signals. The particular applicability of the barrier model to
ternary (Q = 3) alphabets is in line with the recent advent of
devices and applications working with ternary alphabets. For
example, IoT biosensors generate data streams with 3 possible
states [2], novel in-memory memristor-based processors em-
ploy ternary logic [3], and next-generation electrically erasable
programmable read-only memories (EEPROMs) store ternary
symbols [4]. Ternary representations were also considered
for traditional CMOS logic [5], wide-band communication
systems [6] and even state-of-the-art large language models
(LLMs) [7].

Two specific versions of the barrier channel have already
been studied before. Codes that correct t barrier errors in
only one direction (non-barrier to barrier) are studied in [8].
The results for that version include a necessary and sufficient

1

correction condition, bounds on the size of such codes, and a
construction for t = 1. A channel that considers barrier errors
in both directions is studied in [4] (and its earlier version [9]),
but assuming a single parameter that governs both directions
of barrier errors. This assumption implies p = q/2 in our
model, which limits its applicability: in the example of Fig. 1
we observe that p≪ q, due to the lower reliability around 0.
For the single-parameter version, [4] derives bounds on code
sizes, which are further tightened in [10].

The results of [4] include a code-construction method
that is useful also in the two-parameter case: obtaining a
ternary t-barrier-error-correcting code using binary Hamming-
metric constituent codes. Specifically, for t barrier errors of
any direction the construction employs: 1) a binary t-error-
correcting code in the Hamming metric, and 2) a set of binary
t-erasure-correcting codes of different lengths. The length of
the second code is chosen every encoding instance according
to the encoding outcome of the first code. This construction
also implies a bounded-distance decoding algorithm for t
errors that proceeds by decoding the error-code and erasure-
code sequentially.

This paper extends the prior work in several directions.
Firstly, it studies barrier channels with two independent pa-
rameters: p, q in the probabilistic model, and td, tu in the
combinatorial model. This extension holds the promise of
more efficient coding tailored for the specific parameters at
hand. In the probabilistic model, we derive in Section II the
channel capacity of WQ(p, q) and show significant capacity
gaps between channels with different p, q combinations. In
the combinatorial model, we prove in Section III conditions
for guaranteed correction: one condition that is both necessary
and sufficient, and another sufficient condition that is satisfied
by the code construction proposed later in the paper. We derive
code-size upper and lower bounds based on the two conditions,
and show empirically that the derived lower bounds are much
tighter than the tightest known prior lower bounds [10] that
apply to the dual-parameter barrier channel. Note, however,
that these prior bounds apply to a stronger (single-parameter)
error model that allows any t barrier errors such that t = td+tu
(the d1 distance of [10] was shown in [4] to capture the
capability of correcting t barrier errors.).

Toward practical coding, Section IV presents a code-
construction method and Section V adds decoding algorithms
that are enabled by that construction method. To obtain a Q-
ary (td, tu) barrier-error-correcting code of length n, we use
two constituent codes for symmetric errors over smaller alpha-
bets, each of length n. A similar reduction has been proposed
before in [4], [8] (for a single parameter t), but requiring to
use constituent codes of many different lengths. Using only a
single code with a single length in our construction enables
decoding algorithms that correct beyond the number of errors
guaranteed by the construction.

The baseline decoder for codes constructed with our pro-
posed method is a bounded-distance decoder, which is the first
we define in Section V. We then derive a maximum-likelihood
decoder (MLD) for the construction that employs a reduction
to MLD of the constituent codes, which are lower-alphabet
codes over the Hamming metric. Based on the MLD, we

propose a lower-complexity algorithm we call cooperative list
decoder (CLD) and its variant persistent CLD (PCLD). As the
name implies, CLD/PCLD use a list decoder for decoding the
first constituent code, which is a binary code. They use both
codes to find the highest likelihood Q-ary codeword that is
generated by a word in the list. Finally, we introduce a deeper
cooperation (DC) decoder that uses cooperation between the
constituent codes without resorting to a list decoder. In DC
decoder, the constituent decoders pass information on a per-
symbol basis, thereby allowing to refine bits of the first code
based on a score inferred by the second code. Such cooperation
is not possible with the prior construction of [4], [8], since the
length of the second code is not known until the first code is
correctly decoded. A follow-up DC decoder for graph-based
(LDPC) constituent codes has been recently presented in [11].
The performance of all decoders is evaluated and compared
by simulations in Section VI.

II. DUAL-PARAMETER BARRIER CHANNEL AND ITS
CAPACITY

In this section, we specialize the discussion to the prob-
abilistic version of the dual-parameter barrier channel. We
define the channel and derive its capacity for a general alphabet
size, and in particular to the important ternary case. We
designate 0 as the barrier symbol, and the remaining alphabet
symbols are 1, . . . , Q − 1. The probabilistic dual-parameter
barrier channel WQ(p, q) is defined by two parameters: p and
q, specifying the transition probabilities of downward (to 0)
and upward (from 0) errors, respectively. A diagram describing
W3(p, q) is given in Fig. 2.

Definition 1: For any input X ∈ ZQ and output Y ∈ ZQ

and parameters 0 ≤ p, q ≤ 1, the Q-ary dual-parameter barrier
channel WQ(p, q) has the transition probabilities

P (Y = y|X = 0) =

{
1− q, y = 0,
q/(Q−1), y ̸= 0,

P (Y = y|X = x ̸= 0) =

 1− p, y = x,
p, y = 0,
0, otherwise

(1)

1

0

2

1

0

2

1− p

p

q/2

1− q
q/2

p
1− p

Figure 2: The dual-parameter barrier channel for Q = 3.

We now derive the channel capacity of the dual-parameter
barrier channel defined in Definition 1. This generalizes the ca-
pacity of the single-parameter special case W3(q/2, q), derived
in [4] and the capacity of the ternary dual-parameter barrier
channel W3(p, q), derived in [12]. Unless noted otherwise,

2

logarithms are base 2 and the capacity is given in units of
bits; h2(·) is the binary entropy function.

Theorem 1: The capacity of WQ(p, q) for p+q < 1 is given
by

h2 (αp,q(φ
∗)) + αp,q(φ

∗) log(Q− 1)

− βQ(p, q)φ
∗ − (h2(q) + q log(Q− 1)) ,

(2)

where

αp,q(φ) ≜ (1− p− q)φ+ q,

βQ(p, q) ≜ h2(p)− h2(q)− q log(Q− 1),

γQ(p, q) ≜ 1 +Q
βQ(p,q)

1−p−q −log(Q−1),

and φ∗ = min

{
γQ(p, q)

−1 − q

1− p− q
, 1

}
.

(3)

Before we derive the capacity, we show that the capacity-
achieving input distribution (CAID) of the channel is equal
for all non-zero symbols, i.e., Pr{X = 1} = · · · = Pr{X =
Q− 1}.

Lemma 1: The capacity-achieving input distribution is of
the form

Φ∗(x) =

{
1− φ, x = 0
φ/(Q−1), otherwise , (4)

where 0 ≤ φ ≤ 1.
Proof: Define φ ≜

∑Q−1
x=1 Pr{X = x} and let Z ≜

I[Y ̸=0]. Since Z is uniquely determined by Y , we can write
H(Y) = H(Y,Z) = H(Z) + H(Y |Z). Clearly, H(Z) is a
function of φ alone (due to the symmetry between non-zero
symbols in the channel), and H(Y |Z) decomposes to

Pr{Z = 0}H(Y |Z = 0) + Pr{Z = 1}H(Y |Z = 1)

= Pr{Z = 1}H(Y |Z = 1).
(5)

Now, H(Y |Z = 1) is maximized when Y |Z = 1 has a
uniform distribution, meaning that X should also be uniform
over all X ̸= 0, i.e., Pr{X = x} = φ/(Q−1). To complete
the proof, we show that H(Y |X) can be optimized by Φ∗

as well. Toward this, we formulate H(Y |X) as the following
single-variable function of φ,

H(Y |X) =

Q−1∑
x=0

Pr{X = x}H(Y |X = x)

= (1− φ)H(Y |X = 0) +
∑
x ̸=0

Pr{X = x}H(Y |X = x)

= (1− φ) [−(1− q) log(1− q)− q log(q/Q−1)]

+ φ [−p log(p)− (1− p) log(1− p)]

= (1− φ) [h2(q) + q log(Q− 1)] + φh2(p).
(6)

We now prove Theorem 1 based on Lemma 1.
Proof: Given the form of Φ∗, we can rewrite H(Y). First,

note that

Pr{Y = 0} = (1− φ)(1− q) + φp

= (p+ q − 1)φ+ (1− q),
(7)

and

Pr{Y = y ̸= 0} = (1− φ)
q

Q− 1
+ φ

1− p

Q− 1

=
1− p− q

Q− 1
φ+

q

Q− 1
.

(8)

Denote αp,q(φ) ≜ (1−p−q)φ+q and note that 1−αp,q(φ) =
(p+ q−1)φ+(1− q). Hence, Pr{Y = y ̸= 0} = αp,q(φ)/Q−1

and Pr{Y = 0} = 1− αp,q(φ). Now,

H(Y) = − (1− αp,q(φ)) log (1− αp,q(φ))

− (Q− 1)
αp,q(φ)

Q− 1
log

(
αp,q(φ)

Q− 1

)
= h2 (αp,q(φ)) + αp,q(φ) log(Q− 1)

= log2(Q) ·HQ(αp,q(φ)),

(9)

where HQ(·) is the Q-ary entropy function. We can now write
the mutual information as

I(X,Y) =h2 (αp,q(φ)) + αp,q(φ) log(Q− 1)

− βQ(p, q)φ− (h2(q) + q log(Q− 1)) ,
(10)

where βQ(p, q) = h2(p)−h2(q)− q log(Q−1). To maximize
the latter expression, we take the derivative with respect to φ

I ′ = (1−p−q) log
(
1− αp,q(φ)

αp,q(φ)
(Q− 1)

)
−βQ(p, q). (11)

The second derivative,

I ′′ = (1− p− q)2

(αp,q(φ)− 1)αp,q(φ)
, (12)

is always negative since αp,q(φ) is between q and 1 − p,
both non-negative numbers smaller than 1. Therefore I is
maximized by φ∗ for which I ′ = 0. In case φ∗ is larger
than 1, it is guaranteed that setting it to 1 would maximize I.
Equating (11) to 0, we get

log

(
1− αp,q(φ)

αp,q(φ)

)
=

βQ(p, q)

1− p− q
− log(Q− 1) (13)

which ultimately gives

φ∗ = min

{
γQ(p, q)

−1 − q

1− p− q
, 1

}
, (14)

where γQ(p, q) ≜ 1 +Q
βQ(p,q)

1−p−q −log(Q−1).
Remark 1: The capacity can also be derived with similar

arguments for the (less interesting) case of p + q > 1, but
we omit this derivation. The special case of p + q = 1 leads
to φ∗ = 1 for every p, and capacity of (1 − p) log(Q − 1),
which is equivalent to the capacity of the (Q− 1)-ary erasure
channel with parameter p and the 0 symbol acting as the
erasure symbol.

Remark 2: The barrier channel over the binary alphabet
(Q = 2) coincides with the binary asymmetric channel
(BAC) [13], and in particular these channels have the same
capacity.

Fig. 3 depicts the channel capacity as a function of p + q,
for several relations between p and q. Note that the channel
obtained by not using the barrier symbol is simply the binary
erasure channel BEC(p). It can be seen in Fig. 3 that its

3

Figure 3: Capacity of the ternary dual-parameter barrier chan-
nel W3(p, q), for several relations between p and q.

capacity is significantly lower than the capacity of ternary
barrier channels with various values of p and q. The plot
specifically motivates the study of the dual-parameter version
of the channel, by showing that the known special case
p = q/2 has large gaps (both upward and downward) to other
potentially interesting cases.

III. DUAL-PARAMETER BARRIER ERROR CORRECTION

Toward constructing codes with correction guarantees, we
move in this section to the combinatorial dual-parameter
barrier error model. The Q-ary dual-parameter barrier error
model WQ(td, tu) is defined using two (non-negative integer)
parameters, td and tu, bounding from above the number of
downward (non-barrier → barrier) and upward (barrier →
non-barrier) errors, respectively. We denote the set of integers
by Z and the subset of non-negative integers smaller than Q
by ZQ. The notation −ZQ denotes the set of corresponding
negative integers, including 0. FM represents the finite field
with M elements. We further denote by [n] the set of integers
{1, 2, . . . , n}. We now provide a definition of barrier errors
over the alphabet ZQ ≜ {0, . . . , Q − 1}, assuming 0 is the
barrier symbol.

Definition 2: Given n ∈ N and a codeword c =
(c1, . . . , cn) ∈ Zn

Q, a vector e = (e1, . . . , en) ∈ {−ZQ∪ZQ}n
is called a barrier error vector of c if for every index i ∈ [n]
such that ci ̸= 0 either ei = −ci (downward error) or ei = 0
(no error). If ci = 0, ei can be an arbitrary element of ZQ

(upward error if ei ̸= 0).
Given a codeword c ∈ Zn

Q transmitted through WQ(td, tu),
the output r equals c+ e (addition over the integers), where
e is a (td, tu) barrier error, defined as follows.

Definition 3: Given a codeword c ∈ Zn
Q, a barrier error

vector e (as defined in Definition 2) is a (td, tu) barrier error
if |{i ∈ [n] : ei < 0}| ≤ td and |{i ∈ [n] : ei > 0}| ≤ tu.
A code C ⊆ Zn

Q is said to be a (td, tu) barrier-error-correcting
code if it corrects any (td, tu) barrier error.

A. Error correction guarantees

Throughout the paper we assume the standard definitions
of Hamming weight wH(x) ≜ |{i ∈ [n] : xi ̸= 0}| and
Hamming distance dH(x, z) = |{i ∈ [n] : xi ̸= zi}| for
x = (x1, . . . , xn), z = (z1, . . . , zn) ∈ Zn

Q. We also use the
following indicator mapping function.

Definition 4: Let x = (x1, . . . , xn) ∈ Zn
Q. The indicator

mapping of x is defined as ı (x) ≜ (ı (x1) , . . . , ı (xn)) where

ı (xj) =

{
1, xj ∈ ZQ \ {0}
0, xj = 0

. (15)

Based on the indicator mapping we define the indicator
distance.

Definition 5: For any x = (x1, . . . , xn), z = (z1, . . . , zn) ∈
Zn
Q, define the indicator distance as

dı(x, z) = dH(ı (x) , ı (z)). (16)

Note that dı(x, z) counts coordinates in which xi = 0, zi ̸= 0
or xi ̸= 0, zi = 0. Complementing the indicator distance to the
standard Hamming distance is the residual distance, defined
next.

Definition 6: For any x = (x1, . . . , xn), z = (z1, . . . , zn) ∈
Zn
Q, define the residual distance as

dı(x, z) = dH (x, z)− dı(x, z). (17)

Note that dı(x, z) counts coordinates in which 0 ̸= xi ̸=
zi ̸= 0.

We first prove a sufficient condition for guaranteed cor-
rection of (td, tu) barrier errors. This condition is not tight
(i.e., not necessary), but it serves as a basis for a practical
construction proposed in Section IV. Later in the section we
present a tighter condition that is both sufficient and necessary.

Proposition 1: Let C ⊆ Zn
Q be a code such that for any

two codewords x, z ∈ C, either dH(x, z) ≥ 2(tu + td) + 1 or
dı(x, z) ≥ td+1 (or both). Then, C is a (td, tu) barrier-error-
correcting code.

Proof: Let c be a codeword in a code C that satisfies
the aforementioned condition. Let r ∈ Zn

Q be the output of
WQ(td, tu) for the input codeword c ∈ C, i.e., there exists a
(td, tu) barrier error e such that r = c + e. Assume there
exists another codeword, c′ ∈ C, such that r = c′ + e′ for
some (td, tu) barrier error e′. We now consider two cases. If
dH(c, c′) ≥ 2(tu+td)+1, we immediately get a contradiction,
since

dH(c, c′) ≤ dH(c, r) + dH(c′, r) ≤ 2(tu + td),

where the last inequality follows from the bound of tu+ td on
each of dH(c, r), dH(c′, r). Therefore, dı(c, c′) ≥ td +1. To
show that this also implies a contradiction, define the following
index-set sizes

M1 = |{j ∈ [n] : 0 ̸= cj ̸= c′j ̸= 0}|,
M2 = |{j ∈ [n] : rj = 0 and 0 ̸= cj ̸= c′j ̸= 0}|.

(18)

The condition r = c + e = c′ + e′ with barrier errors e, e′

necessitates that 0 ̸= cj ̸= c′j ̸= 0 implies rj = 0. Thus
M1 = M2. But from the error model we know that M2 ≤ td

4

and from the distance assumption M1 = dı(c, c
′) ≥ td + 1, a

contradiction.
Remark 3: A trivial sufficient condition for correcting

(td, tu) barrier errors is one that guarantees correction of
td + tu symmetric errors: dH(c, c′) ≥ 2(tu + td) + 1 for
any c, c′ ∈ C. This condition is improved by Proposition 1
which guarantees correction with a weaker condition, namely
allowing C to contain codewords c, c′ ∈ C with dH(c, c′) ≤
2(tu + td), as long as dı(c, c

′) ≥ td + 1.
To see that the condition in Proposition 1 is not necessary,

we give the following example.
Example 1: Let C = {(0, 0, 0, 1), (2, 2, 2, 2)} and let tu =

td = 1. Obviously, the conditions in Proposition 1 are not
satisfied, since

dH((0, 0, 0, 1), (2, 2, 2, 2)) = 4 < 2(tu + td) + 1 = 5,

dı((0, 0, 0, 1), (2, 2, 2, 2)) = 1 < td + 1 = 2.
(19)

However, each of the two codewords can be recovered
from any error pattern with tu = td = 1 using the fol-
lowing decoder: declare the codeword to be (0, 0, 0, 1) if
Majority(r1, r2, r3, r4) = 0, and (2, 2, 2, 2) otherwise.

Toward tightening the correction condition, we add the
following definition.

Definition 7: For any x, z ∈ Zn
Q, define δı(x, z) ≜ |{i ∈

[n] : ı(xi) = 1, ı(zi) = 0}|. Then the asymmetric indicator
distance is defined as

d′ı(x, z) ≜ max(δı(x, z), δı(z,x)). (20)

Note that d′ı(x, z) = d′ı(z,x), and d′ı(x, z) ≥ dı(x, z)/2.
Similar definitions and properties appear in [14] studying
codes for binary asymmetric channels.

Proposition 2: C is a (td, tu) barrier-error-correcting code
if and only if between any pair of codewords x, z ∈ C, either
d′ı(x, z) + dı(x, z) ≥ tu + td + 1 or dı(x, z) ≥ td + 1 (or
both).

Proof: Let c be a codeword in a code C that satisfies
the aforementioned condition. Let r ∈ Zn

Q be the output of
WQ(td, tu) for the input codeword c ∈ C, i.e., there exists a
(td, tu) barrier error e such that r = c + e. Assume there
exists another codeword, c′ ∈ C, such that r = c′ + e′ for
some (td, tu) barrier error e′. The sufficiency of the second
condition was already proved in Proposition 1, so we assume
dı(c, c

′) ≤ td and prove that d′ı(c, c
′)+dı(c, c

′) ≥ tu+ td+1
leads to a contradiction. Define M1 as in (18) (i.e., M1 =
|{j ∈ [n] : 0 ̸= cj ̸= c′j ̸= 0}|), and also define

M = |{j ∈ [n] : cj ̸= 0 and c′j = 0}|,
M ′ = |{j ∈ [n] : c′j ̸= 0 and cj = 0}|.

(21)

Such r exists if and only if the M indices in (21) can be
covered by tu upward errors in c′ and td − M1 downward
errors in c, and similarly, the M ′ indices can be covered by
tu upward errors in c and td−M1 downward errors in c′. This
implies tu + td −M1 ≥ max(M,M ′). By definition, M =
δı(c, c

′), M ′ = δı(c
′, c), and M1 = dı(c, c

′), and substituting
these and (20) to the last inequality gives tu+td ≥ d′ı(c, c

′)+
dı(c, c

′), a contradiction. For necessity, given c, c′ that violate
the condition, we can find barrier errors e, e′ that cover all the

indices counted in M1,M,M ′, and thus lead to the same r.

B. Bounds on the maximal code size

We now derive upper and lower bounds on the size of the
largest (td, tu) barrier-error-correcting code. The analogue of
a Hamming ball for the barrier channel is the (td, tu) ball
defined next.

Definition 8: Define the (td, tu) ball around a word x =
(x1, . . . , xn) ∈ Zn

Q as E(td,tu)(x) = {y ∈ Zn
Q : y = x + e},

where e = (e1, . . . , en) is a (td, tu)-barrier error.
Note that E(td,tu)(x) defines the set of possible channel out-

puts when x is transmitted through WQ(td, tu). The number
of words in a (td, tu) ball is a key ingredient in the derivation
of code-size bounds.

Proposition 3: Let x = (x1, . . . , xn) ∈ Zn
Q and td, tu ∈ N.

The size of the set E(td,tu)(x) is given by

|E(td,tu)(x)| =
αx∑

τd=0

(
ωx

τd

)
·

βx∑
τu=0

(
n− ωx

τu

)
(Q− 1)τu ,

(22)
where ωx ≜ wH(x), αx ≜ min{ωx, td} and βx ≜ min{n −
ωx, tu}.

Proof: Let ωx ≜ wH(x) be the number of non-zero
elements in x. We evaluate the set size by partitioning x to
two subsets of indices:

1) {i : xi = 0}: Each zero element in x has Q−1 possible
non-zero assignments, and given τu ≤ min{n−ωx, tu}
such transitions, there are

(
n−ωx

τu

)
possible index subsets.

Summing over all possible words with τu transitions
yields the second sum in the product in (22).

2) {i : xi ̸= 0}: Each non-zero element has one possible
erroneous assignment (transition to 0), and given τd ≤
min{ωx, td} such transitions, there are

(
ωx

τd

)
possible

index subsets. Summing over all possible τd assignments
yields the first sum in the product in (22).

Since the two subsets of indices are disjoint, the product of
sizes yields the size of E(td,tu)(x).
Note that the size of the set E(td,tu)(x) depends on wH(x)
rather than x. We therefore rename it |E(td,tu)(ω)|, where 0 ≤
ω ≤ n. An upper bound using these ball volumes will depend
on the code’s weight support, defined next.

Definition 9: Let C ⊆ Zn
Q be a code of length n. Define

the weight support of C, Ω(C) ⊆ {0, 1 . . . , n}, as the set of
Hamming weights of codewords in C.

The following proposition provides an upper bound on the
size of any (td, tu) barrier-error-correcting code.

Proposition 4: Let td, tu ∈ N and let C ⊆ Zn
Q be a (td, tu)

barrier-error-correcting code with weight support Ω. Then,

|C| ≤ Qn

minω∈Ω |E(td,tu)(ω)|
. (23)

Proof: Let C be a (td, tu) barrier-error-correcting code
with given weight support Ω. For every two codewords c, c′ ∈
C, the corresponding (td, tu) balls, E(td,tu)(c) and E(td,tu)(c′),

5

do not intersect (otherwise, there exists a (td, tu) barrier error
that cannot be corrected). Consequently,

Qn = |Zn
Q| ≥ | ∪c∈C E(td,tu)(c)| =

∑
c∈C
|E(td,tu)(c)|

≥ |C|min
c∈C
|E(td,tu)(c)| = |C|min

ω∈Ω
|E(td,tu)(ω)|.

(24)

Toward deriving a lower bound on the maximal size of a
(td, tu) barrier-error-correcting code, we now define another
type of “ball” in Zn

Q and calculate its volume. In symmetric
error correction, the balls used for lower bounds (Gilbert
Varshamov (GV) [15], [16]) are the same as the balls for
upper bounds, only with the radius doubled. In the barrier
error model there is no such simple doubling that we can use.
Instead, we base the lower bounds on balls of words violating
the sufficient conditions of Propositions 1 and 2. We start with
the ball corresponding to Proposition 1.

Definition 10: For a word x = (x1, . . . , xn) ∈ Zn
Q, define

B(1)(td,tu)
(x) to be the set consisting of all words y ∈ Zn

Q such
that dH(x,y) ≤ 2(tu + td) and dı(x,y) ≤ td.

Proposition 5: Let x = (x1, . . . , xn) ∈ Zn
Q, td, tu ∈ N and

denote ωx ≜ wH(x). The size of the set B(1)(td,tu)
(x) is

|B(1)(td,tu)
(x)| =

α′
x∑

τu=0

(
n− ωx

τu

)
(Q− 1)τu

·
β′
x∑

τd=0

(
ωx

τd

)
·

γ′
x∑

τr=0

(
ωx − τd

τr

)
(Q− 2)τr ,

(25)

where α′
x ≜ min {n− ωx, 2(tu + td)},

β′
x ≜ min {ωx, 2(tu + td)− τu} and γ′

x ≜
min {ωx − τd, td, 2(td + tu)− τd − τu}.

Proof: To satisfy the first condition, τu ≤ 2(tu+ td) zero
indices change to non-zeros, and τd ≤ 2(tu+td)−τu non-zero
indices change to zeros. These give the first two sums in the
product (25), which also consider the respective bounds n−ωc

and ωc on τu and τd. To satisfy the second condition, τr ≤ td
non-zero indices (not selected by the τd above) change to a
different non-zero symbol. This adds the third sum in (25).
Similarly, the balls corresponding to Proposition 2:

Definition 11: For a word x = (x1, . . . , xn) ∈ Zn
Q, define

B(2)(td,tu)
(x) to be the set consisting of all words y ∈ Zn

Q such
that d′ı(x,y) + dı(x,y) ≤ tu + td and dı(x,y) ≤ td.
The size of B(2)(td,tu)

(x) can be found identically to Proposi-
tion 5, but replacing in (25) to the values

α′
x ≜ min {n− ωx, tu + td} ,

β′
x ≜ min {ωx, tu + td} ,

γ′
x ≜ min {ωx − τd, td, td + tu −max{τd, τu}} .

(26)

From now on we use B(td,tu) to represent either B(1)(td,tu)
or

B(2)(td,tu)
, and the results apply to both. Note that |B(td,tu)(x)|

depends only on the weight ωx, hence, we denote it
|B(td,tu)(ωx)|. Since B(td,tu)(c) contains all the words violat-
ing the sufficient condition of Proposition 1 or 2 with respect
to a codeword c, greedily selecting c to be in the code, and

removing B(td,tu)(c) from the list of candidate codewords,
guarantees ending up with a (td, tu) barrier code. This gives
a lower bound on the maximal code size, similar to the GV
bound.

Proposition 6: Let td, tu ∈ N and let C ⊆ Zn
Q be

the largest possible (td, tu) barrier-error-correcting code with
weight support Ω. Then,

|C| ≥
∑

ω∈Ω

(
n
ω

)
(Q− 1)ω

maxω∈Ω |B(td,tu)(ω)|
. (27)

Proof: To prove the inequality, we use the following chain
of equalities and inequalities∑

ω∈Ω

(
n

ω

)
(Q− 1)ω = |{x ∈ Zn

Q : wH(x) ∈ Ω(C)|

≤| ∪c∈C B(td,tu)(c)| ≤
∑
c∈C
|B(td,tu)(c)|

≤ |C|max
c∈C
|B(td,tu)(c)| = |C|max

ω∈Ω
|B(td,tu)(ω)|,

(28)

where the first equality is the standard counting of weight-ω
vectors, the first inequality is from the fact that the greedy
codeword selection stops only when all words within the
weight support are contained in a codeword ball, the second
inequality is because sum of sizes is never smaller than the
union size, and the third inequality bounds the sum of sizes
by a product with the largest size.

Proposition 6 provides a general lower bound on the optimal
code size, which can be improved by adding knowledge
on the code’s weight support. In the case where Ω(C) is
unknown or specifying Ω is undesired, one can simply set
Ω = {0, 1, . . . , n} to obtain general (looser) bounds from (23)
and (27). The bound can be further improved using the
Generalized Gilbert-Varshamov bound [17]. This amounts to
changing the maximal sphere volume in the denominator
of (27) to the average sphere volume, which gives a strictly
better bound.

Proposition 7: Let td, tu ∈ N and let C ⊆ Zn
Q be

the largest possible (td, tu) barrier-error-correcting code with
weight support Ω. Define aω to be the fraction of Zn

Q words
with weight ω out of the words with weights in Ω. Then,

|C| ≥
∑

ω∈Ω

(
n
ω

)
(Q− 1)ω∑

ω∈Ω aω|B(td,tu)(ω)|
. (29)

Proof: This result follows from the proof of Proposition 6
and the generalized Gilbert-Varshamov lower bound in [17].
Specifically, we set X = {x ∈ Zn

Q : wH(x) ∈ Ω}
and use the proof of Theorem 4 from [17]. For B(1)(td,tu)

,
we set ρ(x, z) = max{dH(x, z), 2tu + td + dı(x, z)} and
d = 2(tu + td) + 1; while for B(2)(td,tu)

, we set ρ(x, z) =

max{d′ı(x, z) + dı(x, z), tu + dı(x, z)} and d = tu + td +1.

To effectively use the bounds stated above, we need to
determine Ω wisely. We focus on the lower bounds, because
in that case guessing a “good” Ω can prove the existence
of a large code with that weight support. Luckily, a simple
technique of bounding ω from below gives lower bounds that
are better than the known lower bounds, as we show in the
following example.

6

Example 2: For Q = 3 we fix td to be either 1 or 3 and
set Ω = {ωmin, . . . , n}, where ωmin is optimized to achieve
the largest lower bound for each tu ∈ {0, . . . , n/4} separately.

For Prop. 7, we substitute aw =
(nω)(Q−1)ω∑

ω∈Ω (
n
ω)(Q−1)ω

. The results
are shown in Fig. 4 for n = 32 (upper row) and n = 128
(lower row). Each plot compares the values of three lower
bounds derived here for (td, tu) barrier errors (solid) with
two lower bounds for td + tu barrier errors in any direction
from [10] (dotted). In addition, we plot the GV bound for
td + tu symmetric errors (dashed). The three new bounds we
plot are, in increasing level of tightness: the bound of Prop. 6
based on B(1)(td,tu)

, the bound of Prop. 6 based on B(2)(td,tu)
, and

the bound of Prop. 7 based on B(2)(td,tu)
. It can be seen that

the new bounds based on B(2) improve significantly over the
previously known bounds. The improvement of Prop. 7 over
Prop. 6 is more significant when n is small, probably due to
the dominance of large ball volumes in the enumeration of
the average ball size. Even the less tight bound based on B(1)
shows improvement over the prior bounds for large tu values,
illustrating the promise of the code construction of Section IV
that is driven by the sufficient condition of Prop. 1.

IV. CONSTRUCTION FOR (td, tu)-BARRIER ERRORS

In this section, we construct a code that is designated specif-
ically for correcting (td, tu)-barrier errors. A new construction
is required since the code constructed in [4] is designed for
a weaker error model of t (downward/upward) barrier errors,
and setting t = td + tu for correcting (td, tu)-barrier errors
is naturally sub-optimal. Additionally, the construction of [4]
uses multiple outer erasure codes of different lengths, which
we also aim to avoid towards allowing simpler encoding and
decoding procedures.

A. Code construction
We now construct such a code and prove that it corrects

(td, tu)-barrier errors.
Definition 12 (Indicator code): Given td, tu ∈ N and n ∈ N,

define the indicator code as a binary code with length n and
minimum Hamming distance 2(td + tu) + 1.

Definition 13 (Base residual code): Given td ∈ N and n ∈
N, define the base residual code as a code over Zn

Q−1 with
length n and minimum Hamming distance td + 1.

Construction 1: Let Θ be an indicator code for parameters
td, tu and length n; and let Λ be a base residual code for
parameter td and length n. A word c = (c1, . . . , cn) ∈ Zn

Q is
a codeword in C = Θ⊗ Λ if the following conditions hold:

1) There exists θ ∈ Θ such that for every j = 1, . . . , n,
θj = ı (cj).

2) There exists λ ∈ Λ such that for every j = 1, . . . , n,
λj = cj − 1 if cj ̸= 0, and λj = 0 if cj = 0.

The supports of the constituent codewords satisfy a property
described next.

Definition 14 (Support of x): For a word x =
(x1, . . . , xn) ∈ Zn

Q of length n ∈ N, we denote the set of
indices of non-zero elements as

ω(x) ≜ {i ∈ [n] : xi ̸= 0}. (30)

Remark 4: Given codewords θ ∈ Θ and λ ∈ Λ that
constitute a codeword c ∈ C, note that Properties 1 and 2
of Construction 1 guarantee that the support of λ is a subset
of the support of θ, i.e., ω(λ) ⊆ ω(θ).

Example 3: Let Q = 3, td = tu =
1, and consider the indicator code Θ =
{(1, 1, 1, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1)} and base residual
code Λ = {(1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0)} (note
that both codes satisfy the respective distance requirements
from Definitions 12 and 13). Consequently, the resulting
barrier code is

C =

{
(2, 2, 1, 0, 0, 0, 0, 0), (1, 1, 2, 0, 0, 0, 0, 0),

(2, 2, 1, 1, 1, 1, 1, 1), (1, 1, 2, 1, 1, 1, 1, 1)

}
. (31)

The codeword (2, 2, 1, 0, 0, 0, 0, 0) is a combination of the
indicator codeword (1, 1, 1, 0, 0, 0, 0, 0) and the residual code-
word (1, 1, 0, 0, 0, 0, 0, 0). Note that the 0 in the third position
in the residual codeword maps to a 1 in the ternary codeword
(because θ3 = 1), while the 0 in the fourth position in
the residual codeword maps to a 0 in the ternary codeword
(because θ4 = 0).

To prove the correction capability of the code from Con-
struction 1, we show that the constructed code satisfies the
requirements from Proposition 1 for guaranteed correction of
any (td, tu)-barrier error.

Theorem 2: Given td, tu ∈ N and n ∈ N, let C ⊆ Zn
Q be a

code constructed by Construction 1. Then, C can correct any
(td, tu)-barrier error.

Proof: Let c, c′ ∈ C be a pair of (different) arbitrary
codewords (c ̸= c′). According to Construction 1,

dı(c, c
′) = dH(ı (c) , ı (c′)) = dH(θ,θ′), (32)

where θ,θ′ are codewords in Θ. If θ ̸= θ′, then dH(θ,θ′) ≥
2(td + tu) + 1 (according to the minimum distance of Θ)
thereby satisfying the first sufficient condition from Propo-
sition 1. Otherwise θ = θ′ and it is left to show that
dı(c, c

′) ≥ td +1. In this case, dı(c, c′) = dH(ı (c) , ı (c′)) =
dH(θ,θ′) = 0, hence

dı(c, c
′) = dH(c, c′)− dı(c, c

′) = dH(c, c′). (33)

Now, according to the second condition of Construction 1,
λj ̸= λ′

j implies cj ̸= c′j , thus dH(c, c′) ≥ dH(λ,λ′),
and since λ ̸= λ′ (otherwise, c = c′), it is guaranteed
that dH(λ,λ′) ≥ td + 1 from the minimum distance of Λ,
and dı(c, c

′) ≥ td + 1 follows by (33) and a chain of two
inequalities.

Our new suggested construction actually satisfies a condi-
tion stronger than the sufficient condition in Proposition 1.
The constructed code contains only codeword pairs that satisfy
either dı(x, z) ≥ 2(tu+td)+1 or dı(x, z) = 0 and dı(x, z) ≥
td + 1. It does not contain potentially “legal” codewords for
which dı(x, z) ≥ td + 1 yet 0 < dı(x, z) ≤ 2(tu + td).

As in [4], our construction also employs a compound
structure in which every Q-ary codeword is constructed from
codewords originating in two constituent codes: 1) an indicator
code, and 2) a residual code. However, [4] uses a set of residual
codes with different lengths to encode the non-zero symbols

7

(a) n = 32, td = 1 (b) n = 32, td = 3

(c) n = 128, td = 1 (d) n = 128, td = 3

Figure 4: Comparison of the lower bounds in this paper with bounds from [10] and with the GV lower bound, for Q = 3, as
a function of the total number of correctable errors (td + tu) where td = 1 or td = 3. Each point was obtained by setting the
minimum weight in Ω to maximize the value of the bounds.

in each codeword, while we use sub-codes of a single base
residual code, thereby allowing simpler encoding/decoding.

B. Structured encoder

To allow efficient encoding of Construction 1, we now
formalize the structural relationship between a codeword in
C and the two corresponding constituent codewords in Θ and
Λ. To this end, we define the residual sub-code Λθ of the base
code Λ, induced by an arbitrary indicator codeword θ ∈ Θ.

Definition 15 (θ-induced sub-code): Let Λ ⊆ Zn
Q−1 be a

code and let θ ∈ Zn
2 . The θ-induced sub-code of Λ is a subset

Λθ ⊆ Λ such that for every λ ∈ Λθ

ı (λ) ≤ θ, (34)

where the inequality is bit-wise. Note that a λ from Λθ

satisfies Property 2 in Construction 1 of having zeros in all

coordinates where c (and θ) have zeros (and possibly more
due to the inequality in (34)).

Now, using a constituent codeword pair: an indicator code-
word θ ∈ Θ and a residual codeword λ from the θ-induced
residual code Λθ, we can encode a codeword in C = Θ ⊗ Λ
as

c = Ψ(θ,λ) ≜ θ · (1+ λ), (35)

where a ·b denotes the element-wise multiplication of vectors
a and b and 1 is a vector of ones. The sub-code structure of
Λ allows the simple encoding function of (35) (applying to
every θ,λ pair), but its most compelling advantage over [4]
lies in decoding: one can decode the residual codeword even
before the indicator codeword is known. Such decoders are
pursued in Section V.

8

C. Residual encoding/decoding via its parity-check matrix

In general, the indicator and/or base residual codes are not
assumed to be linear. Yet, in the remainder of this section
we restrict our attention to linear base-residual codes, thanks
to their many advantages in encoding and decoding. Even
when the base residual code Λ has an efficient encoder, the
encoding of C requires the more refined task of encoding to a
specific sub-code Λθ (the sub-codes in general have different
sizes). Toward that task, we now define θ-induced parity-check
matrices using the parity-check matrix of the base residual
code.

Definition 16: For a matrix X and a binary vector θ ∈
Zn
2 , we use the notation X(ω(θ)) to represent the sub-matrix

generated by the columns of X whose indices are in ω(θ).
Definition 17: (θ-induced matrix) Let θ ∈ Zn

2 and let H ∈
Fm×n
Q−1 (m ≤ n) be a matrix. The θ-induced matrix is defined

as

Hθ =

[
H(

In

(
[n] \ ω(θ)

))⊤]
, (36)

where the notation In stands for the identity matrix with
dimensions n× n.

Proposition 8: (parity-check matrix of Λθ) Let θ ∈ Zn
2 and

let Λ be a linear code with a parity-check matrix H . Then, the
code defined by the parity-check matrix Hθ is the θ-induced
sub-code of Λ.

Proof: Let θ ∈ Zn
2 and let H be a parity-check matrix of

Λ. Define Zθ as the code whose parity-check matrix is Hθ,
defined in Eq. (36). To prove the claim, we show that Zθ is a
subset of Λ and that Eq. (34) holds for its codewords. For any
λ ∈ Zθ, we naturally have λ ∈ Λ thanks to the upper part of
the parity-check matrix in (36), which guarantees Hλ = 0.

To prove that (34) holds, recall that
(
In

(
[n] \ ω(θ)

))⊤
λ =

0 (thanks to the lower part of (36)), which implies λj = 0 for
every j ∈ [n] \ ω(θ). For these indices, we get

λj = ı (λj) = θj = 0, (37)

satisfying (34) on these indices with equality, while for the
remaining indices the inequality is trivially true since θj = 1
and ı (λj) is binary. This proves that Zθ is the induced sub-
code Λθ.

Now, Λθ can be encoded and/or decoded efficiently for any
θ using the constructive formulation of its parity-check matrix
in (36) (alternatively, it can also be decoded as a shortened
code). When θ is not known, we can still decode from the base
residual code Λ defined by H . Note that Hθ can be further
simplified, using its reduced row echelon form, row/column
removal and column permutation, to produce a systematic
encoder for Λθ.

The rows added to H in the bottom block of Hθ in (36)
impose additional constraints on the base residual code Λ,
to obtain the sub-code Λθ. We now characterize the added
redundancy from these constraints when the base residual code
is a random binary code.

Proposition 9: Let Θ be an indicator code and let Λ be a
random linear base residual code defined by a rΛ × n parity-
check matrix H whose elements are drawn i.i.d Bernoulli with

probability ϵ to draw a 0. For any θ ∈ Θ denote r̃θ as the
expected redundancy of the θ-induced residual code Λθ. Then,

r̃θ ≤ min
{
n− wH(θ) + rΛ

(
1− ϵwH(θ)

)
, n
}
. (38)

Proof: The redundancy is the number of independent rows
in row-wise concatenation of H and

(
In

(
[n] \ ω(θ)

))⊤
. Thus

it is upper bounded1 by the sum of rΛ and the number of
added rows n − wH(θ), minus the number of rows in H
that are individually dependent on the added rows, that is,
are each in the span of

(
In

(
[n] \ ω(θ)

))⊤
. Each row drawn

to H is in the span of
(
In

(
[n] \ ω(θ)

))⊤
if and only if all

of its 1s fall in indices in [n] \ ω(θ). The probability of this
event is ϵwH(θ). Thus the expected number of rows of H
that individually depend on the span of the bottom part is
rΛϵ

wH(θ), giving the first argument of the min in (38). Since
H and

(
In

(
[n] \ ω(θ)

))⊤
combined cannot have more than

n independent rows, we get the second argument of the min.

The bound in (38) is compared in Fig. 5b to the empirical
average rank of Hθ with randomly drawn H matrices. We
illustrate the bound using two sets of values for ϵ, n and
rΛ. Setting ϵ to a small value leads to an almost piecewise-
linear bound, as in Fig. 5a, because ϵwH(θ) approaches 0 very
fast; larger ϵ, on the other hand, allows to better observe the
nonlinear transition region, as in Fig. 5b. Proposition 9 is a
useful tool to estimate the rate of a barrier-error-correcting
code given the weight-distribution of the code Θ ({a(w)}nw=0)
and the sparsity (ϵ) of the parity-check matrix of Λ. For a
ternary code, the rate is:

rate({a(w)}nw=0, rΛ, ϵ) ≈

1

n
log3

(
n∑

w=0

a(w) · 2max{w−rΛ(1−ϵw),0}

)
.

(39)

V. DECODING ALGORITHMS

Although we commence this section with a description of a
bounded-distance decoder and its guarantees, its key content
is the formulation of more powerful decoders. Thanks to
the property of our code construction that the indicator and
residual codes share the same block length, we are able to
devise decoding algorithms that decode the constituent codes
cooperatively, thereby going beyond the guaranteed correction
capability. The first result in the vein is a reduction of
maximum-likelihood (ML) decoding for C from Construction 1
(which also applies to the code from [4]) to simpler ML
decoding of the constituent codes; then we propose several
practical (yet sub-optimal) decoders inspired by this reduction.

A. Bounded-distance decoding for (td, tu)-barrier errors

The most natural decoding procedure for C employs a
bounded-distance decoder for each of the constituent codes
sequentially. The following bounded-distance decoder is a
generalization of a similar decoder proposed in [4], and it

1The redundancy may be lower if multiple rows of H jointly span a
subspace that intersects with the span of

(
In

(
[n] \ ω(θ)

))⊤
.

9

(a) n = 32, rΛ = 8 and ϵ = 0.66

(b) n = 128, rΛ = 64 and ϵ = 0.99

Figure 5: Comparison of the upper bound in Proposition 9 and
the empirical average redundancy with randomly drawn base
residual codes.

employs two decoding steps: 1) bounded-distance decoding
of Θ: find a codeword θ̂ satisfying dH(ı (r) , θ̂) ≤ td + tu;
2) erasure decoding of Λ: find a codeword λ̂ that agrees
with θ̂ where θ̂j = 0 and with r − 1 where θ̂j ̸= 0 and
rj ̸= 0. Then reconstruct the ternary codeword ĉ from θ̂ and
λ̂ using (35). Declare failure if in any of the Steps 1 and 2
no codeword or more than one codeword were found. The
following proposition characterizes the correction capability
of the bounded-distance decoder.

Proposition 10: Let C = Θ ⊗ Λ be a code from Construc-
tion 1. Given a channel output r = c+e, the bounded-distance
decoder successfully outputs c for any (td, tu)-barrier error e.

Proof: Let θ,λ be the binary codewords corresponding to
c in Construction 1. Since e is a (td, tu)-barrier error, we have
dH(ı (r) ,θ) ≤ td+ tu, so θ will be found in step 1. θ is also
unique from the properties stated in Definition 12. From item 2
in Construction 1, λj = cj−1 if cj ̸= 0, and λj = 0 if cj = 0.
These are equivalent to λj = cj − 1 if θj ̸= 0 and λj = 0
if θj = 0, because from item 1 in the construction we have

θj = 0 if and only if cj = 0. From the properties of barrier
errors we have that if θj ̸= 0 (equiv. cj ̸= 0) and rj ̸= 0, then
rj = cj , and we proved that λ meets the conditions in step 2
of the decoder. For uniqueness, suppose by contradiction that
there is another codeword λ′ satisfying these conditions. Then
λ′ can differ from λ only on coordinates where θj ̸= 0 (equiv.
cj ̸= 0) and rj = 0. But from the properties of the error there
are at most td such coordinates, and from the properties stated
in Definition 13 this is not possible.

B. Decomposed MLD: MLD using simpler constituent codes

In [4], an ML decoder (MLD) – for the special case
p = q/2, Q = 3 – is defined through a distance metric on
the ternary alphabet Z3. For more efficient decoding, we show
in this subsection a reduction of ML decoding to simpler ML
decoders of the constituent codes Θ and Λ. The advantage
of this reduction is that the constituent codes are traditional
Hamming-metric codes over lower-order alphabets (Θ is a
binary code, and when Q = 3 so is Λ).

Let r = (r1, . . . , rn) ∈ Zn
Q be the word output from the

channel WQ(p, q). An MLD for a code C = Θ ⊗ Λ needs to
find a pair of codewords θ ∈ Θ and λ ∈ Λθ ⊆ Λ that jointly
maximize the likelihood of observing r. We now decompose
this task using individual decoders for Θ,Λ, and a rule for
combining the individual decoder outputs.

1) MLD for the code Θ: We define the following decoder
for Θ, invoked on the input ı (r) where ı(·) is the indicator
mapping defined in Definition 4, which maps symbols from
the channel alphabet to the binary alphabet of Θ.

Definition 18: The ML indicator decoder for Θ outputs
the codeword

θ̂ = argmax
θ∈Θ
{µ1ı (r)θ

T − µ2wH(θ)}, (40)

where µ1 ≜ log
(

(Q−1)(1−p)(1−q)
pq

)
and µ2 ≜ log

(
1−q
p

)
.

It will be shown later (Proposition 11) that θ̂ in (40) maximizes
the indicator vector’s likelihood function Pr{ı (r) |θ}, hence
the ML qualification in Definition 18.

2) MLD for the Λθ code: We first define a mapping from
the length-n channel output to the decoder input.

Definition 19: Given θ ∈ Zn
2 , the residual mapping maps

a vector r ∈ Zn
Q to a vector ϱ(θ)(r) = (ϱ1, . . . , ϱn) such that

ϱj =

 rj − 1, θj = 1, rj ̸= 0
?, θj = 1, rj = 0
0, otherwise

(41)

where ? represents the erasure symbol. Now we define the
following decoder for Λθ, invoked on the input ϱ(θ)(r).

Definition 20: Given θ ∈ {0, 1}n, the residual ML decoder
for Λθ finds and outputs a codeword λ̂ such that λ̂i = ϱ

(θ)
i (r)

for every i with ϱ
(θ)
i (r) ̸=? (and any value on erased coor-

dinates). The decoder outputs “reject” if no such codeword
exists.

3) Combining the individual MLDs: Let r be the channel
output. We are now ready to define the combined ML decoder
in Algorithm 1.

10

Algorithm 1 MLD for C = Θ⊗ Λ:

1: Input: r ∈ Zn
Q - channel output

2: Output: ĉ ∈ Zn
Q - decoded codeword

3: Initialize: Θ′ ← Θ
4: while not returned do
5: set θ̂ to the output of indicator MLD with input ı (r)

and code Θ′

6: invoke residual MLD with input ϱ(θ̂)(r) and code Λθ̂
7: if “reject” then
8: Θ′ ← Θ′ \ θ̂
9: else

10: return ĉ = Ψ(θ̂, λ̂)
11: end if
12: end while

Algorithm 1.1 CLD for C = Θ⊗ Λ:

1: Input: r ∈ Zn
Q - channel output

2: Output: ĉ ∈ Zn
Q - decoded codeword

3: Initialize: Θ′ ← {θ̂l}Ll=1: codewords output by an indica-
tor list-decoder (ordered in descending likelihoods)

4: for l = 1, . . . , L do
5: invoke a residual decoder with input ϱ(θ̂l)(r) and code

Λθ̂l

6: if “reject” then
7: Θ′ ← Θ′ \ θ̂l

8: else if “fail” then
9: return decoding failure

10: else
11: return ĉ = Ψ(θ̂l, λ̂)
12: end if
13: end for
14: return decoding failure

4) Proving the ML property of Algorithm 1: Given a
channel output r and a candidate codeword c, we can partition
the n coordinates to 5 disjoint sets: S0 where ri = ci = 0,
S1 where ri = ci ̸= 0, S2 where ri = 0, ci ̸= 0, S3 where
ri ̸= 0, ci = 0, S4 where ri ̸= 0, ci ̸= 0, ri ̸= ci. Thus
the ML codeword is the one that maximizes

∑3
s=0 ℓs|Ss|,

subject to |S4| = 0, where ℓ0 = log(1− q), ℓ1 = log(1− p),
ℓ2 = log(p), and ℓ3 = log(q/(Q− 1)). This follows from the
channel definition and taking the log of the likelihood function
Pr{r|c}.

Proposition 11: For any r, the output of Algorithm 1 is an
ML codeword of C = Θ⊗ Λ.

Proof: We first prove that the ML indicator decoder
maximizes

∑3
s=0 ℓs|Ss| + ℓ1|S4|. This can be seen by sub-

stituting in this sum the identities |S1| + |S4| = ı (r)θT ,
|S3| = wH(ı (r)) − ı (r)θT , |S2| = wH(θ) − ı (r)θT , and
|S0| = n−wH(ı (r))−wH(θ)+ı (r)θT . By expressing all set
sizes as functions of wH(θ), ı (r)θT , and ignoring all terms
that do not depend on θ, we get (40).

To show that Ψ(θ̂, λ̂) output by Algorithm 1 is an ML
codeword, we first observe that for any c = Ψ(θ,λ), |S4| = 0

if and only if λ satisfies the condition that λi = ϱ
(θ)
i (r) for

every i with ϱ
(θ)
i (r) ̸=?. This is the condition enforced by the

residual MLD in Definition 20, so in particular Ψ(θ̂, λ̂) has
|S4| = 0. That means that maximizing

∑3
s=0 ℓs|Ss|+ℓ1|S4| by

the indicator MLD is equivalent to maximizing
∑3

s=0 ℓs|Ss|,
subject to |S4| = 0, needed for Q-ary MLD.
The joint ML decoder of Algorithm 1 improves over the
bounded-distance decoder of Section V-A that invokes each of
the indicator/residual decoder only once. Beyond the unique-
decoding capabilities of Θ, the θ of the ML codeword in C
given r is not necessarily the ML codeword of Θ given ı (r),
so having an ML indicator decoder is not sufficient for ML
decoding of C. The strength of the joint ML decoder is that it
allows the residual decoder to reject wrong Θ codewords even
if they have high indicator likelihoods. The MLD algorithm
derived here for Construction 1 can be easily adapted to decode
also the code construction in [4], as described in Section III.B
of [12].

C. Cooperative List Decoding (CLD)
Algorithm 1 simplifies ML decoding compared to the Q-

ary ML decoder, by reduction to decoding of binary codes
in the Hamming metric and erasure decoding. However, ML
decoding of binary codes is still in general a computationally
hard problem. To mitigate this hardness, we propose a simpli-
fication of Algorithm 1 using list decoding, which is a more
tractable computational task than ML decoding. We define two
variants of this proposition.

1) Cooperative list decoder (CLD): A list decoder for the
code Θ outputs a list of likely codewords {θ̂l}Ll=1, where L is
the list size. Then the CLD for the code C = Θ⊗Λ is obtained
by running Algorithm 1.1 which initializes Θ′ ← {θ̂l}Ll=1

instead of Θ′ ← Θ as in Algorithm 1. The residual decoder of
CLD is not assumed to be MLD, so a “fail” option is added
in case it did not reject but could not find a λ̂. Other than
these changes, the algorithm similarly finds a pair of θ,λ that
jointly have the maximum likelihood among all such pairs
with codewords in {θ̂l}Ll=1.

2) Persistent cooperative list decoder (PCLD): Identical to
CLD, but instead of returning “decoding failure” when the
residual decoder fails, it continues to the next codeword in the
list (this amounts to merging the ‘else if’ of Algorithm 1.1 into
the ‘if’ statement, which will now be: if “reject” or “fail”).

It is clear that with CLD and/or PCLD, similarly to the
MLD of Algorithm 1, a decoding success can occur even if the
correct θ is not the ML codeword given the channel output’s
indicator word. Thanks to its persistence, PCLD may succeed
in finding the correct codeword further down the list, while
CLD stops the search upon residual-decoding failure. Note that
neither CLD nor PCLD are equivalent to MLD, because the
list decoder of Θ in general does not guarantee finding the θ of
the ML codeword. The special case of CLD with L = 1 is the
bounded-distance decoder described earlier in the section that
is based on unique decoding of Θ. Our generalization to L > 1
is more powerful not only thanks to more opportunities to find
the most likely indicator codeword, but also in its ability to
reject wrong indicator codewords using information from the
residual decoder. (Indeed in Section VI we show that PCLD
outperforms a decoder that uses list decoding for Θ without
cooperating with the decoder of Λ.)

11

3) Success conditions for PCLD: The PCLD succeeds in
all instances where the following conditions are met: 1) The
correct codeword θ ∈ Θ is in the list {θ̂l}Ll=1, 2) all other
codewords in the list that have higher or equal likelihoods
than θ given ı (r) reject or fail by the residual decoder, and 3)
residual decoding of ϱ(θ)(r) does not return decoding failure.

D. Deeper cooperation (DC) joint decoder

To decode codes from Construction 1 more effectively, we
now propose an algorithm that decodes the indicator and
residual codes jointly with deeper cooperation between the
decoders of Θ and Λ. In previous decoders, the cooperation
was one sided Θ → Λ: the decoder of Θ provided candidate
codewords for the decoder of Λ, and the only information
passing in the other direction was the “reject”/“fail” indica-
tions. In the bounded-distance decoder from Section V-A, a
single decoded codeword from Θ is used to decode Λ, with
no option to succeed if this codeword is not correct. The PCLD
decoder (Section V-C) employs a list decoder for Θ, and the
decoder then selects from the list the most likely codeword
found to be consistent with Λ, that is, its residual mapping (41)
satisfies all of Λ’s parity-check equations. The cost of this
one-sided operation in the case of bounded-distance decoding
is poor performance beyond Θ’s guaranteed-decoding radius,
and in the case of PCLD the cost is high computational
complexity of list decoding. The main idea of the proposed
deeper-cooperation joint decoder is to use information from
Λ’s decoder to improve the decoding outcome of Θ’s decoder.
In particular, this information is chosen to be the inconsistency
score of each index in [n], which is the number of violated
parity-check equations of H that the index appears in.

Example 4: We exemplify inconsistency in the residual
code induced by an incorrect indicator candidate codeword.
Consider a residual code Λ with parity-check equations

H =

[
1 0 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1

]
.

Assume the codeword c = (0, 1, 2, 0, 1, 2, 0, 1, 2) was trans-
mitted and the channel output is r = (2, 1, 2, 0, 1, 0, 0, 1, 2)
(i.e., upward error in the first symbol and downward error in
the sixth symbol). Assuming the (wrong) indicator candidate
codeword is θ̄ = (1, 0, 1, 0, 0, 1, 0, 0, 1), we get ϱ(θ̄)(r) =
(1, 0, 1, 0, 0, ?, 0, 0, 1). The second parity-check equation is
violated by ϱ(θ̄)(r), hence the first, third and ninth positions
have each an inconsistency score of 1, indicating they have
lower reliability than other positions. The first parity-check
equation has unknown consistency: the erasure in the sixth
position implies that the equation may not be violated.

The deeper cooperation (DC) decoding algorithm is given
formally in Algorithms 2 and 3 (the latter of which is
specified here for Q = 3). Given a channel output r, we
first decode Θ to get an indicator candidate codeword θ̄. We
then use Algorithm 3 to order the indices of [n] based on
their inconsistency score with respect to θ̄ and Λ’s parity-
check matrix H . For an iteration-count limit of M = 2m, we
take a set S of the m indices with the highest inconsistency
scores (sorted in non-increasing order), and use this set to

generate bit-flipping subsets. Each subset is used to obtain a
codeword θ̂ by the decoder of Θ (if one found); this codeword
is then used to generate ϱ(θ̂)(r) which is decoded by Λ, and
the combined Q-ary codeword is returned if consistent. This
iteration starts with the empty subset (equivalent to decoding
Λ with θ̄), and proceeds in increasing subset sizes; within
each size, the subsets are ordered by the sum of their ranks
in S. This decoding approach mimics the Chase decoding
method [18], only that the index ordering is done based on
consistency information from Λ and not from the channel
reliabilities. Note that the bounded-distance decoder above is
a special case of Algorithm 2 with M = 1 (and empty set S).

Algorithm 2 Deeper-cooperation (DC) joint decoding of C =
Θ⊗ Λ

1: Input: r ∈ Zn
Q: channel output, M = 2m: max # iterations

2: Output: ĉ ∈ Zn
Q: decoded codeword

3: θ̄ ← decode ı (r) over Θ
4: π ← Inconsistency-ordering(r, θ̄,H)
5: S ← π(1 : m) ▷ highest-inconsistency indices
6: for σ = {}, . . . , S do ▷ order subsets σ ⊆ S by size,

higher inconsistencies first in each size
7: set f to be a vector with ones in the indices of σ, and

zeros elsewhere
8: θ̂ ← decode ı (r)⊕ f over Θ
9: λ̂← decode ϱ(θ̂)(r) with residual decoder of Λ

10: if residual decoder failed or rejected then
11: continue
12: else ▷ θ̂ is consistent with Λ
13: return ĉ = Ψ(θ̂, λ̂)
14: end if
15: end for
16: return decoding failure

Algorithm 3 Inconsistency-ordering of [n]

1: Input: r ∈ Zn
3 : channel output, θ̄∈ Zn

2 : candidate in-
dicator codeword, H∈ Fρ×n

2 : residual-code parity-check
matrix

2: Output: π: sorting of [n] in non-increasing inconsistency
3: Remove residual parity-check equations with unknown

consistency due to erasures

E ← {i ∈ [ρ] : exists j ∈ [n] , ϱj =? ∧Hi,j = 1}

4: Extract inconsistent residual parity-check equations

S ←
{
i ∈ [ρ] \ E : Hi,:ϱ

(θ̄)(r)⊤ ̸= 0
}

5: Calculate “inconsistency score” for each index j ∈ [n] as

wj =
∑
i∈S

Hi,j where the sum is over Z (not F2)

6: π ← sort [n] in non-increasing wj

7: return π

12

E. Analysis of residual decoder with random linear codes

The fact that the residual decoder of Definition 20 (used in
all decoding algorithms) is an erasure decoder allows analyz-
ing its outcomes when the residual code is a random linear
code (RLC). In particular, we calculate the probabilities of
each of its outcomes “fail” and “reject”. These expressions are
useful toward simplifying some simulations in the next section,
as well as for code design. Throughout this sub-section, we
focus on a binary base residual code (corresponding to Q = 3),
but extension to non-binary codes is possible. The residual
decoder is invoked on an input vector ϱ(θ)(r), which depends
on a candidate indicator codeword θ; the codeword θ also
determines the code Λθ in which the decoder searches for
output codewords.

Definition 21: Define Λθ as a random linear code (RLC)
defined by a parity-check matrix Hθ with dimensions rθ×n,
whose each element is an independent and identically dis-
tributed (i.i.d.) Bernoulli random variable with parameter 1/2.

The erasure decoder “fails” when there is more than one
codeword that agrees with the non-erased positions of the
input. This gives the following well-known result [19].

Proposition 12: When ϱ(θ)(r) has 1 ≤ e ≤ rθ erasures, the
residual decoder over RLC returns “fail” with probability

Prfail(rθ, e) = 1−
e−1∏
i=0

(
1− 2i−rθ

)
. (42)

Proof: Immediate from evaluating the probability that the
erasure-positions’ sub-matrix of Hθ is full rank, and taking
the complement. See e.g. Eq. (3.2) in [19].
When θ is the correct codeword the residual decoder “fails”
with the above probability, and never returns “reject”, since
by Construction 1 there always exists a λ that meets the
requirement of Definition 20. When θ is not the correct
codeword, the decoder “fails” with the same Prfail above, but
now can also “reject”. Since a wrong θ may induce errors in
ϱ(θ)(r) with respect to Λ (and not just erasures), we assume
in this case that each non-erased position in the input is drawn
uniformly from {0, 1}, and get the following:

Proposition 13: When ϱ ∈ {0, 1, ?}n is a word drawn
uniformly from {0, 1}n and then added with 1 ≤ e ≤ rθ
erasures, the residual decoder over RLC returns “reject” with
probability

Prreject(rθ, e) = 1− 2−(rθ−e). (43)

Proof: For ϱ to not be rejected, the product of its non-
erased sub-vector with the corresponding sub-matrix of Hθ

must be in the span of the remaining e columns of Hθ. The
probability of this event amounts to the ratio between the size
of this span 2e to the size of the entire space 2rθ . Prreject(·)
in (43) is the complement of this ratio.

Recall from Section V-C3 that two events related to the
residual decoder cause failure of the PCLD: 1) neither reject-
ing nor failing on a wrong codeword θ̂, and 2) decoding failure
of the correct codeword θ. Under the RLC assumption, we can
use Proposition 12 to calculate the probability of the second
event, and Propositions 12 and 13 to calculate the probability
of the first event.

VI. PERFORMANCE EVALUATION

We evaluate the presented decoders by simulating their
operation on two interesting barrier channel regimes: balanced
errors (i.e., tu ≈ td or q ≈ 2p), and extremely unbalanced
errors (i.e., tu ≫ td or q ≫ p). Specifically, we examine the
decoding performance of different codes and decoders beyond
the codes’ guaranteed correction capability.

To this end, we simulate the ternary (Q = 3) barrier channel
and focus on binary Reed–Muller (RM)2 indicator codes due
to their rich structure and extensively studied unique and list
decoders. For residual codes, we use widely adopted binary
linear codes such as LDPC, and in some experiments random
linear codes (RLC), whose analysis in Section V-E allows
obtaining approximate results without invoking the erasure
decoder (thus speeding up the simulations).

A. Comparing PCLD to unique and list decoders

We first want to compare the performance of PCLD (Sec-
tion V-C2) to prior decoding algorithms. For the comparison
we take two algorithms that are improved versions of the
bounded-distance decoder from Section V-A. The first we call
unique decoder, where the indicator decoder may find a (sin-
gle) codeword beyond the code’s guaranteed correction radius.
The second we call list decoder, where the indicator decoder
returns a list of codewords and chooses from it a codeword
with the highest likelihood given ı (r). In this sub-section
the indicator code is a RM(3, 7) RM code, and the residual
code is a RLC. The RLC is not implemented explicitly,
but instead its failure/reject probabilities are calculated using
Propositions 12, 13 in every decoding instance. The e value
substituted in (42),(43) is the number of erasures in ϱ(θ̂)(r),
where θ̂ is a codeword found by the RM indicator decoder.
For rθ we substitute the bound on r̃θ from Proposition 9 with
rΛ = 32.

Each simulation instance draws a random codeword c =
θ · (1 + λ) and passes it through a ternary barrier channel
with q = 2p to obtain the received vector r. In all three
decoders ı (r) is first decoded by a RM decoder: the soft
Dumer algorithm [21] in “unique”, and the soft Dumer list
decoder (L = 8) [22] in “list” and in “PCLD”. In “unique”,
the success probability of an instance is 1 − Prfail(rθ, e) if
the correct θ is the codeword returned by the RM decoder,
and 0 if not. In “list”, the success probability of an instance
is 1 − Prfail(rθ, e) if the correct θ is the highest-likelihood
codeword in the list returned by the RM decoder, and 0 if
not. In “PCLD”, the success probability of an instance is
the same as list if the correct θ is the highest-likelihood
codeword in the list, but is in general not 0 even if there are
codewords in the list with higher likelihoods. In such cases,
1 − Prfail(rθ, e) is multiplied by a product of probabilities
(Prreject + Prfail) corresponding to each codeword in the list
with higher likelihood than the correct θ (see Section V-C3).
Having run many such instances and averaging the success
probabilities, we plot the results in Fig. 6a, where the runs

2Implementations of Reed–Muller encoding and decoding procedures used
in this section are made available in [20].

13

are partitioned by the number of barrier errors the instance
suffered beyond the guaranteed correction capability of the
RM code (tRM = 7).

(a) RLC residual code with rΛ = 32

(b) BCH residual code for correcting tRM erasures

Figure 6: Decoding-success probability with RM(3, 7) indica-
tor code and different residual codes. The PCLD is compared
to unique and list decoders.

It can be seen in Fig. 6a that the PCLD has higher
success probabilities than the prior unique and list decoders.
In particular, only with PCLD the success probability stays
close to 1 even when the number of errors grows beyond the
guaranteed correction capability: up to 3 more errors. The gap
of PCLD from list decoder attests to the fact that its power
stems not from a more powerful indicator decoder, but from
the cooperation with the residual decoder.

To complete the performance evaluation of PCLD, we also
performed a full simulation: implementing both the indicator
and residual decoders. Toward that, we replaced the RLC

residual code by a family of BCH codes (to guarantee
correcting tRM erasures for every weight of the indicator
codeword). It can be seen in Fig. 6b that the PCLD has
higher success probabilities compared to the unique decoder
and list (L = 32) decoder. Moreover, the decoding success
probability consistently grows with the indicator-decoder list
size, though even a small list of L = 4 indicator candidates
already provides significant performance gains.

B. Deeper-cooperation joint decoder

In this sub-section we evaluate the performance of the
deeper cooperation (DC) joint decoder (from Section V-D),
relative to the prior decoders and PCLD considered in the
previous sub-section. Here we simulate a full coding scheme
implementing both the indicator and residual decoders (and
encoders). The performance metric of study is the block-
error rate (BLER), i.e., the fraction of code blocks that were
output from the decoder with at least one symbol error. The
channel is the ternary (Q = 3) barrier channel W3(p, q). We
use binary RM(2, 6) and RM(2, 7) codes as indicator codes3,
and decode them using the recursive projection-aggregation
(RPA) decoder [23]. The DC decoder uses the non-list version
of the RPA algorithm (Line 8 of Alg. 2), while the PCLD
and (sequential) List decoders use the list version of RPA.
We chose the RPA algorithm thanks to its state-of-the-art
performance among unique (non-list) RM decoders. The base-
residual code we use in the simulation is a rate 1/2 binary low-
density parity-check (LDPC) code, with length matched to the
indicator code (i.e., n = 64 in case of RM(2, 6) and n = 128
in case of RM(2, 7)). The residual codes are decoded by a
standard peeling erasure decoder [24], which stops and rejects
whenever it encounters a parity check that is not consistent.
This configuration resulted in a combined average code rate
of ∼ 0.4 symbols per channel use for n = 64 and ∼ 0.3
symbols per channel use for n = 128. The channel is realized
for asymmetric scenarios, where p is fixed to either 0.001 or
0.05, while q takes values in the range between 0 and 1.

Fig. 7 plots the decoding block-error probabilities (BLER)
as a function of the upward channel transition probability
q (the downward channel transition probability p in each
figure is fixed). It clearly shows the advantage of both of
the proposed decoders PCLD and DC over the prior decoders
unique and list. The DC decoder almost matches the perfor-
mance of PCLD for RM(2, 6), even though the latter uses a
computationally-intensive list decoder with list-size L = 32.
Although for the DC decoder we set M = L = 32, the multi-
ple serial invocations of the residual and indicator decoders do
not induce complexity similar to a list decoder. This translates
to significant speed up in implementation compared to PCLD
(typically at least ×10 faster in our experiments).

VII. CONCLUSION

In this work, we study the barrier channel – a non-binary
channel in which all errors are either to or from a specific

3The implementations of Reed–Muller encoding and decoding procedures
used in this section are made available in [20].

14

Figure 7: Block error rate (BLER) of RM(2, 6) (upper row) and RM(2, 7) (lower row) indicator codes and rate ∼0.5 irregular
LDPC base residual codes simulated over W3(p, q): A comparison of four decoders.

alphabet symbol called the barrier symbol. Specifically, we
focus on a two-parameter (p, q) generalization of this channel,
to model different transition probabilities into and out of the
barrier symbol. The first part of the paper includes a derivation
of the channel capacity, which motivates the two-parameter
model by showing large capacity gaps between channels with
the same p+ q.

The second part of the paper studies the corresponding
combinatorial error model with the two parameters td, tu. This
part includes correction-capability conditions and code-size
bounds, and a general code construction building on a pair
of constituent codes with the same length.

The last part proposes decoding algorithms that decode
the two constituent codes jointly, and as a result can correct
beyond the correction guarantees of the codes. Finally, the
performance improvements offered by the proposed decoders
are demonstrated in simulations.

We point out several interesting directions for further inves-

tigation.

• A central question that remains open is the formulation
of a code construction induced by the necessary and
sufficient correction condition of Proposition 2.

• A related problem is to find code constructions that meet
the sufficient condition of Proposition 1 more tightly –
the proposed Construction 1 satisfies a stronger condition:
all pairs of codewords with dH(c, c′) ≤ 2(tu + td) (and
dı(c, c

′) ≥ td + 1) have dı(c, c
′) = 0.

• Another interesting question involves tightening the
bounds on maximal code size, using a tighter analysis
of ball sizes, or other techniques.

• On the decoding front, it will be interesting to further
improve the decoding performance using other forms of
cooperation between the two constituent codes.

• Extending the study of barrier channels to the paradigms
of zero-error [25] and adversarial channels [26].

15

VIII. ACKNOWLEDGMENT

This work was supported in part by the US-Israel Bina-
tional Science Foundation under grant number 2023627. The
authors thank the associate editor and anonymous reviewers
for comments and suggestions that improved the paper.

REFERENCES

[1] Y. Telepinsky, V. Mor, M. Schultz, Y.-M. Hung, A. D. Kent, and
L. Klein, “Towards a six-state magnetic memory element,” Applied
Physics Letters, vol. 108, no. 18, p. 182401, 2016.

[2] X. Tang and W. Tang, “A 151nw second-order ternary delta modulator
for ECG slope variation measurement with baseline wandering re-
silience,” in 2020 IEEE Custom Integrated Circuits Conference (CICC).
IEEE, 2020, pp. 1–4.

[3] L. Luo, Z. Dong, X. Hu, L. Wang, and S. Duan, “MTL: Memristor
ternary logic design,” International Journal of Bifurcation and Chaos,
vol. 30, no. 15, pp. 205–222, 2020.

[4] N. Bitouzé, A. G. i Amat, and E. Rosnes, “Error correcting coding for
a nonsymmetric ternary channel,” IEEE Transactions on Information
Theory, vol. 56, no. 11, pp. 5715–5729, 2010.

[5] D. V. Efanov, “Ternary parity codes: Features,” in 2019 IEEE East-West
Design & Test Symposium (EWDTS). IEEE, 2019, pp. 1–5.

[6] S. Vladimirov and O. Kognovitsky, “Wideband data signals with direct
ternary maximum length sequence spread spectrum and their characteris-
tics,” Proceedings of Telecommunication Universities, vol. 3, pp. 28–36,
2017.

[7] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong,
R. Wang, J. Xue, and F. Wei, “The era of 1-bit LLMs: All large language
models are in 1.58 bits,” arXiv preprint arXiv:2402.17764, 2024.

[8] R. Ahlswede and H. Aydinian, “Error control codes for parallel asym-
metric channels,” IEEE Transactions on Information Theory, vol. 54,
no. 2, pp. 831–836, 2008.

[9] N. Bitouzé and A. G. i Amat, “Coding for a non-symmetric ternary
channel,” in 2009 Information Theory and Applications Workshop.
IEEE, 2009, pp. 113–118.

[10] L. Tolhuizen, “Bounds for codes for a non-symmetric ternary channel,”
arXiv preprint arXiv:1004.1511, 2010.

[11] Y. Ben-Hur, S. Stern, Y. Cohen, and Y. Cassuto, “Graph codes for dual-
parameter barrier channels,” in 2024 60th Annual Allerton Conference
on Communication, Control, and Computing. IEEE, 2024, pp. 1–8.

[12] Y. Ben-Hur and Y. Cassuto, “Coding on dual-parameter barrier channels
beyond worst-case correction,” in 2021 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

[13] S. M. Moser, P.-N. Chen, and H.-Y. Lin, “Error probability analysis of
binary asymmetric channels,” Dept. El. & Comp. Eng., Nat. Chiao Tung
Univ, 2009.

[14] S. Al-Bassam and B. Bose, “Asymmetric/unidirectional error correcting
and detecting codes,” IEEE Transactions on Computers, vol. 43, no. 5,
pp. 590–597, 1994.

[15] E. N. Gilbert, “A comparison of signalling alphabets,” The Bell System
Technical Journal, vol. 31, no. 3, pp. 504–522, 1952.

[16] R. R. Varshamov, “Estimate of the number of signals in error correcting
codes,” Dokl. Acad. Nauk SSSR, vol. 117, pp. 739–754, 1957.

[17] J. Gu and T. Fuja, “A generalized Gilbert-Varshamov bound derived via
analysis of a code-search algorithm,” IEEE Transactions on Information
Theory, vol. 39, no. 3, pp. 1089–1093, 1993.

[18] D. Chase, “A class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 170–182, 1972.

[19] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,” IEEE Transactions on Information Theory, vol. 48,
no. 6, pp. 1570–1579, 2002.

[20] Y. Ben-Hur, “reed-muller-codes-matlab,” 2021, available: https://github.
com/benhuryuval/reed-muller-codes-matlab.

[21] I. Dumer, “Soft-decision decoding of Reed-Muller codes: a simplified
algorithm,” IEEE Transactions on Information Theory, vol. 52, no. 3,
pp. 954–963, 2006.

[22] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller
codes: recursive lists,” IEEE Transactions on Information Theory,
vol. 52, no. 3, pp. 1260–1266, 2006.

[23] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of
Reed-Muller codes,” IEEE Transactions on Information Theory, vol. 66,
no. 8, pp. 4948–4965, 2020.

[24] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 569–584, 2001.

[25] B. Bose, N. Elarief, and L. G. Tallini, “On codes achieving zero error
capacities in limited magnitude error channels,” IEEE Transactions on
Information Theory, vol. 64, no. 1, pp. 257–273, 2018.

[26] A. Ravagnani and F. R. Kschischang, “Adversarial network coding,”
IEEE Transactions on Information Theory, vol. 65, no. 1, pp. 198–219,
2019.

[27] J. Iversen, “freezecolors / unfreezecolors,” 2022, available: https://github.
com/jiversen/freezeColors/releases/tag/v2.5.

16

https://github.com/benhuryuval/reed-muller-codes-matlab
https://github.com/benhuryuval/reed-muller-codes-matlab
https://github.com/jiversen/freezeColors/releases/tag/v2.5
https://github.com/jiversen/freezeColors/releases/tag/v2.5

PLACE
PHOTO
HERE

Yuval Ben-Hur (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. (cum laude) degrees
in Electrical Engineering from the Technion–Israel
Institute of Technology, Haifa, Israel, in 2014 and
2018, respectively, where he is currently pursuing
the Ph.D. degree in Electrical Engineering.

From 2013 to 2022, he was an Algorithm Engi-
neer and a Team Leader with the Israeli Defense In-
dustry. Since 2022, he has been working on wireless
communication systems as an Algorithm Engineer
at Qualcomm. His research interests include the

application of information and communication theory to emerging data storage
and processing devices. He was a recipient of the Best Student Paper Award
in data storage from the IEEE Communications Society in 2019 and the Best
Student Paper Runner-Up Award from the 2022 IEEE International Workshop
on Machine Learning for Signal Processing.

PLACE
PHOTO
HERE

Yuval Cassuto (S’02–M’08–SM’14) is a faculty
member at the Viterbi Department of Electrical and
Computer Engineering, Technion – Israel Institute
of Technology. His research interests lie at the
intersection of the theoretical information sciences
and the engineering of practical computing and
storage systems. He has served on the technical
program committees of leading conferences in both
theory and systems. During 2010-2011 he has been
a Scientist at EPFL, the Swiss Federal Institute of
Technology in Lausanne. From 2008 to 2010 he was

a Research Staff Member at Hitachi Global Storage Technologies, San Jose
Research Center. In 2018-2019 he held a Visiting Professor position at Western
Digital Research, and a Visiting Scholar position at UC Berkeley. He received
the B.Sc degree in Electrical Engineering, summa cum laude, from the
Technion in 2001, and the M.S. and Ph.D. degrees in Electrical Engineering
from the California Institute of Technology, in 2004 and 2008, respectively.
From 2000 to 2002, he was with Qualcomm, Israel R&D Center, where he
worked on modeling, design and analysis in wireless communications. Dr.
Cassuto has won the Best Student Paper Award in data storage from the IEEE
Communications Society in 2010 as a student, and in 2019 as an adviser. He
also won faculty awards from Qualcomm, Intel, and Western Digital. Before
that, he won the 2001 Texas Instruments DSP and Analog Challenge $100,000
prize.

17

	Introduction
	Dual-parameter barrier channel and its capacity
	Dual-parameter barrier error correction
	Error correction guarantees
	Bounds on the maximal code size

	Construction for (td,tu)-barrier errors
	Code construction
	Structured encoder
	Residual encoding/decoding via its parity-check matrix

	Decoding algorithms
	Bounded-distance decoding for (td,tu)-barrier errors
	Decomposed MLD: MLD using simpler constituent codes
	MLD for the code Theta
	MLD for the residual code
	Combining the individual MLDs
	Proving the ML property of Algorithm 1

	Cooperative List Decoding (CLD)
	Cooperative list decoder (CLD)
	Persistent cooperative list decoder (PCLD)
	Success conditions for PCLD

	Deeper cooperation (DC) joint decoder
	Analysis of residual decoder with random linear codes

	Performance evaluation
	Comparing PCLD to unique and list decoders
	Deeper-cooperation joint decoder

	Conclusion
	Acknowledgment
	References
	Biographies
	Yuval Ben-Hur
	Yuval Cassuto

