
Construction and Decoding of Codes over the
Dual-Parameter Barrier Error Model

Yuval Ben-Hur and Yuval Cassuto
The Viterbi Faculty of Electrical and Computer Engineering,

Technion–Israel Institute of Technology, Haifa, Israel
Emails: {yuvalbh@campus, ycassuto@ee}.technion.ac.il

Abstract—Barrier-error channels have been suggested as a
model for non-binary channels that are milder than symmetric-
error channels. Such channels are motivated by practical appli-
cations in data storage and communications. The barrier-error
model allows errors only to (downward) and from (upward) a
specific symbol within the alphabet. We study a generalization
of prior barrier-error models that considers different numbers
of downward and upward errors. The results of this paper
include a sufficient condition for error correction, code-size upper
and lower bounds, a code construction decomposing to just two
constituent symmetric-error codes (prior ones used many), and
a decoding algorithm that decodes the two codes jointly. The
decoder is shown empirically to achieve better block error rates
when compared to previous algorithms.

I. INTRODUCTION

Despite the soaring demand for data rate and efficiency,
many information systems still store, process and commu-
nicate data represented by the binary alphabet. Moving to
larger representation alphabets – spanning Q > 2 symbols
per channel use – is tempting but often challenging. Recent
such attempts in practice range from IoT biosensors [1]
to novel memory technologies such as resistive processing
memories [2] and magnetic storage media [3].

Easier transitions from binary to non-binary can occur when
the resulting error models are “milder” than the canonical
model of Q-ary symmetric errors. With such error models, the
coding rates can be higher, and the decoding complexities can
be lower. Such a ternary (Q = 3) channel was proposed in [4],
prescribing that errors can happen between the center symbol
and one of the outer symbols, but not between the outer
symbols themselves. The motivation for this channel comes
from non-volatile memories and wide-band communication
devices [5] whose dominant errors are only between neighbor-
ing symbols. For general Q, this error type was termed barrier
errors [6], where the generalization is motivated by channels
where all transitions from the Q− 1 non-barrier symbols are
attracted into the barrier symbol, while transitions from the
barrier symbol are symmetric. This prior work indeed showed
that designing codes for the barrier channel is beneficial for
both rate and complexity.

In a Q-ary barrier channel, we designate one alphabet
symbol (here assumed to be 0) as the barrier symbol, and allow
errors only to the barrier symbol (downward errors) and from
the barrier symbol (upward errors). Downward-only barrier
errors were considered in [7] that contributed code-size bounds

and a single-error correcting construction. A channel allowing
barrier errors in both directions, under a single parameter, was
studied in [8] (and its extension [4]). This work addressed both
the probabilistic version of the channel (under a transition
parameter p), and its guaranteed-correction version (under
an error-count parameter t). The work of [9] derived code-
size bounds on a “proxy” error model defined in [4]. The
work of [6] generalized the model to allow two transition
parameters in the probabilistic model: p for downward errors
and q for upward errors. In this present paper, we generalize
the guaranteed-decoding error model to two parameters: up to
td downward errors and up to tu upward errors.

The dual parameter (td, tu) error model is an important
variant of the barrier-error model, because downward and
upward errors are different. In particular, the results of [6]
on the probabilistic channel show that increasing p (down-
ward probability) is much more detrimental to the channel
capacity than q (upward probability). That means that we
can potentially gain a lot by differentiating between the two
error directions. Toward realizing this potential, the paper
presents various results for the (td, tu) error model: sufficient
conditions for correction (Section II), code-size upper and
lower bounds (Section III), a new code construction based
on a pair of constituent codes for symmetric errors (Sec-
tion IV), and a decoding algorithm that decodes the two codes
jointly (Section V), whose correction performance beyond the
guaranteed-decoding bound is demonstrated empirically.

The main improvements offered by this paper’s contribu-
tions relative to prior work are as follows: 1) The code-size
lower bounds prove the existence of codes that (for small
td) are significantly larger than the Gilbert-Varshamov (GV)
bound for symmetric errors, 2) the code construction improves
over that in [4] by using only a single erasure-correcting
code, instead of one code per each codeword weight, and
3) the proposed joint-decoding algorithm (enabled by the
new code construction) significantly improves the correction
performance beyond all prior decoders.

II. ERROR CORRECTION OVER THE DUAL-PARAMETER
BARRIER ERROR MODEL

The Q-ary dual-parameter barrier error model, denoted
WQ(td, tu), is defined using two (non-negative integer) param-
eters, td and tu, describing the maximal number of downward
and upward barrier errors, respectively. We denote the set



of integers by Z and the subset of non-negative integers
smaller than Q by ZQ. The notation −ZQ denotes the set
of corresponding negative integers, including 0. We further
denote by [n] the set of integers {1, 2, . . . , n}. Formally,
barrier errors are defined as follows.

Definition 1: Given n ∈ N and a codeword c =
(c1, . . . , cn) ∈ Zn

Q, a vector e = (e1, . . . , en) ∈ {−ZQ∪ZQ}n
is called a barrier error vector of c if for every index i ∈ [n]
such that ci ̸= 0 either ei = −ci or ei = 0. If ci = 0, ei can
be an arbitrary element of ZQ.
Given a codeword c ∈ Zn

Q transmitted through WQ(td, tu),
the output r equals c + e (addition over the integers), where
e is a (td, tu)-barrier error, defined as follows.

Definition 2: Given a codeword c ∈ Zn
Q, a barrier error

vector e (as defined in Definition 1) is a (td, tu) barrier error
if |{i ∈ [n] : ei < 0}| ≤ td and |{i ∈ [n] : ei > 0}| ≤ tu.
A code C ⊆ Zn

Q is said to be a (td, tu) barrier error correcting
code if it corrects any (td, tu) barrier error.

Throughout the paper we assume the standard definitions
of Hamming weight wH(x) ≜ |{i ∈ [n] : xi ̸= 0}| and
Hamming distance dH(x, z) = |{i ∈ [n] : xi ̸= zi}| for
x = (x1, . . . , xn), z = (z1, . . . , zn) ∈ Zn

Q. We also use the
following indicator function.

Definition 3: Let x = (x1, . . . , xn) ∈ Zn
Q. The indicator

mapping of x is defined as ı(x) ≜ (ı(x1), . . . , ı(xn)) where

ı(xj) =

{
1, xj ∈ ZQ \ {0}
0, xj = 0

. (1)

Toward characterizing the correction capability of a given
code, we split the calculation of the Hamming distance into
two complementary additive elements using the indicator
distance defined next.

Definition 4: For any x = (x1, . . . , xn), z = (z1, . . . , zn) ∈
Zn
Q, define the indicator distance as

dı(x, z) = dH(ı(x), ı(z)). (2)

Correspondingly, we define the residual distance as its com-
plement to the full Hamming distance:

Definition 5: For any x = (x1, . . . , xn), z = (z1, . . . , zn) ∈
Zn
Q, define the residual distance as

dı(x, z) = dH(x, z)− dı(x, z). (3)

We now prove the following sufficient condition for the
guaranteed correction capability of (td, tu) barrier errors.

Proposition 1: Let C ⊆ Zn
Q be a code such that for any

two codewords x, z ∈ C, either dH(x, z) ≥ 2(tu + td) + 1 or
dı(x, z) ≥ td + 1 (or both). Then, C is a (td, tu) barrier error
correcting code.

Proof: Let c be a codeword in a code C that satisfies
the aforementioned condition. Let r ∈ Zn

Q be the output of
WQ(td, tu) for the input codeword c ∈ C, i.e., there exists
a (td, tu) barrier error e such that r = c + e. Assume there
exists another codeword, c′ ∈ C, such that r = c′ + e′ for
some (td, tu) barrier error e′, and dH(c′, r) ≤ dH(c, r). We

now consider two cases. If dH(c, c′) ≥ 2(tu + td) + 1, we
immediately get a contradiction, since

dH(c, c′) ≤ dH(c, r) + dH(c′, r) ≤ 2dH(c, r) ≤ 2(tu + td).

Therefore, dı(c, c′) ≥ td + 1. To show that this also implies
a contradiction, define the following index sets sizes

M1 = |{j ∈ [n] : rj = cj = 0 and c′j ̸= 0}|
M2 = |{j ∈ [n] : rj = 0 and 0 ̸= cj ̸= c′j ̸= 0}|.

(4)

Observe that by the error-model definition, M1 + M2 ≤ td.
Consequently, dı(c, c′) = M2 ≤ M1 + M2 ≤ td, where the
second inequality follows from its preceding observation. This
leads to a contradiction.

Remark 1: The trivial sufficient condition for (td, tu) barrier
error correction, stating that dH(c, c′) ≥ 2(tu + td) + 1
for any c, c′ ∈ C, is improved by Proposition 1 which
guarantees correction with a weaker condition on the code,
namely allowing C to contain codewords c, c′ ∈ C with
dH(c, c′) ≤ 2(tu + td), as long as dı(c, c

′) ≥ td + 1.

III. BOUNDS ON MAXIMUM CODE SIZES

We now derive upper and lower bounds on the size of the
largest (td, tu) barrier-error-correcting code. The analogue of
a Hamming ball for the barrier channel is the (td, tu) ball
defined next.

Definition 6: Define the (td, tu) ball around a word x =
(x1, . . . , xn) ∈ Zn

Q as

E(td,tu)(x) = {y ∈ Zn
Q : y = x+ e}, (5)

where e = (e1, . . . , en) is a (td, tu)-barrier error.
Note that E(td,tu)(x) defines the set of possible channel outputs
when x is transmitted through WQ(td, tu). The number of
words in a (td, tu) ball is a key ingredient in the derivation of
code-size bounds.

Proposition 2: Let x = (x1, . . . , xn) ∈ Zn
Q and td, tu ∈ N.

The size of the set E(td,tu)(x) is given by

|E(td,tu)(x)| =
αx∑

τd=0

(
ωx

τd

)
×

βx∑
τu=0

(
n− ωx

τu

)
(Q− 1)τu ,

(6)
where ωx ≜ wH(x), αx ≜ min{ωx, td} and βx ≜ min{n −
ωx, tu}.

Proof: Let ωx ≜ wH(x) be the number of non-zero
elements in x. Counting the size of the set can be partitioned
to the product of two subsets of indices:

1) {i : xi = 0}: Each zero element has Q − 1 possible
non-zero assignments, and given τu ≤ min{tu, n−ωx}
such transitions, there are

(
n−ωx

τu

)
possible index subsets.

Summing over all possible words with τu transitions
yields the second sum in the product in (6).

2) {i : xi ̸= 0}: Each non-zero element has one possible
erroneous assignment (transition to 0), and given τd ≤
min{td, ωx} such transitions, there are

(
ωx

τd

)
possible

index subsets. Summing over all possible τd assignments
yields the first sum in the product in (6).



Since the two sets of indices are disjoint, the product of sizes
yields the size of E(td,tu)(x).
Note that the size of the set E(td,tu)(x) depends on x, or more
precisely, on wH(x). We therefore rename it |E(td,tu)(ω)|,
where 0 ≤ ω ≤ n. An upper bound using these ball volumes
will depend on the code’s weight support, defined next.

Definition 7: Let C ⊆ Zn
Q be a code of length n. Define

the weight support of C, Ω(C) ⊆ {0, 1 . . . , n}, as the set of
Hamming weights of codewords in C.

The following proposition gives an upper bound on the size
of any (td, tu) barrier-error-correcting code.

Proposition 3: Let td, tu ∈ N and let C ⊆ Zn
Q be a (td, tu)

barrier error correcting code with weight support Ω. Then,

|C| ≤ Qn

minω∈Ω |E(td,tu)(ω)|
. (7)

Proof: Let C be a (td, tu) barrier error correcting code
with a given weight support Ω. For every two codewords
c, c′ ∈ C, the corresponding (td, tu) balls, E(td,tu)(c) and
E(td,tu)(c′), do not intersect (otherwise, there exists a (td, tu)
barrier error that cannot be corrected). Consequently,

Qn = |Zn
Q| ≥ | ∪c∈C E(td,tu)(c)| =

∑
c∈C
|E(td,tu)(c)|

≥ |C|min
c∈C
|E(td,tu)(c)| = |C|min

ω∈Ω
|E(td,tu)(ω)|.

(8)

Toward deriving a lower bound on the maximal size of a
(td, tu) barrier error correcting code, we now define another
type of “ball” in Zn

Q and calculate its volume. In symmetric
error correction, the balls used for lower bounds (Gilbert
Varshamov (GV) [10], [11]) are the same as the balls for
upper bounds, only with the radius doubled. In the barrier
error model there is no such simple doubling that we can use.
Instead, we define the ball using the sufficient condition of
Proposition 1.

Definition 8: For a word x = (x1, . . . , xn) ∈ Zn
Q, define

B(td,tu)(x) to be the set consisting of all words y ∈ Zn
Q such

that dH(x,y) ≤ 2(tu + td) and dı(x,y) ≤ td.
Proposition 4: Let c = (c1, . . . , cn) ∈ Zn

Q, td, tu ∈ N and
denote ωc ≜ wH(c). The size of the set B(td,tu)(c) is given
by

|B(td,tu)(c)| =
α′

c∑
τu=0

(
n− ωc

τu

)
(Q− 1)τu

×
β′
c∑

τd=0

(
ωc

τd

)
×

γ′
c∑

τr=0

(
ωc − τd

τr

)
(Q− 2)τr ,

(9)

where α′
c ≜ min{n− ωc, 2(tu + td)},

βc′ ≜ min{ωc, 2(tu + td)− τu} and γ′
c ≜

min{ωc − τd, td, 2(td + tu)− τd − τu}.
Proof: To satisfy the first condition, τu ≤ 2(tu+ td) zero

indices change to non-zeros, and τd ≤ 2(tu+td)−τu non-zero
indices change to zeros. These give the first two sums in the
product (9), which also consider the respective bounds n−ωc

and ωc on τu and τd. To satisfy the second condition, τr ≤ td
non-zero indices (not selected by the τd above) change to a
different non-zero symbol. This adds the third sum in (9).

Note that |B(td,tu)(c)| depends only on the weight ωc,
hence, we denote it |B(td,tu)(ωc)|. Since |B(td,tu)(c)| contains
all the words violating the sufficient condition of Proposition 1
with respect to c, one can greedily select c to be in the code,
and removing B(td,tu)(c) from the list of candidate codewords
guarantees ending up with a (td, tu) barrier code. This also
gives a lower bound on the maximal code size, similar to the
GV bound.

Proposition 5: Let td, tu ∈ N and let C ⊆ Zn
Q be

the largest possible (td, tu) barrier-error-correcting code with
weight support Ω. Then,

|C| ≥
∑

ω∈Ω

(
n
ω

)
(Q− 1)ω

maxω∈Ω |B(td,tu)(ω)|
. (10)

Proof: To prove the inequality, we use the following chain
of equalities and inequalities∑

ω∈Ω

(
n

ω

)
(Q− 1)ω = |{x ∈ Zn

Q : wH(x) ∈ Ω(C)|

= | ∪c∈C B(td,tu)(c)| ≤
∑
c∈C
|B(td,tu)(c)|

≤ |C|max
c∈C
|B(td,tu)(c)| = |C|max

ω∈Ω
|B(td,tu)(ω)|,

(11)

where the first equality is the standard counting of weight-ω
vectors, the second equality is from the fact that the greedy
codeword selection stops only when all words within the
weight support are contained in a codeword ball, the first
inequality is because sum of sizes is never smaller than the
union size, and the second inequality bounds the sum of sizes
by a product with the largest size.

To effectively use the bounds of Propositions 3 and 5, we
need to determine Ω wisely. We focus on the lower bound,
because in that case guessing a “good” Ω can prove the
existence of a large code with that weight support. We observe
that the size of B(td,tu)(0) is

∑2(tu+td)
τu=0

(
n
τu

)
(Q− 1)τu , which

is exactly the size of a Q-ary GV ball for correcting td + tu
symmetric errors, which is a stronger error model than ours.
Therefore, Proposition 5 can potentially improve over known
lower bounds (for symmetric errors) only if 0 /∈ Ω. Luckily, it
is possible to get strictly better lower bounds when we bound
ω from below, as we show in the following example.

Example 1: In the following, for Q = 3 we fix td = 1 and
set Ω = {ωmin, . . . , n}, where ωmin is optimized to achieve the
largest lower bound for each tu ∈ {0, . . . , n/4} separately. The
results are shown in Figure 1 for n = 64 (left) and n = 128
(right). Each plot compares the value of (10) (solid) to the GV
bound for td+tu symmetric errors (dashed). It can be observed
that the proposed lower bound consistently improves over the
GV bound, especially for tu ≫ td.

IV. A CONSTRUCTION FOR CORRECTING (td, tu)-BARRIER
ERRORS

In [4], a code construction is proposed for the single-
parameter (t) barrier-error model, which allows any combi-



(a) n = 64 (b) n = 128

Figure 1. Comparison of the lower bound in (10) with the GV lower bound,
for Q = 3 and td = 1, as a function of the total number of correctable errors
(td + tu). Each point is obtained by setting the minimum weight in Ω to
maximize the value of the bound.

nation td+ tu ≤ t. A code of this construction is decomposed
to one binary code of length n and minimum Hamming
distance d1 = 2t + 1, and n + 1 additional (Q − 1)-ary
codes (one for each codeword weight of the first code), each
with minimum Hamming distance d2 = t + 1. Firstly, this
construction does not consider the separate bounds td, tu, and
thus it introduces unessential redundancy. Using the sufficient
condition of Proposition 1, one can change d2 to td + 1,
and guarantee (td, tu) correction with lower redundancy cost.
Secondly, the need for a multitude of codes, each with a
different length, is cumbersome for the construction, and
limiting for decoding the codes, since it may not be clear
to the decoder which of the n + 1 codes it needs to decode,
and on which index subset. We solve these two issues with
our new construction, and in the next section show its benefits
with respect to decoding.

For the specified parameters (td, tu), the construction de-
composes to the following two codes, both with length n.

Definition 9 (Indicator code): Given td, tu ∈ N and n ∈ N,
define the indicator code as a binary code with length n and
minimum Hamming distance 2(td + tu) + 1.

Definition 10 (Residual code): Given td ∈ N and n ∈ N,
define the residual code as a code over ∈ Zn

Q−1 with length
n and minimum Hamming distance td + 1.

Construction 1: Let Θ be an indicator code for parameters
td, tu and length n; let Λ be a residual code for parameter td
and length n. A word c = (c1, . . . , cn) ∈ Zn

Q is a codeword
in the composed code C = Θ⊗ Λ if the following conditions
hold:

1) There exists θ = (θ1, . . . , θn) ∈ Θ such that ı(c) = θ.
2) For this θ ∈ Θ, there exists λ = (λ1, . . . , λn) ∈ Λ such

that for every j ∈ [n]: cj = λj + 1 if θj ̸= 0 and
cj = λj = 0 if θj = 0.

To prove that C is a (td, tu) barrier-error-correcting code, we
show that it satisfies the sufficient condition of Proposition 1.

Theorem 1: Given td, tu ∈ N and n ∈ N, let C ⊆ Zn
Q be

a code constructed by Construction 1. Then, C is a (td, tu)
barrier-error-correcting code.

Proof: Let c, c′ ∈ C be a pair of arbitrary different
codewords (c ̸= c′). Let θ = ı(c) and θ′ = ı(c′). We

distinguish two cases. If θ ̸= θ′, then

dH(c, c′) ≥ dı(c, c
′) = dH(ı(c), ı(c′))

= dH(θ, θ′) ≥ 2(td + tu) + 1,

where the last inequality is from the specification of Θ using
Definition 9.

Otherwise θ = θ′, in which case dı(c, c
′) = dH(θ, θ′) = 0,

which gives

dı(c, c
′) ≜ dH(c, c′)− dı(c, c

′) = dH(c, c′). (12)

We prove that dı(c, c′) ≥ td + 1 by chaining the above with
the inequalities

dH(c, c′) ≥ dH(λ, λ′) ≥ td + 1, (13)

where the first follows from condition 2 in the construction,
and the second from the fact that λ ̸= λ′ (otherwise, c = c′)
and from the specification of Λ using Definition 10. In both
cases we proved that the sufficient condition of Proposition 1
is satisfied, which completes the proof.

When Λ is a linear code, encoding of Construction 1 can
be done by first encoding Θ, then taking from the parity-
check matrix of Λ only the columns corresponding to non-zero
indices, denoted HΛ({j : θj ̸= 0}), and outputing a λ that has
zeros in {j : θj = 0}, and whose sub-vector with indices in
{j : θj ̸= 0} is in the null space of HΛ({j : θj ̸= 0}).
For decoding, the use of a single residual code (instead of a
multitude as in [4]) allows to decode Λ independent of the
success of Θ’s decoder to find the correct θ.

V. JOINT DECODING OF THE CONSTITUENT CODES

To decode Construction 1, we now propose an algorithm
that decodes the indicator and residual codes jointly, such that
the decoders of Θ and Λ help each other, and not just Θ
helping Λ as in prior work. In [4] a bounded-distance decoder
for Θ is invoked once, and this output is used to decode Λ, with
no option to succeed if the initial output was not correct. An
improved decoder was proposed in [6], in which a list decoder
for Θ is employed, and the decoder then selects from the list
the most likely codeword consistent with Λ. In both cases the
operation of the decoders is sequential Θ→ Λ; in the first the
cost of that is poor performance beyond the code guarantees,
and in the second the cost is high computational complexity
of list decoding. The main idea of the proposed decoder is to
use information from Λ’s decoder to improve the decoding
outcome of Θ’s decoder. In particular, this information is
chosen to be the inconsistency score of each index in [n],
which is the number of violated parity-check equations of HΛ

that the index appears in.
The decoding algorithm is given formally in Algorithms 1

and 2 (which is specified here for Q = 3). The vector operation
· in the algorithms represents element-wise multiplication over
the integers. Given a channel output r, we first decode Θ to get
an indicator candidate codeword θ̄. We then use Algorithm 2
to order the indices of [n] based on their Λ-inconsistency with
respect to θ̄. For an iteration-count limit of M = 2m, we
take a set S of the m indices with the highest inconsistencies,



and use this set to generate bit-flipping subsets. Each subset
is used to obtain a codeword θ̂ by the decoder of Θ, this
codeword is then decoded by Λ, and the combined Q-ary
codeword is returned if consistent. This iteration starts with
the empty subset (equivalent to decoding Λ with θ̄), and
proceeds in increasing subset sizes; within each size, subsets
are ordered by mapping each to a vector of increasing positions
in S, and ordering these vectors lexicographically. This decod-
ing approach mimics generalized minimum-distance decoding
(GMD) [12] and ordered statistics decoding (OSD) [13], only
that the index ordering is done based on information from
Λ and not from the channel. Note that Algorithm 1 actually
generalizes the decoder from [4] when M = 1 and bounded-
distance decoders are used for both constituent codes.

Algorithm 1 Joint decoding of C = Θ⊗ Λ

1: Input: r ∈ Zn
Q: channel output, M = 2m: max # iterations

2: Output: ĉ ∈ Zn
Q: decoded codeword

3: θ̄ ← decode ı(r) over Θ
4: π ← Inconsistency-ordering(r, θ̄,HΛ)
5: S ← π(1 : m) ▷ highest-inconsistency indices
6: for σ = {}, . . . , S do ▷ order subsets σ ⊆ S by size,

higher inconsistencies first in each size
7: set f to be a vector with ones in the indices of σ, and

zeros elsewhere
8: θ̂ ← decode ı(r)⊕ f over Θ
9: λ̂← decode θ̂ · (r− 1) over Λ

10: if HΛλ̂
⊤ = 0⊤ then ▷ λ̂ is consistent

11: return ĉ = θ̂ · (1+ λ̂)
12: end if
13: end for
14: return decoding failure

Algorithm 2 Inconsistency-ordering of [n]

1: Input: r ∈ Zn
Q: channel output, θ̂: candidate indicator

codeword, H: ρ× n residual-code parity-check matrix
2: Output: π: sorting of [n] in non-increasing inconsistency
3: Extract residual parity-check equations with unknown

consistency

E ← {i ∈ [ρ] : exists j ∈ [n], rj = 0 ∧ θ̂j = 1 ∧Hi,j = 1}

4: Extract inconsistent residual parity-check equations

S ←
{
i ∈ [ρ] \ E : Hi,:(θ̂ · r)⊤ ̸= 0

}
5: Calculate “inconsistency score” for each index j ∈ [n] as

wj =
∑
i∈S

Hi,j

6: π ← sort [n] in non-increasing wj

7: return π

To demonstrate the new decoder’s advantage, we simulated
a stochastic ternary (Q = 3) barrier channel, parameterized
by p: the probability of downward error (̸= 0→ 0 transition),

and q: the probability of upward error (0↛= 0 transition; q/2
to each of the symbols 1 and 2). We used binary (2, 7) Reed–
Muller (RM) as the indicator code and decoded it using the
recursive projection-aggregation decoder [14]. For the residual
codes, we used rate 1/2 binary Low-Density Parity-Check
(LDPC) codes that were decoded using a standard peeling era-
sure decoder [15]. This configuration resulted in a combined
code rate of 0.16 symbols per channel use. The channel was
simulated with asymmetric transition probabilities: p = 0.04
for downward errors and q = 0.4 for upward errors.

Fig. 2 plots the decoding block-error probability as a
function of the number of errors beyond the indicator code’s
guaranteed correction parameter tRM = 15. It clearly shows
the advantage of the proposed decoder over the previously
proposed decoders of [4] and [6]. The decoder outperforms [6],
even though the latter uses a computationally-heavy list de-
coder with list-size 16.

Figure 2. Block error rates of RM(2, 7) indicator codes in conjunction with
rate ∼1/2 LDPC residual codes simulated over the ternary Barrier channel
with transition probabilities p = 0.04, q = 0.4.

VI. CONCLUSION

This paper presents coding-theoretic results for the pre-
viously unaddressed model of barrier errors with separate
parameters for downward and upward errors. The results come
in three different levels: code-size existential bounds, a code
construction with simpler decomposition to symmetric error-
correcting codes, and a joint decoding algorithm. For future
work, one may explore the gap between the size lower bound
and practical-code sizes, as well as devising new decoding
algorithms using other modes of cooperation between Θ and
Λ.
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