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Spatially-Coupled (SC)-LDPC codes are known to have outstanding error-correction performance and low decoding latency, which
make them an excellent choice for high-density magnetic recording technologies. Whereas previous works on LDPC and SC-LDPC
codes mostly take either an asymptotic or a finite-length design approach, we propose a unified framework for jointly optimizing the
codes’ thresholds and cycle counts to address both regimes. We focus on circulant-based SC-LDPC code family as a representative,
high-performance exemplar of structured SC-LDPC codes. The framework is based on efficient traversal and pruning of the code
search space, building on the fact that the performance of a circulant-based SC-LDPC code depends on some characteristics of the
code’s partitioning matrix, which by itself is much smaller than the code’s full parity-check matrix. We then propose an algorithm
that traverses all non-equivalent partitioning matrices, and outputs a list of codes, each offering an attractive point on the trade-
off between asymptotic and finite-length performance. Our simulations show that our framework results in SC-LDPC codes that
outperform the state-of-the-art constructions, over both Additive White Gaussian Noise (AWGN) and Partial Response (PR) channel
models, and that it offers the flexibility to choose low-SNR, high-SNR, or in-between SNR region considering system requirements
e.g, that of the magnetic recording device.

Index Terms—channel coding, partial-response (PR) channel, signal-to-noise ratio (SNR), spatially-coupled LDPC codes.

I. INTRODUCTION

MODERN DENSE magnetic recording (MR) devices re-
quire low-latency error-correction codes with outstand-

ing error-correction capability. The spatially-coupled low-
density parity-check (SC-LDPC) codes are a family of graph-
based codes that have attracted a lot of attention thanks to their
capacity-approaching performance and low-latency decoding
[2], [3]. SC-LDPC codes are constructed by coupling a series
of disjoint block LDPC codes into a single coupled chain.
We use circulant-based (CB) LDPC codes as the underlying
LDPC block codes due to their practical simplicity [4]. SC-
LDPC codes are known to have many desirable properties,
such as threshold saturation [5] and linear-growth of the size
of minimal trapping sets in typical codes from an ensemble [6].
These properties, respectively, imply good bit-error rate (BER)
performance in the waterfall and error floor regions, using
the belief-propagation (BP) decoder. Recently, [7] introduced
SC-LDPC codes with a sub-block locality feature, where in
addition to the usual decoding, the codes can be decoded
locally in small sub-blocks for fast read access.

Modern graph-based codes are typically studied from either
the asymptotic or from the finite-length perspective, with (so
far) little intellectual overlap between them. From the asymp-
totic perspective, density evolution (DE) techniques have been
routinely used to study the decoding threshold of SC-LDPC
codes, e.g., in the works [5], [8], among others. From the
finite-length perspective, methodologies for the evaluation
and optimization of the number of problematic combinatorial
objects are studied in e.g., [9]–[12]. The asymptotic properties
(e.g., the decoding threshold) of LDPC codes are the dominant
performance determinants in the low-SNR region, and the
finite-length properties (e.g., the number of short cycles) are

For smoother reading and space limitations, extensive discussions and
additional examples appear in the extended pre-print of this manuscript [1].

the dominant ones in the error-floor (high-SNR) region [13],
[14]. This is because in the low-SNR region, the performance
is typically dominated by the properties of the code’s tree
ensemble, while in the high-SNR region the performance crit-
ically depends on the incidence of problematic combinatorial
objects in the code’s graph [15]–[20].

In this paper, we pursue a principled comprehensive ap-
proach that combines both asymptotic and finite-length design
metrics. We evaluate each candidate code in terms of its
exact threshold and cycle-counts, and extract a small set of
attractive codes from a large pool of initial candidates. This
approach reflects its potential the most when we can examine
each possible code given its design parameters. However, the
space of possible candidates with various design parameters
may blow up quickly, thus requiring efficient traversal and
pruning methods. One particularly effective such method that
we introduce in this paper is to quickly eliminate multiple
candidates that are equivalent in terms of their performance.
The elimination of this multiplicity reduces the candidate list
– and in turn curbs the complexity of code design.

To enable the aforementioned comprehensive design ap-
proach, in this paper we formalize the notion of performance-
equivalent SC-LDPC codes. It is known that two linear
codes are equivalent in terms of most performance figures if
one’s parity-check matrix can be obtained from the other’s
by a sequence of row and column permutations. We prove
that for SC-LDPC codes, the same property holds for the
code’s partitioning matrix, meaning two SC-LDPC codes are
performance-wise equivalent if their partitioning matrices are
row and/or column permuted versions of each other. The space
of partitioning matrices is much smaller than the one for the
full (coupled+lifted) code. This motivates our exact identifica-
tion of non-equivalent binary matrices with unit memory. This
identification can be easily translated to an efficient traversal
of all non-equivalent matrices, thus enabling an efficient SC-



LDPC code design. Next, we detail a joint threshold+cycle
code-design algorithm, which outputs a final list of candidates
with the property that each candidate has: 1) it possesses the
best threshold among all codes with equal or better cycle-
counts, and 2) and it possesses the best cycle-count among all
codes with equal or better thresholds.

Our codes are shown to outperform prior constructions
based on cutting-vector [21] and optimal-overlap partition-
ing [9] over Additive White Gaussian Noise (AWGN)
and Partial Response (PR) channels. The software and
data used in the paper are available for public access at
https://github.com/hesfahanizadeh/Unified SC LDPCL/.

II. PRELIMINARIES

Throughout this paper, matrices, vectors, and scalars are
represented by uppercase bold letters (e.g., A), lowercase italic
letters with an overline (e.g., a), and lowercase italic letters
(e.g., a), respectively. Sets and functions are represented by
calligraphic italic letters (e.g., A) and uppercase italic letters
(e.g., A(·)), respectively. The matrix transpose operation, the
cardinality of a set, and the factorial function are denoted by
(·)T , | · |, and (·)!, respectively. The notation A = [ai,j ] refers
to a matrix A where ai,j is the element in row i and column
j. We denote the all-one and all-zero matrices with size m×n
as 1m×n and 0m×n, respectively.

A. Construction of SC-LDPC Codes

An LDPC protograph is a small bipartite graph represented
by a γ×κ bi-adjacency proto-matrix B = [bi,j ] (where γ and κ
are positive integers and γ < κ), i.e., there is an edge between
check node (CN) i and variable node (VN) j if and only if
bi,j = 1. In general, bi,j > 1 (parallel edges) are allowed
in the protograph. In this work, without loss of generality1,
we focus on bi,j ∈ {0, 1}. A sparse parity-check matrix H
(or its corresponding representation as a Tanner graph) is
generated from B by a lifting operation with a positive integer
z that is called the circulant size. The rows (resp. columns)
of H corresponding to row i ∈ {1, . . . , γ} (resp. column
j ∈ {1, . . . , κ}) of B, are called row group i (resp. column
group j).

In this paper, we use circulant-based (CB) lifting [4], where
the circulants, each with size z × z, are either all-zero or an
identity matrix shifted by a certain number of units to the left,
described by the circulant power. The powers of the circulants
are represented by the power matrix C = [ci,j ] of size γ × κ,
such that the non-zero elements in row group i and column
group j in H form a single-shift identity matrix raised to the
power ci,j . In our simulations, the power matrix C = [ci,j ]
is defined as ci,j = α·i·j, for a constant positive integer α.
This choice ensures that no length-4 cycle (cycle-4 for short)
exists when the circulant size is a prime number [22]. Thus,
this paper focuses on length-6 cycles (cycles-6 for short) as
the most problematic cycles. Further optimization of circulant
powers to enhance the cycle properties is not a contribution
of this paper, and more information can be found in [9], [10].

1Parallel edges can be avoided by duplicating protograph nodes.

Let proto-matrix B be the parity-check matrix of a proto-
graph block code. The matrix of an SC-LDPC protograph [2]
with memory m and coupling length l is constructed from B
by partitioning it into m + 1 matrices B0,. . . ,Bm such that
B =

∑m
k=0 Bk, and stacking l replicas of [B0;B1; . . . ;Bm]

(where ‘;’ represents vertical concatenation here) on the di-
agonal of the coupled proto-matrix BSC. For proto-matrix
B of size γ × κ, the resulting coupled proto-matrix BSC
has size (l + m)γ × lκ. We represent this partitioning by a
matrix P = [pi,j ], called partitioning matrix, where pi,j ∈
{0, 1, . . . ,m, ?}. If pi,j = ?, then there is a zero in row i and
column j of B. Otherwise, the non-zero element is assigned
to Bpi,j . Some examples of partitioning matrices for m = 1
SC-LDPC codes are given in Appendix B. This description
captures both regular and irregular SC constructions. In this
work, we focus on SC codes with m = 1, thus the partitioning
matrix determines which (non-zero) elements are assigned to
B0 and which ones are assigned to B1 (when referring to
lifted graphs, we use H0 and H1).

B. Asymptotic Analysis: The EXIT Method

The EXtrinsic Information Transfer (EXIT) method [23]
is a useful tool for analyzing and designing LDPC codes
in the asymptotic regime over the AWGN channel with the
channel parameter σ. Let J : [0,∞)→ [0, 1) be a function that
represents the mutual information between the channel input
and a corresponding message passing in the Tanner graph. For
a VN of degree dv in the protograph, with incoming EXIT
values {Ji}dv−1i=1 , the VN→CN EXIT value is

J
(V )
out (sch, J1, . . . , Jdv−1)=J


√√√√dv−1∑

i=1

(J−1(Ji))
2
+s2ch

, (1)

where s2ch = 4/σ2. For a CN of degree dc in the protograph
with incoming EXIT values {Jj}dc−1j=1 , the CN→VN EXIT
value is approximated by

J
(C)
out(J1, . . . , Jdc−1)=1−J (V )

out (0, 1−J1, . . . , 1−Jdc−1) . (2)

The functions J (V )
out and J (C)

out are monotonically non decreas-
ing with respect to all their arguments. In simulations, we
use approximations of J(·) and J−1(·) [23]. By alternately
applying (1) and (2) for every edge in a protograph and by
varying σ, a threshold value σ∗ can be found such that all
EXIT values on VNs approach 1 as the number of iterations
increases if and only if σ < σ∗ [24]. We mark the threshold
of a protograph B by σ∗(B).

C. Finite-Length Analysis: Cycles and Overlap Parameters

Short cycles have a negative impact on the performance
of block-LDPC and SC-LDPC codes under BP decoding: 1)
they affect the independence of the messages exchanged on the
graph, 2) they enforce upper-bounds on the minimum distance,
and 3) they form combinatorial objects in the Tanner graphs
that fail the iterative decoder in different known ways [9], [25].

Consider a binary matrix B. A degree-d overlap parameter
t{i1,...,id} is the number of columns in which all rows of

https://github.com/hesfahanizadeh/Unified_SC_LDPCL/


B indexed by {i1, . . . , id} have 1s. The overlap parameters
contain all the information we need to find the number
of cycles in the graph represented by the matrix. We are
particularly interested in cycles-6 (i.e., cycles with 6 nodes),
as they are the shortest cycles for practical LDPC codes (most
practical high-rate LDPC codes, in particular the codes in this
paper, are designed to have girth at least 6). Consider a binary
matrix B with γ rows and κ columns. The number of cycles-
6 in the graph of matrix B can be expressed in terms of the
overlap parameters of matrix B as follows:

F (B) =
∑

{i1,i2,i3}⊆{1,...,γ}

A(t{i1,i2,i3}, t{i1,i2}, t{i1,i3}, t{i2,i3}) ,

(3)
where A is given in [9]. The optimization problem for iden-
tifying the optimal overlap parameters, and consequently the
optimal partitioning, for designing SC-LDPC protographs with
the minimum number of cycles-6 is presented in [9]. The
approach is called the optimal overlap (OO) partitioning, and
is one of the baselines to which we compare our empirical
results.

III. REDUCING SEARCH SPACE: NON-EQUIVALENT
BINARY MATRICES

In this section, we explore the space of all possible binary
matrices of a given size γ×κ. In the next section, these binary
matrices will correspond to partitioning matrices defining the
SC-LDPC codes, but in the meantime, it will be instructive to
think about these matrices as parity-check matrices of some
protograph-based code (i.e., proto-matrices). We introduce a
combinatorial representation that allows to significantly reduce
the search space size by capturing the equivalence among
the codes and only keeping one candidate from each class
of equivalent codes. Equivalent codes are codes whose proto-
matrices can be obtained from one another by a sequence of
row and column permutations. This equivalence definition is
motivated by the fact that permutation of rows and columns
in proto-matrices affect neither the asymptotic threshold nor
the number of cycles in the protograph. In Section IV,
we theoretically prove that equivalence under this definition
for partitioning matrices implies performance-equivalent SC-
LDPC codes. By introducing a new technique for representing
the binary matrices, we only consider one code from each
equivalence class, thereby significantly reducing the search
complexity.

Definition 1 (Column and Row Permutation). A column
permutation of matrix A with κ columns is denoted by a vector
πc = [ρ1, . . . , ρκ], that is a permutation of the elements in the
vector [1, . . . , κ]. When A

πc−→ A′, A′ is obtained from A such
that the j-th column of A is the ρj-th column of A′. Similarly,
a row permutation of matrix A with γ rows is denoted by a
vector πr = [ν1, . . . , νγ ], that is a permutation of the elements
in the vector [1, . . . , γ]. When A

πr−→ A′, A′ is obtained from
A such that the i-th row of A is the νi-th row of A′.

Definition 2 (Equivalent Matrices). Two binary matrices A
and A′ are column-wise equivalent (resp., row-wise equiv-
alent) if they can be obtained by column (resp., row) per-

mutations of each other. Two binary matrices A and A′

are equivalent if they can be derived from each other by a
sequence of row and column permutations.

Remark 1. We use the notion of equivalence in this paper
to highlight that neither decoding threshold nor the number
of combinatorial objects, e.g., cycles, absorbing sets [21],
trapping sets [26], etc., change with a sequence of row and
column permutations of a binary matrix.

In this section, we present a new efficient combinatorial
approach for identifying the non-equivalent binary matrices
given their size. Consider a binary matrix B with size γ × κ.
There are 2γ distinct choices for each column of B, i.e.,
[0, 0, . . . , 0]T , [0, 0, . . . , 1]T , . . . , [1, 1, . . . , 1]T . The set of all
binary matrices with size γ × κ is of cardinality 2γκ. In what
follows, we show that the search space is effectively much
smaller due to the equivalence among matrices. Our goal is
to identify the set of non-equivalent binary matrices with γ
rows and κ columns, denoted by Kκ,γ , and to find a closed-
form expression for its cardinality. This reduction, as we
numerically verify, combined with an algorithm for iterating
over non-equivalent binary matrices, allows a significantly
more efficient optimization of LDPC protographs in terms of
short cycles and thresholds

Definition 3 (Column Type). The type of a column of a binary
matrix is defined as the decimal representation of the binary
vector with the top element being the most significant bit.

Definition 4 (Column Distribution). We associate with matrix
B ∈ {0, 1}γ×κ a vector n(B) = [n0, n1, . . . , n2γ−1] such that
for every i ∈ {0, 1, . . . , 2γ − 1}, ni is the number of columns
in B with type i. We call n(B) the column distribution of B,
where the term stems from the fact that for every matrix B ∈
{0, 1}γ×κ, the entries of n(B) sum to κ, i.e.,

∑2γ−1
i=0 ni = κ.

Example 1. Consider matrix

B =

 0 1 0 1 1
0 1 1 1 1
1 1 0 1 0

 .
Then, n(B) = [0, 1, 1, 0, 0, 0, 1, 2].

Since column permutations do not change the column dis-
tribution of a matrix, we identify the number of column-wise
non-equivalent matrices by counting the number of distinct
column distributions. We note that a family of column-wise
non-equivalent matrices can include row-wise equivalent ma-
trices. At the same time, by excluding column-wise equivalent
multiplicities, some row-wise equivalent multiplicities will
also be excluded. For example, consider the 2 × 2 binary
matrices: for matrix [1 0; 1 1], no column permutation will
lead to the row-permuted version [1 1; 1 0]; however, for
matrix [1 0; 0 1], swapping the columns will yield [0 1; 1 0],
i.e., swapping rows. The relation between families of column-
wise non-equivalent matrices, denoted with Sκ,γ , and non-
equivalent matrices, denoted with Kκ,γ , is not trivial, and
how to derive the family of non-equivalent matrices is one
contribution of this paper.



A. Column-Wise non-equivalent Binary Matrices

In this part, we explore the family of column-wise non-
equivalent binary matrices, their connection to the stars-
and-bars problem in combinatorics [27]. We also derive a
closed-form expression for the number of column-wise non-
equivalent matrices and describe how to efficiently iterate over
them to evaluate their properties, e.g., threshold, cycle-counts,
etc.

Lemma 1. Let γ and κ be two positive integers, and let Sκ,γ
be the set of all distinct column distributions for a γ×κ binary
matrix, i.e.,

Sκ,γ =

{
[n0, n1, . . . , n2γ−1] : ni ≥ 0,

2γ−1∑
i=0

ni = κ

}
.

Then,

|Sκ,γ | =
(
κ+ 2γ − 1

κ

)
=

(
κ+ 2γ − 1

2γ − 1

)
. (4)

Proof. The proof follows by applying the elementary stars-
and-bars method [27], where each bin represents a column
type, and the number of stars in bin i is ni.

We remind that Sκ,γ is the set of column-wise non-
equivalent binary matrices of size γ×κ. A recursive algorithm
that iterates over all column-wise non-equivalent binary matri-
ces is given in the long version of this paper [1, Algorithm 1].

Example 2. Let κ = 11 and γ = 3. Then, there are
(
18
7

)
=

31, 824 column-wise non-equivalent binary matrices with γ
rows and κ columns, which is 2.7·105 times smaller then the
entire space {0, 1}γκ.

In the next subsections, we further reduce the search space
by taking into account the row permutations. In Lemma 1,
we identified the set of distinct column distributions. It is
somewhat challenging to calculate how many of these dis-
tributions result in equivalent matrices and thus can still be
obtained from each other by a sequence of row and column
permutations. In what follows, we complete this derivation,
and to keep the analysis in this paper tractable, we derive
the closed-form expressions only for γ = 3. This case gives
a practically-important class of regular SC-LDPC codes with
column weight 3 (the simpler case of γ = 2 appears in [1,
Theorem 1].).

B. non-equivalent Binary Matrices with γ = 3

In the following lemma, we first state necessary and suffi-
cient conditions for two column distributions to correspond to
a pair of equivalent matrices. Then, in a subsequent theorem,
we show how to use this lemma to reduce the search space
of column distributions such that it consists only of those
corresponding to non-equivalent matrices, and we identify the
cardinality of this reduced search space.

Lemma 2. Two binary matrices with γ = 3 and with
column distributions [n0, n1, . . . , n7] and [m0,m1, . . . ,m7]
are equivalent if and only if n0 = m0, n7 = m7, and

(n1 = m1, n2 = m2, n4 = m4, n6 = m6, n5 = m5, n3 = m3), or
(n1 = m1, n2 = m4, n4 = m2, n6 = m6, n5 = m3, n3 = m5), or
(n1 = m2, n2 = m1, n4 = m4, n6 = m5, n5 = m6, n3 = m3), or
(n1 = m2, n2 = m4, n4 = m1, n6 = m5, n5 = m3, n3 = m6), or
(n1 = m4, n2 = m1, n4 = m2, n6 = m3, n5 = m6, n3 = m5), or
(n1 = m4, n2 = m2, n4 = m1, n6 = m3, n5 = m5, n3 = m6).

Proof. For γ = 3, there are eight different column types
and 3! = 6 possible row permutations. The proof follows
by tracking the changes in column types when applying
each of the possible row permutations (from top to bottom):
1) πr = [1, 2, 3] (identity permutation), 2) πr = [2, 1, 3]
3) πr = [1, 3, 2] 4) πr = [2, 3, 1] 5) πr = [3, 1, 2] 6)
πr = [3, 2, 1].

The following theorem gives a concise characterization of
non-equivalent matrices, leading to a closed-form count. The
proof is deferred to the Appendix A.

Theorem 1. Let γ = 3 and κ be a positive integer, and let
Kκ,3 be the set of column distributions for all 3 × κ non-
equivalent binary matrices. Then,

Kκ,3 =

{
[n0, n1, . . . , n7] : ni ≥ 0,

7∑
i=0

ni = κ,

(n1 < n2 < n4) or
(n1 = n2 < n4 and n6 ≤ n5) or
(n1 < n2 = n4 and n5 ≤ n3) or

(n1 = n2 = n4 and n6 ≤ n5 ≤ n3)
}
,

(5)

and |Kκ,3| = aκ + bκ + cκ, where

aκ =
∑
i,j∈N :

3(i+j)≤κ

(κ− 3(i+ j) + 1),

bκ =
∑
i,j∈N :

2(i+j)≤κ

(
κ− 2(i+ j) + 3

3

)
− aκ,

cκ =
1

6

((
κ+ 7

7

)
− 3bκ − aκ

)
.

(6)

Example 3. Let κ = 11 and γ = 3. Then, there are |K11,3| =
60 + 1,452 + 4,568 = 6,080 non-equivalent binary matrices
with γ rows and κ columns, which is 1.41·106 times smaller
then the cardinality of the entire space {0, 1}γκ.

We remind that Sκ,γ represents the set of γ×κ binary matri-
ces that are column-wise non-equivalent, and Kκ,γ represents
the set of γ × κ binary matrices that are non-equivalent (both
column-wise and row-wise). In our code-design algorithm, we
first iterate over the set of all distinct column distributions
described in Lemma 1, and then exclude the options that do
not satisfy the conditions in (5).

Example 4. Fig. 1 shows the cardinality of the search space
as a function of κ for γ = 3, using three different search
schemes. As we see for the exhaustive search scheme (red)
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Fig. 1. The cardinality of the search space for binary matrices with γ =
3 rows: entire search space (red), reduced search space by exploiting the
column-wise equivalence (blue), and reduced search space by exploiting both
the row-wise equivalence and column-wise equivalence (green).

which performs on the full search space, the cardinality, i.e.,
2γκ, grows exponentially with κ and quickly goes beyond the
practical feasibility. In contrast, our scheme (searching only
non-equivalent matrices, green) exhibits much more graceful
growth with κ. Also exploiting both pruning steps results in a
significant gap (i.e., an order of magnitude) from the case
when only the first step (pruning due to the column-wise
equivalence, blue) is applied.

We finally note that evaluating each option in the search
space, particularly identifying its decoding threshold, is com-
putationally heavy and any reduction in the search space re-
sults in a reduction of the complexity of the design algorithm.

IV. AN ALGORITHM FOR JOINT FINITE-LENGTH
ASYMPTOTIC DESIGN OF SC CODES

In this section, we focus on partitioning matrices P ∈
{0, 1, ?}γ×κ corresponding to SC-LDPC codes with memory
1, i.e., B0+B1 = Bγ×κ (binary partitioning matrices without
? symbols, as considered in Section II-A, correspond to all-one
(regular) B matrices).

The derivations in this section can be generalized to regu-
lar/irregular B matrices with arbitrary memory m ≥ 1, i.e.,
P ∈ {?, 0, . . . ,m}γ×κ. In the generalized case, the reduced
search space in the previous section follows similarly by
applying the stars-and-bars method with (m + 1)γ bins, or
(m+ 2)γ bins in case of irregular design, rather than 2γ bins
In what follows, given γ and κ, we produce a (short) list of
partitioning matrices that offer a meaningful trade-off between
threshold and cycle population. By meaningful we mean that
no member of this list results in an SC protograph that is
inferior to any other one (in the entire search space) in both
the threshold and cycle-count properties.

A. Reduced Search Space of SC-LDPC Codes

Define B0 = [ui,j ], B1 = [vi,j ], and P = [pi,j ] where all
with size γ × κ, and P has elements in {0, 1, ?} that fully
characterizes the construction of a regular/irregular SC code
with memory 1 as follows: If pi,j = 0, ui,j = 1 and vi,j = 0;
If pi,j = 1, ui,j = 0 and vi,j = 1; If pi,j = ?, ui,j = vi,j = 0.

Lemma 3 derives the congruence between coupled proto-
matrices and the partitioning matrices that are used to construct
them. This congruence allows searching for a coupled SC-
LDPC code over a reduced search space of small (γ × κ)
non-equivalent partitioning matrices, instead of the large proto-
matrices of the coupled code.

Lemma 3. Any column/row permutation of the partitioning
matrix P of an SC code results in an SC proto-matrix that
is a column/row permuted version of the original SC proto-
matrix BSC.

Proof. By definition, any row and column permutations on
P automatically applies to both B0 and B1. This means that
when P

πc,πr−−−→ P′, we have B0
πc,πr−−−→ B′0 and B1

πc,πr−−−→ B′1.
Thus, the matrix [B′1 B′0] is a row-permuted version of
[B1 B0] using πr, and the matrix [B′0;B

′
1] is a column-

permuted version of [B0;B1] using πc. In view of the diagonal
structure of BSC, we can infer that B′SC which has B′0 and B′1
as component matrices is row and column permuted version of
BSC, with column permutation [πc, πc+κ, . . . , πc+(l− 1)κ]
and row permutation [πr, πr + γ, . . . , πr + lγ], where the
addition is performed element-wise.

In our long version [1, Lemma 10], we show that the
state-of-the-art approach of constructing SC-LDPC codes with
overlap parameters [9] reduces the search space only up to
column-wise equivalence, while leaving in the search space
many row-wise equivalent matrices. Moreover, unlike the rep-
resentation of column-wise non-equivalent matrices introduced
in this paper, in the prior scheme, it is computationally difficult
to iterate over all possible overlap parameters due to their
dependencies.

B. An Algorithm For SC Code Design Offering A Design
Trade-Off

We now present our code-design algorithm. The inputs of
the algorithm are the code parameters γ, κ, z, l, and the output
is a list of protographs such that no member in this list is
inferior to any other protograph in the entire search space (we
say that protograph G1 is inferior to protograph G2 if G1 has
both lower threshold and larger number of cycles-6 than G2
in the corresponding lifted graph). This candidate list is often
very short, and it is sorted such that its first member is the
protograph with the best (lowest) cycle-count and the worst
(lowest) threshold, and the last member has the best threshold
and worst number of cycles.

Here, we focus on cycles-6, however, the approach pre-
sented in this subsection can be extended to longer cycles (and
other problematic combinatorial objects) with some modifica-
tions. The methodology for counting the number of cycles
and computing the decoding threshold considering SC-LDPC
structure is described in detail in [1].

The algorithm consists of the following steps:
1) Generate a list of non-equivalent partitioning matrices

of size γ×κ (which according to Lemma 3 corresponds
to a list of non-equivalent SC proto-matrices).

2) Calculate the number of cycles-6 in the lifted coupled
graphs corresponding to each partitioning matrix.



3) Sort the list in ascending order according to the number
of cycles-6.

4) Iterate over the sorted list and for each partitioning
matrix, generate the coupled protograph and calculate
its decoding threshold.

5) Filter the list by removing inferior partitioning matrices
using the following method:
• Initialize the final list of candidates to be empty and

set σ∗ = 0 (σ∗ records the highest found threshold).
• Iterate, in order, over the sorted list. If a member has

a higher threshold than σ∗, append the partitioning
matrix to the final candidate-list and update σ∗.

Remark 2. Although in this work we use CB lifting, one can
easily use any other lifting method while keeping the general
structure of the algorithm. For example, one can perform the
cycle optimization of step 2 over the protograph (to obtain the
minimum number of cycles-6 in the protograph) and then later
use a lifting optimization program as in [9].

The output of the above algorithm is a candidate list whose
first member represents a choice that has the best cycle-count
properties in the list, called cycle-driven (CD) choice, and the
last member has the best threshold properties in the list, called
threshold-driven (TD) choice.

V. SIMULATION RESULTS

In our simulations, we consider parameters κ = 11, z = 67
γ = 3, m = 1, l = 5, and power matrix C = [ci,j ]
with ci,j = 6·i·j (mod z), which yields cycle-4 free graphs
[28]. We investigate the performance of SC-LDPC codes
constructed using four different design methods for P = [pi,j ]
(the new introduced methods and existing methods).
• Cutting-vector (CV) partitioning [21]: This is partitioning

via a cutting vector with size γ whose elements 0 < ζ1 <
. . . < ζγ are natural numbers. Then, pi,j = 0 if and only
if j < ζi. We consider the cutting vector [4, 8, 11] for the
simulations.

• Optimal overlap (OO) partitioning [9]: The OO parti-
tioning results in the minimum number of cycles-6 in the
protograph SC code.

• Cycle-driven (CD) partitioning: This is the partition-
ing within our reduced search space that results in the
minimum number of cycles-6 in the lifted graph. This
objective is set since short cycles in the lifted graph affect
the performance in the high-SNR regime.

• Threshold-driven (TD) partitioning: This is the parti-
tioning within our reduced search space that has the
maximum threshold.

The partitioning matrices for all above constructions are given
in Appendix B. We highlight that choosing a partitioning
matrix that optimizes the cycle and threshold properties, in the
lifted graph, have become a viable and practical option in our
proposed constructions (CD and TD), thanks to the dramatic
reduction in the search space. Since optimizing the circulant
powers is not the focus of this paper, we used the same
set of circulant powers for all four constructions described
above. For Monte Carlo simulations, we observed at least 50

TABLE I
CYCLE AND THRESHOLD PROPERTIES OF VARIOUS DESIGN METHODS FOR

SC-LDPC CODES WITH κ = 11, γ = 3, z = 67, m = 1, l = 5. ALL
CODES HAVE LENGTH 3685 BITS.

Design Actual rate Cycle-6 count Threshold σ∗

Cutting vector (CV) [21] 0.69 7, 638 0.6779
Optimal overlap (OO) [9] 0.67 7, 571 0.6901
Cycle-driven (CD) 0.67 3, 551 0.6851
Threshold-driven (TD) 0.67 5, 628 0.6909

frame errors in every reported point. Our results include the
BER performance over AWGN and PR channels, cycle-counts,
threshold values.

We first record the populations of cycles-6 along with the
threshold values for the four constructions of the SC-LDPC
codes. The results are given in Table I, where it is shown
that the CD method yields 54% reduction in the population of
cycles-6 (in lifted graphs) compared to the CV method, while
the OO method only improves this count by less than 1%.
In terms of the asymptotic behavior, the TD method results
in the highest threshold while also having fewer number of
cycles compared to the CV and OO methods.

Fig. 2 compares the BER performance for these SC-LDPC
codes over AWGN channel. The top sub-figure shows the
BER performance in the low-SNR region and in particular the
superiority of the TD partitioning with about half an order of
magnitude compared to the CV partitioning at SNR= 2.5 dB.
The bottom sub-figure shows the BER performance in the
high-SNR region and the superiority of the CD partitioning
with about one order of magnitude compared to the CV
partitioning at SNR= 5 dB. Moreover, there is a crossover
point at SNR ' 3 dB, where the BER performance curves of
CD and TD methods intersect.

We also perform experiments over the partial response (PR)
channel. We use a similar PR setting as in our previous work
[29], which is briefly reviewed here: Our PR setting includes
a magnetic recording channel model that incorporates inter-
symbol interference in addition to transition jitter noise and
electronic noise. The channel density is set to 1.4, and the
equalization target used is [8, 14, 2]. The message is iteratively
recovered via a min-sum LDPC decoding algorithm in addition
to Bahl Cocke Jelinek Raviv (BCJR) detector based on pattern-
dependent noise prediction. The internal iterations inside the
LDPC decoder are called local iterations, while a global
iteration is the one looping between the detector and the
decoder. The decoder performs a specified number of local
iterations (fewer if a codeword is reached) between any two
successive global iterations. We use 20 global iterations and
200 local iterations for our simulations.

Fig. 3 shows the BER comparison between three SC-LDPC
code constructions: cutting vector (CV), optimal overlap (OO),
and cycle-driven (CD), over PR channel model with two
different levels of transition jitter noise. Since our proposed
threshold-driven (TD) construction optimizes the threshold
for AWGN channel, we did not incorporate it in our BER
evaluation over PR channel. We see that, while all having the
same latency and rate, our CD construction enjoys about one
order of magnitude performance improvement at SNR= 14 dB
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Fig. 2. BER performance over AWGN channel of various code constructions
for SC-LDPC codes with parameters κ = 11, z = 67, γ = 3, m = 1, and
l = 5. Top: low-SNR region; Bottom: high-SNR region.

thanks to the dramatically lower number of cycles-6 compared
to the CV and OO constructions in the lifted graph. This
observation is supported by the fact that short cycles are
sub-graphs of the detrimental combinatorial objects over PR
channels [29]. The deeper error floor that is observed in the
lower panel is due to lower level of the jitter noise.

Fig. 3 highlights the advantage of the proposed optimiza-
tion: improving the reliability of the storage device by an order
of magnitude, without any additional cost in the encoding and
decoding procedure. One can further improve the performance
of the code by changing the code parameters, such as increas-
ing the row weight κ, column weight γ, increasing the field
size, among others.

VI. CONCLUSION

In this paper, we proposed a novel framework to reduce
the search space of block LDPC and SC-LDPC codes via
only keeping one member from a family of equivalent ma-
trices that share identical finite-length and asymptotic metrics
(cycles-6 and thresholds, respectively). Then, we proposed a
design method that identifies all constructions that offer a
trade-off between finite-length and asymptotic performances
in this reduced search space. Our simulation results verify
our theoretical derivations and show the improved outstanding
performance and flexibility of the codes designed using our
method over AWGN and PR channels. Beyond the promising
results shown here, it is an interesting future-work direction
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Fig. 3. BER performance over PR channel of various code constructions for
SC-LDPC codes with parameters κ = 11, z = 67, γ = 3, m = 1, and
l = 5. The transition jitter is stronger in the top panel (i.e., 70%) compared
to the bottom panel (i.e., 50%)

to use the method to construct state-of-the-art codes for
commercial magnetic-recording channels. In such pursuits,
one can also incorporate additional constraints over the search
space of non-equivalent matrices introduced in this paper, e.g.,
all columns must be at least of certain weight.
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APPENDIX

A. Proof of Theorem 1
The first part is a direct consequence of Lemma 2 that

ensures the distinct column distributions of equivalent matrices
are only considered once by imposing appropriate constraints.
For the second part, we find the number of distinct non-
equivalent binary matrices with γ = 3 rows. In order to do
so, we partition the column distributions in Sκ,3 into three
classes:
• Class-A column distributions SAκ,3: column distributions

that are invariant to any row permutation. In other words,
for a matrix with column distribution in Class-A, all (3!
out of 3!) row permutations of the matrix results in the
same column distribution.

• Class-B column distributions SBκ,3: column distributions
that are invariant to permutation of one pair of rows.
In other words, for a matrix with column distribution in
Class-B, 3!/2! = 3 row permutations exist that result in
distinct column distributions in Class-B.

• Class-C column distributions SCκ,3: column distributions
that are variant to any row permutation. In other words,
for a matrix with column distribution in Class-A, all 3! =
6 row permutations of the matrix result in distinct column
distributions in Class-C.

Consequently,

|Kκ,3| = |SAκ,3|+ |SBκ,3|/3 + |SCκ,3|/6. (7)

We first identify SAκ,3 as follows:

SAκ,3 = {[n0, n1,n2, n4, n6, n5, n3, n7] ∈ Sκ,3 :
n1 = n2 = n4, n6 = n5 = n3}.

Thus,

SAκ,3 =
⋃

i,j∈N :
3(i+j)≤κ

{[n0, n1, n2, n4, n6, n5, n3, n7] ∈ Sκ,3 :

n1 = n2 = n4 = i, n6 = n5 = n3 = j},
where the union is disjoint. In view of Lemma 1,∣∣SAκ,3∣∣ = ∑

i,j∈N :
3(i+j)≤κ

|{[n0, n7] : n0 + n7 = κ− 3(i+ j)}|

=
∑
i,j∈N :

3(i+j)≤κ

(κ− 3(i+ j) + 1) = aκ.
(8)

Next, we identify SBκ,3. We define T 1,2
κ,3 as the set of column

distributions that are invariant to swapping the first and second
rows (from the bottom):

T 1,2
κ,3 = {[n0, n1, n2, n4, n6, n5, n3, n7] ∈ Sκ,3 :

n1 = n2, n6 = n5},

and similarly, T 1,3
κ,3 and T 2,3

κ,3 can be defined. Note that SAκ,3 is
a subset of T 1,2

κ,3 , T 1,3
κ,3 , and T 2,3

κ,3 . Therefore,

SBκ,3 = (T 1,2
κ,3 \ SAκ,3) ∪ (T 1,3

κ,3 \ SAκ,3) ∪ (T 2,3
κ,3 \ SAκ,3).



Because of the disjoint property and since |T 1,2
κ,3 \ SAκ,3| =

|T 1,3
κ,3 \ SAκ,3| = |T

2,3
κ,3 \ SAκ,3| (due to the symmetry), we have

|SBκ,3| = 3|T 1,2
κ,3 \ SAκ,3| = 3(|T 1,2

κ,3 | − aκ). Besides

T 1,2
κ,3 =

⋃
i,j∈N :

2(i+j)≤κ

{[n0, n1, n2, n3, n4, n5, n4, n7] ∈ Sκ,3 :

n1 = n2 = i, n5 = n6 = j},

where the union is disjoint. In view of Lemma 1,∣∣∣T 1,2
κ,3

∣∣∣=∑
i,j∈N :

2(i+j)≤κ

|{[n0, n3, n4, n7] : n0 + n3 + n4 + n7

= κ− 2(i+ j)}| =
∑
i,j∈N :

2(i+j)≤κ

(
κ− 2(i+ j) + 3

3

)
.

Thus, the number column distributions in Class-B is:

|SBκ,3| = 3

 ∑
i,j∈N :

2(i+j)≤κ

(
κ− 2(i+ j) + 3

3

)
−Aκ

 = 3bκ.

(9)

Finally, we identify SCκ,3, i.e., column distributions that are
variant to any permutations. We remind that the total number
of column distributions is |Sκ,3|, ak of them belong to Class-
A, and 3bk of them belong to Class-B. As a result,

|SCκ,3| =
(
κ+ 7

7

)
− ak − 3bk = 6ck. (10)

Combining (7)-(10) completes the proof.

B. SC-LDPC Code Details

In this subsection, we provide the partitioning matrices of
the four SC-LDPC codes that were used in our simulation
results in Section V:
• Cutting-vector (CV) partitioning:

P =

 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0


• Optimal overlap (OO) partitioning:

P =

 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 1 1 1


• Cycle-driven (CD) partitioning:

P =

 1 1 1 1 1 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0
1 1 1 0 0 1 1 1 1 0 0


• Threshold-driven (TD) partitioning:

P =

 1 1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 1 0 0 1
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