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Abstract—In data-intensive applications, it is advantageous
to perform some partial processing close to the data, and
communicate to a central processor the partial results instead
of the data itself. When the communication medium is noisy, one
must mitigate the resulting degradation in computation quality.
We study this problem for the setup of binary classification
performed by an ensemble of functions communicating real-
valued confidence levels. We propose a noise-mitigation solution
that works by optimizing the aggregation coefficients at the
central processor. Toward that, we formulate a post-training
gradient algorithm that minimizes the error probability given
the dataset and the noise parameters. We further derive lower
and upper bounds on the optimized error probability, and show
empirical results that demonstrate the enhanced performance
achieved by our scheme on real data.

I. INTRODUCTION

Consider the classical supervised binary-classification
problem, in which a classifier function has to be esti-
mated given a training set of labeled data points S =
{(x1, y1), . . . , (xN , yN )}, where xi ∈ X d (X d is the d-
dimensional data alphabet), and yi ∈ Y = {−1,+1} is the
binary label. The objective is to find a function f(·) : X d → Y
that generalizes the relation between the input space X d and
outputs Y , based on the training set S ⊆ X d × Y . In this
paper we are interested in distributed f(·) functions, which
obtain their output by aggregating partial inference values
communicated from multiple nodes/units over noisy channels.
This setup is motivated by emerging compute architectures for
artificial intelligence (AI), which perform complex inference
tasks by circuits of simple compute nodes connected by non-
ideal wires.

In our studied setup, there are T base nodes and each
node t ∈ {1, . . . , T} implements an inference function ht(·) :
X d → R (R denotes the set of real numbers). At classification
time, each node sends its output ht(x) to a central processor
over a noisy channel. The central processor performs the final
classification by taking the sign of a (weighted) sum of the
values received from the base nodes. Our objective is to study
the design of various components of the underlying system,
toward maximizing its classification accuracy.

The aforementioned setup is motivated by ensemble meth-
ods in machine learning [1] that obtain powerful classification
functions by aggregating an ensemble of weak base functions.
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The output of each base function can be thought of as its “soft
vote” toward the final classification. In the most general case,
as we assume in this work and as employed by the powerful
Real AdaBoost method [2], these “soft votes” are real numbers.
Ensemble methods, however, assume that the base-function
outputs are delivered to the aggregating central processor noise
free. Thus our objective in this paper is to introduce measures
for mitigating the degradation from noise, while assuming
that the base inference functions {ht(·)}Tt=1 are given to us
by some state-of-the-art ensemble method (which we do not
control, and may not even know).

The main contribution of this work (Section IV) is the
formulation of an optimization approach to improve ensemble
classification’s resilience to noise. For any ensemble func-
tions {ht(·)}Tt=1 and parameters of the corresponding additive
Gaussian noise channels, our optimization algorithm finds
aggregation coefficients at the central processor that minimize
the probability of mismatch between the noisy and noiseless
classifications. This is done by deriving the mismatch probabil-
ity as a function of the ensemble functions, noise parameters,
and aggregation coefficients, and then performing empirical
risk minimization on the training dataset by unconstrained
gradient descent. We also derive lower and upper bounds
on the mismatch probability that add insight and help in
predicting the classification performance. In Section V, we
demonstrate the improvement offered by our approach on
several real datasets. Earlier in the paper in Section III, we
examine simpler complementary approaches to mitigate noise
by allocating noise variances and transmit powers among the
T channels. The different models suggested for the problem
are reminiscent of classical problems in communications, only
that the objective here is to protect from noise the ensemble’s
final classification value, and not the individual base-function
outputs as in classical communication.

This work extends recent work addressing ensembles with
noisy binary base functions [3], [4], which is a weaker model
than the real-valued functions addressed here. The approach
of this work also differs from the prior work in optimizing the
mismatch probability in a post-training procedure, while [3]
used data-oblivious resource allocation and [4] modified the
ensemble training algorithms. Earlier work addresses noise
in the training procedure [5], [6], [7] (label noise), and [8],
[9] (training on noisy hardware), which is an important but



complementary problem.

II. ENSEMBLE INFERENCE WITH ADDITIVE NOISE

Consider a binary ensemble classifier f(·) : X d → Y
implemented on a system comprising three types of elements:
trained base functions {ht(·)}Tt=1, communication channels
and a central processor. The central processor aggregates
{h̃t(·)}Tt=1, which denote noisy versions of the values gen-
erated by the base functions. In the sequel we refer to the
outputs of the base functions as confidence levels.

Definition 1. Let {nt}Tt=1 be a set of random variables. Define
the noisy confidence-levels {h̃t(x)}Tt=1 as

h̃t(x) = ht(x) + nt. (1)

Let f(·) be an aggregation function and x ∈ X d a data
sample. The following notation specifies the application of
f(·) on the noisy confidence levels

f̃(x) = f
(
h̃1(x), . . . , h̃T (x)

)
. (2)

We now characterize the classification-error probability of a
noisy ensemble classifier f̃(·) over the training dataset S.
When inferring with noisy confidence levels, errors occur
either due to limited generalization capability of the trained
model, or due to the noise (1) added at inference time. The
average classification-error probability for the dataset S is
defined as

P̃e (S) ≜
1

N

N∑
i=1

Pr{f̃(xi) ̸= yi}, (3)

where the probability space corresponds to the noise distribu-
tion.

Let us now define the mismatch probability, which measures
the contribution of the noise to classification errors.

Definition 2. Let f(·) be an aggregation function and let x ∈
X d be a data sample. The mismatch probability of f̃(x) is
defined as

P̃ (x) ≜ Pr
{
f̃(x) ̸= f(x)

}
. (4)

The average mismatch probability for a dataset S is

P̃ (S) = 1

N

N∑
i=1

P̃ (xi). (5)

Let the classification error rate of the trained model for
dataset S without noise be Pe(S) = 1

N

∑N
i=1 [f(xi) ̸= yi]

where [π] denotes the indicator function of the predicate π.
Using Definition 2, we can upper bound the classification-error
probability of the noisy classifier for dataset S as follows [3]:

P̃e(S) ≤ Pe(S) + P̃ (S). (6)

This inequality is true for each individual data sample x,
and therefore also holds for the average error probability as
well. In the sequel, we omit the dataset argument S from
the error and/or mismatch probabilities, when it is clear from
the context. Note that Pe depends on the learned model, its

training process (e.g., Real AdaBoost [2]) and the data set S,
but is independent of the noise. Hence, in order to reduce the
deterioration in classification performance introduced by the
noise, we can minimize P̃ rather than P̃e. This observation is
useful since minimizing P̃e directly is difficult due to its much
more complex dependencies.

While the proposed framework is developed for general
channels, we focus on the class of additive Gaussian channels.
Hence, for the remainder of this paper the vector of additive
random noise variables n is defined as follows.

Definition 3. Let Σ be a positive semi-definite diagonal
matrix. Define the noise vector n = (n1, . . . , nT ), where
n ∼ N (0,Σ).

The random vector n is re-drawn from the distribution for
each classification instance x. Although this paper’s results
apply to general ensembles obtained by arbitrary training
procedures, we give Real AdaBoost as a concrete method for
obtaining such ensembles. Real AdaBoost [2] is an algorithm
for obtaining base classifiers that output real values as their
confidence levels. This allows to use a simple unweighted
aggregation decision rule,

f(x) = sign
( T∑

t=1

ht(x)
)
. (7)

Note that this is not case for the discrete version of Ad-
aBoost [10], in which every ht(·) has outputs in {−1,+1},
and the final decision rule is a weighted sum f(x) =
sign(

∑T
t=1 atht(x)) where at is a real coefficient optimized

during training.

III. SIMPLE SETUPS FOR NOISY CLASSIFICATION

In this section we consider two natural models for noisy
classification, both motivated directly by communication-
theoretic combining schemes. We first examine the simple
unweighted aggregation (used, e.g., in Real AdaBoost), and
then study a gain-controlled decision rule.

A. Noisy unweighted aggregation

The setup of noisy real-valued confidence levels with un-
weighted aggregation is depicted in Fig. 1a. Since the decision
rule is given by f̃(x) = sign

(∑T
t=1 h̃t(x)

)
, this setup

naturally leads to the following noise allocation problem.

Problem 1. Let ζ be a non-negative real number and let the
noise random vector n be an independent Gaussian vector
whose standard deviations are denoted σ = (σ1, . . . , σT ).
Find

min
σ

P̃ (S) s.t.
T∑

t=1

σ2
t = ζ. (8)

Toward optimizing Problem 1, we obtain a closed-form
expression for the mismatch probability of f̃(·).
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Fig. 1: Simple aggregation setups for noisy base-classifiers

Proposition 1. Let x ∈ X d and let f̃(x) =

sign
(∑T

t=1 h̃t(x)
)

. The mismatch probability of f̃(x) is

P̃ (x) = Q

 |∑T
t=1 ht(x)|√∑T

t=1 σ
2
t

 , (9)

where Q(·) is the tail distribution function of the standard
normal (Gaussian) distribution.

Proof. Assume, from symmetry, that f(x) > 0. Then, by
definition

P̃ (x) = Pr

{
T∑

t=1

(ht(x) + nt) < 0

}
= Q


∣∣∣∑T

t=1 ht(x)
∣∣∣√∑T

t=1 σ
2
t

,

(10)
where the last transition holds since n is an independent
Gaussian vector.

Considering Problem 1 in view of the mismatch probability
in (9), we get that any noise allocation leads to the same
objective value of P̃ = Q

(
|
∑T

t=1 ht(x)|√
ζ

)
. Hence, alternative

approaches – beyond unweighted aggregation – have to be
considered for controlling the mismatch probability.

B. Noisy gain-constrained equalized aggregation

Inspired by classical multi-channel equalization prob-
lems [11], we proceed beyond unweighted aggregation to
consider an equalized power-allocation problem. As depicted
in Fig. 1b, each channel is allocated a gain factor gt that
multiplies the classifier output before transmission. The inverse
of this factor is applied upon aggregation at the central pro-
cessor. This equalization with the inverse is motivated toward
maintaining the same end-to-end average confidences as in
the noiseless setup. Similarly to Proposition 1, the mismatch
probability is now given by

P̃ (x) = Q

 |∑T
t=1 ht(x)|√∑T
t=1

σ2
t/g2

t

. (11)

Assuming constrained overall gain, we define the gain-
allocation mismatch-minimization problem.

Problem 2. Given a non-negative real number G and n’s
noise standard deviations (σ1, . . . , σT ), find

min
(g1,...,gT )∈RT

T∑
t=1

σ2
t/g2

t s.t.
T∑

t=1

g2t ≤ G, gt ≥ 0. (12)

Problem 2 allows to control the mismatch probability
through gain allocation. For example, in the special case of
equal noise variances (i.e., σt = σ for all t = 1, . . . , T ), the
uniform allocation gt =

√
G/T is optimal according to the

Karush–Kuhn–Tucker (KKT) conditions. For general standard-
deviation values, we have the following theorem.

Theorem 1. The optimal gains are given by g∗t =√
G∑T

τ=1 στ
· σt; the optimal mismatch probability is

P̃ ∗(x) = Q

√G ·
∣∣∣∑T

t=1 ht(x)
∣∣∣∑T

t=1 σt

. (13)

We omit the proof of Theorem 1 due to lack of space.

IV. NOISY INFERENCE THROUGH RE-WEIGHTED
AGGREGATION

Following the simple aggregation setups of Section III, in
the remainder of the paper we pursue an aggregation setup
that gives rise to a more interesting optimization framework.
In this setup, we assume control of neither the transmission
gains nor the noise allocation, thus having the original (trained)
confidence levels sent through the specified noisy channels. At
aggregation time, each noisy classifier output is multiplied by
a coefficient αt (without enforcing end-to-end gain constraints
as in Problem 2). These coefficients are optimized to minimize
the mismatch probability through a post-training procedure,
which re-weights the confidence levels before aggregation,
according to their importance in the noisy inference problem.
Since re-weighting is done on the received values at the central
processor, these coefficients can be set freely without worrying
about power constraints (needed in Problems 1 and 2).

A. Optimized re-weighted aggregation

As depicted in Fig. 2, the final decision obtained for a data
sample x by re-weighted aggregation is given by

f̃α(x) = sign
( T∑

t=1

αth̃t(x)
)
. (14)



x

Base function
#1

Base function
#T

+

+

n1

nT

×α1

×αT

h̃1(x)

h̃T (x)

Central
Processor

sign
(∑T

t=1 αth̃t(x)
) f̃α(x)

Fig. 2: Re-weighted aggregation with noisy base functions.

For clarity and brevity of expressions, we formulate, analyze
and solve the coefficient-optimization problem using vector
forms. We denote h(x) = (h1(x), . . . , hT (x)), h̃(x) =
(h̃1(x), . . . , h̃T (x)) and α = (α1, . . . , αT ). Also, let H(x) ≜
h(x)⊤h(x) and let Rα(x) denote the generalized Rayleigh
quotient αH(x)α⊤

αΣα⊤ . We omit the x argument from h(x),
h̃(x) and H(x) when it is clear from the context.

Theorem 2. Let x ∈ X d and let α ∈ RT . The mismatch
probability of f̃α(x) is

P̃α(x) = Q

(
sign

(
1H(x)α⊤

)√
Rα(x)

)
. (15)

Proof. The mismatch probability is given by

Pr{f̃α(x) ̸= f(x)} = Pr
{
α
(
h⊤ + n⊤

)
h1⊤ < 0

}
. (16)

Denote A = αh⊤h1⊤, B = αn⊤h1⊤ and note that B ∼
N (0, 1h⊤h1⊤αΣα⊤). Therefore,

P̃α(x) = Pr{B < −A} = Q

(
αh⊤h1⊤√

1h⊤h1⊤αΣα⊤

)
, (17)

which can be manipulated to give (15).

Optimized re-weighting is now defined as the coefficient
assignment that minimizes P̃α(S) provided by Theorem 2.

Problem 3. Given a dataset S = {(xi, yi)}Ni=1, find the vector
α∗ that minimizes the average mismatch probability,

α∗ = arg min
α∈RT

{ 1

N

N∑
i=1

P̃α(xi)
}
. (18)

Toward solving Problem 3 via unconstrained minimization,
we derived the gradient of the objective with respect to the
coefficients vector α. The gradient is denoted ∇P̃α, but
its derivation is omitted due to lack of space. Alg. 1 is
a momentum gradient-descent algorithm for minimizing the
mismatch probability over a dataset S. Note that the dataset
labels yi are not used for optimizing the coefficients; nor do
any noise samples.

B. Bounds on the average mismatch probability

To understand the limits to reliable noisy classification,
we derive lower and upper bounds on the optimized average
mismatch probability P̃α∗(S) for a given dataset S. The

Algorithm 1 Gradient-descent minimization of P̃α

Input: {ht(·)}Tt=1: trained base functions, {xi}Ni=1: training
data samples, Σ: noise covariance matrix
Output: {αt}Tt=1: aggregation coefficients
Set: imax (# iter.), η (learn rate), γ (momentum), τ and ϵ
Initialize: α(0) ← 1 , δα(−1) ← 0 and i← 0
while i ≤ imax do

δα(i) ← γ · δα(i−1) − η · ∇P̃α
|∇P̃α|ℓ2+ϵ

α(i+1) ← α(i) + δα(i)

if |P̃α(i) − P̃α(i−1) |≤ τ : break; else: i← i+ 1
end while
i∗ ← argmin0≤j≤i P̃α(j)

return α(i∗)

bounds provide fundamental limits on the optimal performance
for a given data set, trained ensemble, and noise covariance.

Theorem 3. Let α∗ ∈ RT be a solution to Problem 3. Then,

P̃α∗ ≤ 1

2N

N∑
i=1

exp
(
− 1

2
R1(xi)

)
. (19)

Proof. The optimal coefficient vector α∗ minimizes P̃α.
Therefore, according to (5) and (15), we have

P̃α∗ ≤ P̃1 =
1

N

N∑
i=1

Q

(√
1H(xi)1

⊤

1Σ1⊤ sign
(
1H(xi)1

⊤)).
(20)

Since H(xi) is positive semi-definite for every i = 1, . . . , N ,
we get that 1H(xi)1

⊤ ≥ 0. The proof is concluded by apply-
ing the well-known [12] upper-bound Q(z) ≤ 1

2 exp
(
− z2

2

)
for z ≥ 0 on each of the summands.

Based on properties of Rα(x), we obtain a lower-bound on
P̃α∗ as well.

Theorem 4. Let α ∈ RT be an arbitrary coefficients vector.
If Σ is a positive-definite matrix,

P̃α ≥
1

N

N∑
i=1

Q
(√

λmax
i

)
, (21)

where λmax
i is the largest eigenvalue of the matrix Σ−1H(xi).

In the special case when Σ is a diagonal matrix, we get

P̃α ≥
1

N

N∑
i=1

Q
(√

h(xi)Σ
−1h(xi)⊤

)
. (22)

Proof. From Theorem 2, we have

P̃α =
1

N

N∑
i=1

Q

(
sign

(
1H(xi)α

⊤
)√

Rα(xi)

)
. (23)



Since x ≤ |x| and Q(·) is monotonically decreasing, then
Q(x) ≥ Q(|x|). Therefore, N · P̃α is lower-bounded by

N∑
i=1

Q
(√

Rα(xi)
)
≥ min

α∈RT

N∑
i=1

Q
(√

Rα(xi)
)

≥
N∑
i=1

min
αi∈RT

Q
(√

Rαi
(xi)

)
=

N∑
i=1

Q
(√

max
αi∈RT

Rαi
(xi)

)
.

(24)
It is well known [13] that for symmetric H(xi) and positive-
definite Σ the generalized Rayleigh quotient is maximized by
the largest eigenvalue of Σ−1H(xi), which gives (21). When
Σ is diagonal, it can be verified that h(xi)Σ

−1h(xi)
⊤ is the

largest eigenvalue, yielding (22).

V. PERFORMANCE EVALUATION

We now evaluate Alg. 1 and the bounds in Section IV using
real-world data. In the following experiments, we trained an
ensemble of decision stumps using Real AdaBoost, and then
applied Alg. 1 to obtain the optimized aggregation coefficients.
For consistent performance evaluation in diverse scenarios, we
define a signal-to-noise ratio (SNR) measure that quantifies the
severity of the noise relative to the classifier confidence-levels.

Definition 4. The average SNR is defined as

SNR ≜
1

N

N∑
i=1

SNRi, where SNRi =
||h(xi)||22
||σ||22

. (25)

We experiment with 3 well-known and widely used datasets:
1) Parkinson’s disease [14] - A set consisting of N = 195

patient tests with d = 22 features labeled by a posi-
tive/negative diagnosis of Parkinson’s disease.

2) Heart disease [15] - A set consisting of N = 297 patient
tests with d = 13 features labeled as healthy/sick.

3) Breast cancer [16] - A set consisting of N = 569 tissue
tests with d = 30 features labeled as benign/malignant.

For each dataset S ′, we use a random training set S ⊆ S ′
comprising 80% of the data samples in S ′. The remaining 20%
are used as a test set for evaluating classification performance
over the noisy channels. To obtain a reliable estimate of the
classification-error probability, we draw 500 realizations of the
training set S. For each realization, the ensemble is trained
using S and the coefficients are optimized using S and Σ.
The classification-error probability is then evaluated on the
test set S ′ \ S , where noise is redrawn for each data sample.

Fig. 3 shows the classification-error probabilities as a
function of the average SNR for equal-variance independent
Gaussian channels. The plots show the performance of the
optimized f̃α(·) (with markers) and the unweighted f̃(·),
amounting to α = 1, (without markers), for all three datasets
and with ensemble sizes T = 30, 45, 60 (respectively). Clearly,
optimized re-weighting outperforms unweighted aggregation
over the entire SNR range, with a typical gap of around 5dB.
The error curve behavior for extreme SNRs is also as expected:
approaching random-guessing for low SNRs and coinciding
with unweighted aggregation for high SNRs.

Fig. 4 plots lower-bounds and upper-bounds on the mis-
match probability for all three data sets. We chose the en-
semble size for each data set so that it corresponds to Fig. 3.
Interestingly, the bounds predict the relations between the error
probabilities of the different datasets. Furthermore, the bounds
seem to be valid for the test set, although calculated using the
training set, indicating successful generalization.
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weighted and re-weighted aggregation.
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VI. CONCLUSION

This paper addresses the fundamental problem of binary
ensemble classification with noisy real-valued base functions.
Focusing on additive Gaussian noise, we optimize classifica-
tion performance and provide rigorous performance guaran-
tees. Experiments conducted with our proposed approach pro-
vide empirical evidence for improved classification accuracy.

Interesting future work includes extending this approach
to non-Gaussian noise models, e.g. quantization noise due to
limited precision. Moreover, similar techniques can be applied
to neural networks, in which every neuron performs noisy
aggregation when operated on noisy hardware.
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