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Abstract—The min-entropy is a widely used metric to quantify
the randomness of generated random numbers, which measures
the difficulty of guessing the most likely output. It is difficult
to accurately estimate the min-entropy of a non-independent
and identically distributed (non-IID) source. Hence, NIST Spe-
cial Publication (SP) 800-90B adopts ten different min-entropy
estimators and then conservatively selects the minimum value
among ten min-entropy estimates. Among these estimators, the
longest repeated substring (LRS) estimator estimates the collision
entropy instead of the min-entropy by counting the number
of repeated substrings. Since the collision entropy is an upper
bound on the min-entropy, the LRS estimator inherently provides
overestimated outputs. In this paper, we propose two techniques to
estimate the min-entropy of a non-IID source accurately. The first
technique resolves the overestimation problem by translating the
collision entropy into the min-entropy. Next, we generalize the
LRS estimator by adopting the general Rényi entropy instead
of the collision entropy (i.e., Rényi entropy of order two). We
show that adopting a higher order can reduce the variance
of min-entropy estimates. By integrating these techniques, we
propose a generalized LRS estimator that effectively resolves
the overestimation problem and provides stable min-entropy
estimates. Theoretical analysis and empirical results support that
the proposed generalized LRS estimator improves the estimation
accuracy significantly, which makes it an appealing alternative
to the current-standard LRS estimator.

I. INTRODUCTION

Random numbers are essential for generating cryptographic
information such as secret keys, nonces, salt values, etc. The
security of cryptographic systems crucially relies on the ran-
domness of the generated random numbers [1]–[4]. The min-
entropy is a widely used randomness metric in cryptographic
applications since it measures the difficulty of guessing the
most likely output [4]–[6]. It is well known that the min-
entropy is a lower bound on the Shannon entropy and the
Rényi entropy, i.e., one of the most conservative entropy.

For independent and identically distributed (IID) sources,
the min-entropy can be readily estimated by the empirical
estimator [4]. However, it is difficult to estimate the min-
entropy of non-IID sources accurately. Hence, the US National
Institute of Standards and Technology (NIST) recommendation
document SP 800-90B lists ten different min-entropy estima-
tors for non-IID sources and then conservatively selects the

minimum among these ten different values as the final estimate
of the min-entropy.

Among these ten min-entropy estimators, the longest re-
peated substring (LRS) estimator is especially motivated to-
ward finding non-randomness in long sequences, which is
missed by other estimators. However, the metric used by the
LRS estimator is the collision entropy (the Rényi entropy of
order two) [4], and not the min-entropy. Since the collision
entropy is only an upper bound on the min-entropy, the LRS
estimator overestimates the min-entropy, which violates the
conservative estimation methodology of NIST SP 800-90B.

In this paper, we propose two techniques to amend the
LRS estimator for accurate min-entropy estimation. The first
resolves the overestimation problem by providing an estima-
tion of the min-entropy instead of the collision entropy. The
second estimates the min-entropy using empirical statistics of
Rényi entropies of general α order, instead of just α = 2 as in
the original estimator. In our main theoretical result, we show
that higher orders can reduce the variance of the min-entropy
estimates.

By integrating these two techniques, we propose a gener-
alized LRS estimator that improves the estimation accuracy
by twofold: 1) the bias is reduced by resolving the overes-
timation problem of the LRS estimator; 2) the variance of
the min-entropy estimates is reduced by adopting the higher
order of the Rényi entropy. Theoretical analysis and empirical
results support that the generalized LRS estimator significantly
improves the estimation accuracy of the LRS estimator.

The rest of this paper is organized as follows. Section II
briefly reviews the LRS estimator of NIST SP 800-90B.
Section III presents our modified LRS estimator that accurately
estimates the min-entropy. Section IV presents the generalized
LRS estimator and its analysis that enables more stable esti-
mation. Section V provides numerical results and Section VI
concludes.

II. PRELIMINARIES: ENTROPIES AND LRS ESTIMATOR

A. Entropies and Power Sum

Definition 1 (Min-Entropy): Suppose that the input sequence
s = (s1, . . . , sL) where si ∈ {x1, . . . , xk} is generated by a



given source S. Let p = (p1, . . . , pk) denote the distribution
of S. The min-entropy is defined as

H∞(S) = H∞(p) = − log2 θ, (1)

where θ = maxi∈{1,...,k}{pi}.
Definition 2 (Power Sum): The power sum of order α (i.e.,

the α-th moment) for a distribution p is defined as Mα(p) =∑k
i=1 p

α
i .

Remark 3 (Rényi Entropy): The Rényi entropy of order α
is Hα(p) =

1
1−α log2Mα(p).

Remark 4 (Collision Entropy): The power sum of order α =
2, i.e., M2(p), is equivalent to the collision probability. The
collision entropy is H2(p) = − log2M2(p). It is well known
that H2(p) ≥ H∞(p).

B. LRS Estimator and Its Overestimation Problem

For non-IID sources, NIST SP 800-90B proposes ten dif-
ferent min-entropy estimators [4]. These estimators indepen-
dently perform their own estimations based on different statis-
tics calculated from the examined non-IID sources. Among
these ten estimators, the LRS estimator estimates the collision
entropy based on the frequency of substrings (tuples) in the
input sequence s.

Algorithm 1 describes the LRS estimator of NIST SP 800-
90B. Step 1 finds the smallest u such that the number of
occurrences of the most common u-tuple is less than 35. Step
2 solves the well-known longest repeated substring problem
and sets v as its length. Then, the range of w becomes
{u, u+ 1, . . . , v}.

Step 4 calculates the empirical collision probability of
length-w substrings. Note that (2) is an unbiased estimator
of the collision probability [7]. Step 5 computes the collision
probability per sample (to normalize the entropies estimated
from different lengths), and Step 7 conservatively chooses the
maximum (across w) collision probability (i.e., the minimum
collision entropy). Step 8 ensures the confidence level of 99%
under the Gaussian assumption.

The LRS estimator overestimates the min-entropy since it
estimates the collision entropy instead of the min-entropy.
Fig. 1(a) shows that the bias between the actual min-entropy
and the estimate by the LRS estimator is considerable except
for p = 0.5. Since NIST SP 800-90B conservatively selects
the minimum among estimated values by ten estimators, the
LRS estimator rarely contributes to the final estimate.

III. MIN-ENTROPY ESTIMATION BY LRS ESTIMATOR

A. Min-entropy Estimation by LRS Estimator

In this section, we propose a method to resolve the overes-
timation problem of the LRS estimator. The proposed method
aims to estimate the min-entropy instead of the collision
entropy by using the collected statistics of the LRS estimator
and the following bound.

Lemma 5 ([8, Theorem 6]): Suppose that θ =
maxi∈{1,...,k}{pi}. Then, the following inequality holds:

Hα(S) ≤
1

1− α
log2

(
θα +

(1− θ)α

(k − 1)α−1

)
(4)

Algorithm 1 LRS estimator of NIST 800-90B [4]
Input: Sequence s = (s1, . . . , sL) where si ∈ {x1, . . . , xk}.
Output: Collision entropy H2(S).

1: Find the smallest u such that the number of occurrences
of the most common u-tuple in s is less than 35.

2: Find the largest v such that the number of occurrences of
the most common v-tuple in s is at least 2. ▷ Longest
repeated substring problem

3: for w ∈ {u, u+ 1, . . . , v} do
4: Estimate the estimated w-tuple collision probability:

Pw :=

∑
i

(
Ci

2

)(
l
2

) , (2)

where Ci is the number of occurrences of the ith unique
w-tuple and l is the total number of w-tuples.

5: Compute the collision probability per sample:

P̃w := P 1/w
w . (3)

6: end for
7: p̂c := max

{
P̃u, . . . , P̃v

}
.

8: p̃c := min

{
1, p̂c + 2.576

√
p̂c(1−p̂c)
L−1

}
.

9: H2(S) := − log2 p̃c.

for α ̸= 1. The bound is attained with equality by the near-
uniform distribution pNU(θ) = (p1, . . . , pk) where

pi =

{
θ, if i = 1;
1−θ
k−1 , otherwise.

(5)

Without loss of generality, p1 ≥ . . . ≥ pk is assumed.
The bound (4) is the counterpart of Fano’s inequality, which

applies to the Shannon entropy.
Theorem 6: For the estimated collision probability p̂c by

Algorithm 1, the following inequality holds:

θ ≤
√
(k − 1)(pck − 1) + 1

k
, (6)

where pc = E(p̂c). Since the near-uniform distribution
achieves (4) with equality, (6) is the sharp1 upper bound.

Proof: For α > 1, (4) leads to

Mα(p) ≥ θα +
(1− θ)α

(k − 1)α−1
. (7)

Since M2(p) is equivalent to the collision probability pc [7],
we can set pc ≥ θ2 + (1−θ)2

(k−1) . Since θ = maxi∈{1,...,k}{pi},

it is clear that θ ≥ 1
k . Since θ2 + (1−θ)2

(k−1) is a non-decreasing
function of θ for θ ≥ 1

k , (6) holds.
Based on Theorem 6, we estimate θ̂ as follows: θ̂ =√
(k−1)(p̂ck−1)+1

k , which is a conservative min-entropy esti-
mation because an upper bound on θ leads to a lower bound
on H∞(S).

1The term “sharp bound” means that there exists a distribution that achieves
this bound with equality.



Algorithm 2 Proposed LRS Estimator for the Min-Entropy
Input: Sequence s = (s1, . . . , sL) where si ∈ {x1, . . . , xk}.
Output: Min-entropy H∞(S).

1: Estimate p̂c from s by Algorithm 1.
2: if p̂c > 1

k then

3: θ̂ :=

√
(k−1)(p̂ck−1)+1

k .
4: else
5: θ̂ := 1

k .
6: end if
7: θ̃ := min

(
1, θ̂ + 2.576

√
θ̂(1−θ̂)
L−1

)
.

8: H∞(S) := − log2 θ̃.

Algorithm 2 describes the proposed min-entropy LRS esti-
mator. Step 1 of Algorithm 2 estimates the collision probability
by using Algorithm 1. Theoretically, pc ≥ 1

k where the
equality is achieved by the uniform distribution. If p̂c < 1

k ,
then we know that it results from estimation errors. Hence, in
this case we set p̂c = 1

k , which leads to θ̂ = 1
k . Step 7 ensures

the confidence level of 99% as in Step 8 of Algorithm 1.
The proposed estimator attempts to estimate a lower bound

on the min-entropy whereas the LRS estimator estimates
an upper bound on the min-entropy (i.e., collision entropy).
The proposed estimator matches the conservative approach
of NIST SP 800-90B. Importantly, the proposed estimator is
unbiased for binary sources (i.e., it estimates the min-entropy
itself instead of the lower bound since any binary distribution
is near-uniform). In the next subsection, we further investigate
the proposed estimator’s bias properties.

B. Bias of Proposed Estimator

We investigate the biases of the conventional LRS estimator
and the proposed estimator. For the analysis, we neglect the
step for 99% confidence interval. Hence, p̂c and θ̂ instead of
p̃c and θ̃ are considered in our analysis.

We characterize the bias bproposed(S) by the sharp lower and
upper bounds on θ for a given collision probability pc. The
sharp upper bound on θ is given in Theorem 6. We derive the
sharp lower bound on θ by using the inverted near-uniform
distribution. In [1], the inverted near-uniform distribution is
defined as pINU(ψ) = (p1, . . . , pk) where

pi =


ψ, if i ∈

{
1, . . . ,

⌊
1
ψ

⌋}
;

1−
⌊

1
ψ

⌋
ψ, if i =

⌊
1
ψ

⌋
+ 1;

0, otherwise.

(8)

Note that ψ = max{pINU(ψ)}.
Lemma 7: For 1

n+1 < ψ ≤ 1
n where n ∈ N, the following

relation holds:
⌊

1
ψ

⌋
=

⌊
1

M2(pINU(ψ))

⌋
= n.

Proof: All proofs of Lemma, Theorem, and Corollary are
given in this paper’s longer version [9].

Algorithm 3 Generalized LRS estimator
Input: Sequence s = (s1, ..., sL) and an integer α ≥ 2
Output: Min-entropy H∞(S).

1: Find the smallest u such that the number of occurrences
of the most common u-tuple in s is less than 35.

2: Find the largest v such that the number of occurrences of
the most common v-tuple in s is at least α.

3: for w ∈ {u, u+ 1, . . . , v} do
4: Estimate the w-tuple power sum of order α:

M̂α,w :=

∑
i

(
Ci

α

)(
l
α

) , (12)

where Ci is the number of occurrences of the ith unique
w-tuple and l is the total number of w-tuples.

5: M̃α,w := M̂
1
w
α,w.

6: end for
7: M̃α := max{M̃α,u, . . . , M̃α,v}.
8: if M̃α >

1
kα−1 then

9: By the bisection method, solve the following equation
for θ̂ ∈

[
1
k , 1

]
:

M̃α = θ̂α +
(1− θ̂)α

(k − 1)α−1
. (13)

10: else
11: θ̂ := 1

k .
12: end if
13: θ̃ := min

(
1, θ̂ + 2.576

√
θ̂(1−θ̂)
L−1

)
.

14: H∞(S) := − log2 θ̃.

Theorem 8: For any distribution p = (p1, . . . , pk) with n =⌊
1
pc

⌋
, the following inequalities hold: ψ ≤ θ ≤ θ̆, where

ψ =

√
n {pc(n+ 1)− 1}+ n

n(n+ 1)
, (9)

θ̆ =

√
(k − 1)(pck − 1) + 1

k
. (10)

For given pc and k, we define the estimation gap of θ as

g(pc, k) = θ̆ − ψ, (11)

which is the maximum possible bias. The following theorem
shows that the estimation gap increases with k.

Theorem 9: For non-deterministic sources, the estimation
gap g(pc, k) = θ̆ − ψ increases with k.

Corollary 10: For binary sources with k = 2, the estimation
gap is zero, i.e., g(pc, k = 2) = 0.

IV. GENERALIZED LRS ESTIMATOR

In this section, we propose a generalized LRS estimator by
using the power sum of order α ≥ 2 instead of the collision
probability (the power sum of order α = 2). We show that the
generalized LRS estimator reduces the variance of estimates
as the order α increases beyond 2.



The generalized LRS estimator is described in Algorithm 3.
First, it estimates the power sum Mα(p) for a given α by Steps
1–7. Step 2 of Algorithm 3 is modified from Algorithm 1 to
estimate Mα(p). Step 4 estimates the w-tuple power sum of
order α by counting the α-wise collisions. Step 5 computes the
power sum of order α per sample (to normalize the estimated
min-entropy) and Step 7 conservatively chooses the maximum
among estimated power sums of α, which is denoted by M̃α.

The key modification needed for allowing general α is
the transformation in Step 9 from M̃α (i.e., the conservative
estimate of the power sum) to θ̂. In the special case of α = 2
this transformation was given in the closed form (Step 3
in Algorithm 2), whereas for general α we need to find θ̂
via bisection. In the special case M̃α ≤ 1

kα−1 (branching to
Line 10), the power-sum estimate is equal or lower than the
minimum value attained by the uniform distribution, hence we
set θ̂ to the minimum possible value of 1

k .
Similar to Algorithm 2, Algorithm 3 solves the bias problem

of Algorithm 1. We show next that Algorithm 3 also offers
an advantage over Algorithm 2 in reducing the estimation
variance. The bias is improved since Algorithm 3 estimates the
min-entropy whereas the LRS estimator estimates the collision
entropy as discussed in Section III-B. The following theorem
analyzes the estimation variance (for uniform sources) and
shows that it is decreasing with α. Empirical evidence of this
behavior is shown in Section V for more general sources.

Theorem 11: For a uniformly distributed s = (s1, . . . , sL)
with a large L, the variance ratio’s dependence on α is as
follows:

ξ(α) =
Var(θ̂α+1)

Var(θ̂α)
≈

(
α

α+ 1

)4

, (14)

where θ̂α and θ̂α+1 are the estimated θ̂ in Algorithm 3 by
using M̃α and M̃α+1, respectively, and ≈ hides multiplicative
terms that tend to 1 as L goes to infinity.

Proof: We denote the number of α-wise collisions as
Dα,w for the w-tuples in Step 4 of Algorithm 3, which is given
by Dα,w =

∑kw

i=1

(
Ci

α

)
, where Ci is the number of occurrences

of the i-th w-tuple. We suppose that
(
Ci

α

)
= 0 if Ci < α. For

every subset I ⊆ {1, . . . , l =
⌊
L
w

⌋
} of size α, we define XI to

be a 0-1 random variable that gets the value 1 iff all the values
xi are the same (i.e., I forms a α-wise collision). It is clear that
Dα,w =

∑
|I|=αXI and E(XI) = Mα,w, where Mα,w is the

w-tuple power sum of order α. Also, we set XI = XI−Mα,w

as in [10].
For two subsets I and J such that |I| = |J | = α, E(XI ·

XJ) = E(XI) · E(XJ) = 0 if I ∩ J = ∅. If I ∩ J ̸= ∅,
then XI · XJ is a 0-1 random variable that gets the value
1 iff all the values in I ∪ J are the same. Hence, E(XI ·
XJ) =Mα+t,w −M2

α,w if |I ∪ J | = α+ t < 2α [10]. Since
Mα,w = 1

kw(α−1) for a uniformly distributed source, we obtain
E(XI ·XJ) =

1
kw(α+t−1) − 1

k2w(α−1) .
The variance of Dα,w is given by

Var(Dα,w) =

α−1∑
t=0

∑
|I∪J|=α+t

E(XI ·XJ) (15)

≈ 1

kw(α−1)

(
l

α

) α−2∑
t=0

(
l

t

)(
α

t

)(
1

kwt
− 1

kw(α−1)

)
. (16)

By taking into account normalization in Step 5 of Algo-
rithm 3, we obtain

Var(M̃α,w) ≈
1

w2
· E(M̂α,w)

2(1−w)
w · Var(M̂α,w) (17)

=
1

w2
· k2(α−1)(w−1) · Var(Dα,w)(

l
α

)2 (18)

≈ k(α−1)(w−2)

w2
·
∑α−2
t=0

(
l
t

)(
α
t

) (
k−wt − k−w(α−1)

)(
l
α

) . (19)

In Step 7 of Algorithm 3, the maximum among
{M̃α,u, . . . , M̃α,v} is chosen as M̃α. It is difficult to character-
ize which M̃α,w for w ∈ {u, . . . , v} is the maximum value. As
a conservative approach, we set Var(M̃α) ≈ Var(M̃α,v) where
v is defined to be the tuple length at which the distribution
attains in expectation the cutoff property of having at least one
tuple occurring at least α times in the sequence (see Step 2 in
Algorithm 3). Then,

Var(M̃α) ≈
k(α−1)(vα−2)

v2α

·
∑α−2
t=0

(
lα
t

)(
α
t

) (
k−tvα − k−(α−1)vα

)(
lα
α

) , (20)

where we denote v = vα and l = lα since they depend on
α. Note that vα ≈ 1

α−1 logk
(
lα
α

)
is derived from the cutoff

condition E(Dα,1) · (Mα)
v−1 ≥ 1 and E(Dα,1) · (Mα)

v <
1 where the left-hand sides of the inequalities equal (proof
omitted) E(Dα,v) and E(Dα,v+1), respectively, that are, the
expected numbers of α-repeating tuples of the corresponding
lengths.

By Taylor approximation, Var(θ̂α) ≈ z(θ̂α, α)
2 · Var(M̃α)

where z(θ̂α, α) = dθ̂α
dM̃α

= 1

α

{
θ̂α−1
α −

(
1−θ̂α
k−1

)α−1
} , which is

derived from (13). Then, we obtain z(θ̂α+1,α+1)

z(θ̂α,α)
≈ α−1

α+1 · k.
Finally, skipping some technical steps,

ξ(α) =
Var(θ̂α+1)

Var(θ̂α)
≈ z(θ̂α+1, α+ 1)2

z(θ̂α, α)2
· Var(M̃α+1)

Var(M̃α)
(21)

≈
(

α

α+ 1

)4

·
∑α−1
t=0

(
lα+1

t

)(
α+1
t

)(
lα+1

α+1

)− t
α∑α−2

t=0

(
lα
t

)(
α
t

)(
lα
α

)− t
α−1

. (22)

For a large L, (22) converges to
(

α
α+1

)4

. The detailed proof
is given in [9].
Since ξ(α) < 1, Var(θ̂) decreases with α for high-entropy
sources. Thus, the generalized LRS estimator can provide
stable min-entropy estimates.

V. NUMERICAL RESULTS

We evaluate our proposed estimators for the following
representative data samples. The more extensive numerical
results are provided in [9].
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Fig. 1. (a) Estimated min-entropy and (b) the variance of min-entropy
estimates by the proposed generalized LRS estimator for the BMS sources
with p.

• Binary memoryless source (BMS): Samples are generated
by Bernoulli distribution with P (S = 1) = p and P (S =
0) = 1− p (IID);

• Markov source: Samples are generated using the first-
order Markov model with P (Si+1 = 1|Si = 0) =
P (Si+1 = 0|Si = 1) = p (non-IID).

For each of the above sources, one thousand simulated sources
were created in each of the above datasets. BMS source and
Markov source generate a sequence of L = 100, 000 bits.

Fig. 1 compares the min-entropy estimators for BMS as a
function of p. The original LRS estimator estimates the colli-
sion entropy instead of the min-entropy, and this is reflected
in the significant overestimation it exhibits in Fig. 1(a). In the
same plot, the proposed estimator shows much more accurate
estimates. It can be seen that the larger-α estimators give
more accurate min-entropy estimates, and that is thanks to
their use of higher-order repeat statistics which better capture
the infinite-order min-entropy. In Fig. 1(b), we observe that
as p → 0.5 (i.e., uniformly distributed sources), the higher α
also reduces Var(θ̂), which supports Theorem 11. We note that
the reduction of Var(θ̂) diminishes as α increases as shown
in Fig. 1(b).
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Fig. 2. (a) Estimated min-entropy and (b) the variance of min-entropy by the
proposed generalized LRS estimator for the first-order Markov sources with
p = p(1|0) = p(0|1).

For the first-order Markov sources, the min-entropy es-
timators estimate the min-entropy rate. By [11], [12], the
accurate min-entropy rate and the collision entropy rate are
given by H∞(S) = − log2 max{p, 1 − p} and H2(S) =
− log2{p2+(1− p)2}, respectively. Fig. 2 compares the min-
entropy estimators for the first-order Markov sources with
parameter p. The LRS estimator of NIST SP 800-90B unde-
sirably overestimates the min-entropy of the Markov sources
as shown in Fig. 2(a). The proposed estimator effectively
improves the accuracy of min-entropy estimates.

VI. CONCLUSION

We proposed accurate min-entropy estimators to resolve
the overestimation problem of the LRS estimator. Although
the first proposed estimator relies on the estimated collision
probability as in the LRS estimator, it effectively reduces
the bias by leveraging the relation between the collision
entropy and the min-entropy. Furthermore, we proposed the
generalized LRS estimator by parameterizing α instead of
restricting to α = 2. It is shown that the generalized LRS
estimator can improve the bias and variance of min-entropy
estimates.
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