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Abstract—We address the problem of compressing genomic
read data produced by modern shotgun sequencing technologies,
where a reference genome, closely similar to the sequenced
one, is available only at the decoder. This problem, addressed
by distributed source coding techniques, requires an alignment
and validation layer in the decoder. In this work, we extend a
previous work, to allow a single deletion along with the previously
addressed multiple substitutions. The results include a new
distance for efficient alignment under deletion and substitutions,
a derivation of the exact distribution of this distance on random
sequences, as well as procedures to recover the read from multiple
invocations of a substitutions-only decoder.

I. INTRODUCTION

Shotgun sequencing is the process of determining the order
of nucleic acids within a DNA molecule (genomic sequence),
using a large set of short fragments observed randomly from
the sequence. These fragments, called reads and represented
by a string of symbols (usually A,C,G,T), are used for recon-
structing the original genome, as well as for other analysis
tasks. Since those reads are consumed by computationally
heavy and specialized procedures, they are commonly commu-
nicated from the sequencing location (e.g. physician’s office)
to a central processing location (e.g. cloud genome database).
Therefore, effective compression methods of the pre-assembly
reads are of significant interest. Those methods are divided to
reference-based and reference-free tools, differed by the use
of a closely similar reference genome in the encoding process.
Naturally, reference-based methods provide better performance
in most cases, but also require significant computational and
storage resources at the encoder side, which is typically limited
in such resources.

In [1] we proposed a method for compressing the reads
using a reference that is available to the decoder side only,
providing reference-based performance without the cost of
using the reference in the encoder. This scheme is based
on a coding-theoretic solution of the Slepian-Wolf coding
problem [2] using generalized error locating (GEL) concate-
nated codes. Compared to prior schemes addressing source
coding with decoder side information [3]–[11], the coding
scheme in [1] also addresses the problem of aligning the
compressed read within the reference genome at the decoder
side, before reconstructing the read from a matching segment.
In [1] it is assumed that the differences between the reads and
their corresponding segments in the reference are substitutions
only, while practical sequencers may also introduce symbol
deletions to the reads.

In this paper we extend the coding scheme of [1] to also
handle a symbol deletion in every read, in addition to multiple
substitutions. The key tool toward that is a new distance mea-
sure we propose in Section III for finding reference segments
with good match to the read under the new error model.
This distance, which we show to be a semi-metric, improves
over prior distance measures that are either more complex
to compute, or suffer from high false-alignment probabilities.
Thanks to its simplicity, we are able to derive the exact
distribution of the proposed distance over random sequences,
using combinatorial analysis of an appropriate random-walk
model. Another important ingredient of the extended scheme
(Section IV) is a procedure to expand each matching candidate
found by the aforementioned distance to sub-candidates that
can jointly recover the read using a substitutions-only inner-
code decoder. We note that supporting a single deletion in each
read is without significant loss of generality, since we are free
to set the read size to a value where more than one deletion is
rare, and these rare failures are handled by the scheme’s outer
code. Moreover, it is possible to extend the proposed distance
measure to multiple deletions, as well as to insertions.

II. BACKGROUND AND PRELIMINARIES

A. Problem Setting and Error Model

A batch of length-n genome substrings
{
x(i)

}M
i=1

(called
reads) is output by a sequencer, and these reads need to be
communicated to a central node. The central node holds a
reference genome sequence Y that is closely similar to the
sequence from which the reads are generated. We model the
similarity by an error model, which in this paper is taken to
be single deletion multiple substitutions. That is, for each read
i there exists an index ki such that x(i) is obtained from
y(i) = Yki , . . . , Yki+n−1, Yki+n by a single deletion and a
certain number of substitutions (note that the latter has length
n+ 1). Equivalently, there is an integer jdi such that

x(i) = Ỹki , . . . , Ỹki+jdi−2, Ỹki+jdi , . . . , Ỹki+n−1, Ỹki+n, (1)

and Ỹ is the result of Y passing through some substitution
channel. The deletion index is ki+ jdi−1, and a read without
a deletion is simply modeled by jdi = n + 1. This error
model captures both sequencing errors and genomic diversity
between the sequenced genome and the reference Y. It is
emphasized that the encoder is unaware of the reads’ ki
indices and the reads’ errors with respect to Y, in particular
whether a read contains a deletion or not.



B. Distributed Source Coding with Alignment

In this section we briefly describe the generalized error
locating (GEL) based coding scheme proposed in [1] for the
substitutions-only case.

Construction 1. Let f`(x) denote the sampling of ` pre-
defined indices from x, which will be called a read iden-
tifier, and let I denote the remaining indices. Next, let
C1, C2 be a pair of binary linear codes with parameters
[n− `, ki − `, di] , i = {1, 2}, where k1 ≥ k2. Let H1,H2 be
parity-check matrices of these codes, respectively, such that
they form a nested pair, i.e., all rows of H1 appear in H2

in concatenation with additional τ , k1 − k2 rows, linearly
independent on H1, denoted by H̄2, the validation matrix. Let
Hc be a complementary matrix such that the concatenation of
its rows with H2 forms a square full-rank matrix H.

Finally, let Co be a [M,ko, do] linear code over GF(2ν),
with parity-check matrix Ho, and ν = n − ` − (ρ + τ).
For encoding, we extract w(i) = f`(x

(i)) and calculate

s(i) = H2

[
x
(i)
I

]T
, a(i) = Hc

[
x
(i)
I

]T
for each read. We

then form a =
[
a(1), . . . ,a(M)

]
∈ [GF(2ν)]

M , and calculate
S = Hoa

T . The encoder output is
{
{w(i)}Mi=1, {s(i)}Mi=1,S

}
,

which is sent to the decoder and received without noise.
The decoding process is now briefly described. First, for

every read x(i), the decoder aligns the read identifier w(i)

over the reference to form a set of possible candidates Y(i)

by the following rule:

Y(i) =
{
y(i,j)

∣∣∣ dH (f`(x(i)), f`(y
(i,j))

)
≤ T

}Ki

j=1
, (2)

where dH(·, ·) is the Hamming distance, T is a predefined
threshold, and

{
y(i,j) =

[
Y
k
(j)
i
, . . . , Y

k
(j)
i +n−1

]}
is a sub-

string of Y closely matching to the read. Next, every candidate
is decoded with respect to H1 within the coset of syndrome
s
(i)
1 . The result v is validated using C2 by testing whether

H̄2v
T = s

(i)
2 . This validation is a key stage in the coding

scheme, allowing the disqualification of improper alignments,
i.e., candidates erroneously aligned based on a randomly
matching read identifier. If exactly one candidate from Y(i)

is decoded to a word v being validated, b(i) = Hcv
T is

calculated. Otherwise, an erasure is set: b(i) = ⊗. Next,
b =

[
b(i), . . . , b(M)

]
is decoded with respect to Ho within

the coset of syndrome S to form â. This is called the
outer decoding over an outer channel. Finally, each read is
reconstructed from w(i) and x̂

(i)
I = FH([s(i), â(i)]), where

FH(u) is the linear mapping of u to the single codeword of
syndrome u in the code defined by H.

III. A DISTANCE MEASURE FOR ALIGNMENT WITH A
DELETION

A. Motivation

In order to extend the coding scheme to deal with deletion
errors, it is necessary to establish an efficient way to perform
alignment under such errors, along with substitution errors.

With substitutions only, an offset in the reference Y is con-
sidered a good alignment candidate if its Hamming distance
to the read is small (see (2)). Now we need an alternative
distance measure that allows a single deletion anywhere in the
offset’s subsequence before evaluating its Hamming distance
to the read. We note that in the actual scheme this alignment
is performed using only the identifier of the read (see the use
of f`(·) in (2)), but for simplicity in this section we assume
the full read is aligned.
B. Existing Distance Measures

An immediate candidate for such a measure is the Leven-
shtein distance [12], counting the minimal number of edits
(deletions, insertions and substitutions) required to obtain
one word from another. Nevertheless, this measure suffers
from two main issues in our case: 1) its complex calculation
by dynamic-programming algorithms makes it impractical to
evaluate each read along every possible offset position in the
reference, 2) allowing unrestricted error patterns, involving any
number of deletions, insertions and substitutions, introduces
unfitting alignment candidates.

Another possible measure is the shifted Hamming dis-
tance [13], which matches each read index with r adjacent in-
dices in the subsequence at the offset considered for alignment.
For our purposes, since only deletions (and not insertions)
are relevant, we use only adjacent indices to the right of the
original index. This can be formalized by

∀x ∈ Σn,y ∈ Σn+r : dSH(x,y) ,
n∑
i=1

r∧
j=0

xi ⊕ yi+j , (3)

where ∧ denotes a logical ‘AND’ operation, and Σm denotes
a word of length m from alphabet Σ, and the binary operator
⊕ returns 0 for equal symbols and 1 otherwise. The main
issue with this measure is that by allowing independent shifts
between indices, ignoring the special shift structure of index
deletion, even random unrelated sequences may be declared
close, increasing the number of improper alignments.
C. Preliminaries

We first give two preliminary definitions that will help defin-
ing the new distance measure δs.c(x,y) in the next sub-section.
At the end of this section, the distance measure is extended
to a formal semi-metric ds.c(·, ·) satisfying the symmetry and
triangle-inequality metric properties, in addition to a natural
generalization of the third metric property: the identity of
indiscernibles. From this point, we assume Σ = {0, 1} for
simplicity, but every result can be extended to any alphabet
size q.

Definition 1. (Cumulative Hamming distance) For x ∈ Σn,
y ∈ Σn+r, define, for every 0 ≤ j ≤ r and every 0 ≤ t ≤ n,

φj(x,y; t) ,
t∑
i=1

xi ⊕ yi+j ,

where ⊕ denotes an addition over GF(2). When clear from the
context, we will denote φj(x,y; t) = φj(t).
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Fig. 1: Illustration of the shift compensating distance components, with no substitutions: cumulative distances (left), and their
difference (right), with the deletion location minus 1 attaining the maximal difference.

Definition 2. Let x ∈ Σn, y ∈ Σn+r. Define, for every 0 ≤
j ≤ r − 1 and every 0 ≤ t ≤ n,

∆φj(x,y; t) , φj+1(x,y; t)− φj(x,y; t)

=
t∑
i=1

[xi ⊕ yi+j+1]− [xi ⊕ yi+j ],

where by definition ∆φj(x,y; 0) = 0. Again, when clear from
the context, we will denote ∆φj(x,y; t) = ∆φj(t).

D. Single-Deletion Compensating Distance Measure

We can now introduce the desired measure for underlying
Hamming distance between two words, while compensating
for a block shift caused by a single deletion occurred in one of
them before being transmitted through a substitution channel.

Definition 3. Let x ∈ Σn,y ∈ Σn+1, and let

t∗ , arg max
0≤t≤n

{∆φ0(x,y; t)}. (4)

Then, we define the shift-compensating distance by

δs.c(x,y) , φ1(x,y;n)−∆φ0(x,y; t∗)

= min
0≤t≤n

{φ1(x,y;n)−∆φ0(x,y; t)}.

δs.c(x,y) measures the “split” distance where the non-
shifted y is used until index t∗, and the shifted y thereafter;
t∗ is the index that maximizes the gap between the shifted and
non-shifted cumulative distances, indicating t∗ + 1 is a likely
deletion position. This measure is illustrated in Fig. 1, and its
properties are formalized in the next lemma (proof omitted).

Lemma 4. Let x ∈ Σn,y ∈ Σn+1. Let y[k] denote the word
obtained from y by a deletion in index k. Then,

δs.c(x,y) = min
1≤k≤n+1

{
dH(x,y[k])

}
, (5)

and t∗ = arg min1≤k≤n+1

{
dH(x,y[k])

}
− 1, where t∗ is as

defined in (4).

The fact that δs.c in (5) is equal to the minimum substitution
distance over all possible deletion indices shows that it is the
natural distance measure when aligning with a single deletion,
and thus will perform better than dSH in (3). Importantly,

it still has a low (linear) calculation complexity, making it
more practical than other alternatives such as the Levenshtein
distance.

We end the presentation of this distance measure by defining
a variation of it that we can prove (omitted) to be a semi-
metric.

Definition 5. Let x,y ∈ Σn+1
n . The shift-compensating semi-

metric is defined by

ds.c(x,y) ,


dH(x,y) , |x| = |y|
δs.c(x,y) , |x| = |y| − 1

δs.c(y,x) , |x| = |y|+ 1

.

We can prove that ds.c(·, ·) is a semi-metric satisfying a
generalized identity of indiscernibles by which a length-n x is
at distance 0 from all length-(n+ 1) y vectors in its radius-1
insertion ball. This captures well the fact that multiple length-
(n+1) sequences are 1 deletion and 0 substitutions away from
a length-n alignment target.

E. Analysis of Alignment Performance

In this sub-section we assume that the reference sequence
Y (defined in Section II-A) is a random binary sequence in
which each symbol is drawn i.i.d from the Bernoulli(1/2)
distribution. We also assume that Ỹ is obtained from Y by
passing each symbol through a binary symmetric channel with
parameter p. Throughout this sub-section, we seek to align a
length-n vector x with the reference Y:

Definition 6. Let x ∈ Σn and let y ∈ Σn+1 taken from some
offset in Y. We say that y matches x if δs.c(x,y) ≤ Td, for
some integer distance threshold Td.

Recall from (1) that in our problem x = ỹ[k], i.e., x is obtained
by taking a consecutive subsequence ỹ of Ỹ and deleting from
it the k-th symbol. We want to evaluate the probability that
y matches x, and we are interested in two cases: when y
and ỹ have the same offset in Y and Ỹ, respectively (proper
alignment), and when the offsets of y and ỹ are different
(improper alignment).

We start from the simpler case of proper alignment.
Fb(n, p,T) denotes the cumulative distribution function (CDF)
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Fig. 2: Left: CDF of the shift-compensating distance (S.C) in comparison to the shifted Hamming distance (S.H). Right:
Comparing the three distances when a read is aligned over a noisy version of the genome.

of a binomial random variable with parameters (n, p), evalu-
ated at the value of T.

Proposition 7. The probability Pa.s that the proper-alignment
y matches x satisfies Pa.s ≥ Fb(n, p,Td).

We note that equality is obtained in the case of substi-
tutions only and replacing δs.c(x,y) by dH(x,y); proving
this with inequality in Proposition 7 is immediate from (5),
showing that dH(x, ỹ[k]) is an upper bound on δs.c(x,y), thus
exceeding the threshold Td on the latter implies more than
Td substitutions in ỹ[k]. For analyzing improper alignments,
we study the probability distribution of the shift-compensated
distance when evaluated on a random y word unrelated to
x. We first observe that for two independent random words
x ∈ Σn,y ∈ Σn+1, each chosen uniformly from the entire
space, we can write ∆φ0(x,y; t) =

∑t
i=0 ∆i, 1 ≤ t ≤ n,

where ∆0 = 0, and {∆i}ti=1 are independent random variables
with support {−1, 0, 1} and probabilities {0.25, 0.5, 0.25},
respectively. This sum forms a symmetric random walk with
null steps, which provides the framework for the next theorem.

Theorem 8. Let us denote by Rn the random variable of
δs.c(x,y) for randomly chosen x ∈ Σn,y ∈ Σn+1. Then,

P (Rn = r) =

1

4n

n−r∑
m=0

n∑
t=m

n−m∑
k=0

k∑
w=0

t−1∑
l=0

A1(t, w,m, l)

n−t−(k−w)∑
v=0

A2(v, t, k − w, r − l),

where we defined

A1(t, w,m, l) ,
m

t
·
(

t

α, α+m,β,w − β

)
,

A2(v, t, k − w, r − l) =
v + 1

γ + v + 1

(
n− t

γ, γ + v, η, k − w − η

)
,

for α , (t − w − m)/2, β , l − α, γ , (n − t − (k −
w)− v)/2, η , r− l− γ, and

(
z

u1,u2,...,um

)
, z!

u1!u2!...um! , the
multinomial coefficient.

Proof (idea): To count the number of sequence pairs
that have δs.c(x,y) = r, we classify the pairs according to

several variables appearing as summation indices. The primary
variables are t that is the value t∗ calculated in (4), and m
that is ∆φ0(x,y; t∗). Given t,m, we count the number of
random walks of ∆i that attain a global maximum of m at
time t, and for each such walk expand the number of sequence
pairs that have distance r. The variables k and w count the
number of zeros of the random walk in total and until time t,
respectively. The remaining indices are weight variables: l for
the subsequence xi⊕yi until time t, and v for the subsequence
xi ⊕ yi+1 thereafter.

Proposition 9. The probability Pf.a.s that the improper-
alignment y matches x satisfies Pf.a.s ≈ P (Rn ≤ Td).

The left side of Fig. 2 shows an example for the distribution
derived in Theorem 8 (blue line), validated by an empirical
calculation (red crosses). The large gap in comparison to
the shifted-Hamming distribution (green dashed line) demon-
strates the advantage of the proposed metric in rejecting
improper alignments. The right side of Fig. 2 illustrates the
distances obtained in aligning a read of length n = 50 over
a noisy reference containing 0.01 substitutions rate, using
Hamming, shifted Hamming and shift-compensating distances,
for all possible starting indexes. The correct starting index
is marked with a red cross. It can be seen that the shift-
compensating distance gives the largest margins between cor-
rect and incorrect alignment indices.

IV. EXTENDING THE CODING SCHEME TO DELETIONS

In this section, we describe the modifications needed to
extend the coding scheme of Section II-B to support reads
that may contain a deletion. The main tool in this extension is
the shift-compensating distance of Definition 3 that replaces
the standard Hamming distance (see (2)) used in the case of
substitutions only.
A. Extending δs.c to Non-Consecutive Read Identifiers

In the coding scheme, we align to Y a partial read identifier
of x, and not x itself as assumed in the previous section. It is
straightforward to extend δs.c to the case where the contents
of x are available only at a set 1 ≤ i1 < i2 < · · · < i`d ≤ n



of non-consecutive indices. We first modify the cumulative
Hamming distance:

φ
′

j(x,y; t) ,
t∑

k=1

xik ⊕ yik+j , for 1 ≤ t ≤ `d,

and then define δ′s.c as in Definition 3 using φ
′

j . We can
now align any read identifier w(i) to the reference Y, to
find matches as defined in Definition 6. Each match yields
a candidate y(i,j), which is now a substring of Y of length
n+ 1, and all the matches form the set Y(i).

B. Generating Sub-Candidates for Each Alignment Candidate

Matching a subsequence y′ of Y to w(i) and placing
it in Y(i) is the first step to recover x(i) at the decoder.
The next step is to use the syndrome s(i) to correct the
substitution errors between x(i) and a vector obtained from
y(i,j) ∈ Y(i) by a deletion in one of its indices. Toward
that, for each y(i,j) the extended scheme generates a list of
sub-candidates {y(i,j)

s }, according to the following procedure.
Define χ to be a global integer tolerance parameter, and denote
by t ∈ {0, . . . , `d} the value of t∗ that y(i,j) yielded in
Definition 3. Then the set {y(i,j)

s } is defined by all deletion
indices τ that satisfy the following:

τ ∈ Iχ(t) ,


[it−χ, it+χ+1] , χ < t < `d − χ− 1

[1, it+χ+1] , 0 ≤ t ≤ χ
[it−χ, n+ 1] , `d − χ− 1 ≤ t ≤ `d

, (6)

that is, all deletions within 2χ+ 1 intervals of the read identi-
fier’s indices around t, with exceptions at the extremal indices.
For χ = 0, i.e. no tolerance, we have I0(t) = [it, it+1],
whereas for χ ≥ max{t, `d−t} we have Iχ(t) = [1, n+1], i.e.,
{y(i,j)

s } = D1(y(i,j)), where D1(·) denotes the single-deletion
ball. It is motivated to use χ > 0 because the true deletion
index in y(i,j) may fall outside its estimated interval defined
by t. The value of χ controls the number of vectors qualifying
to recover x(i) by inner-code decoding, and it is set1 to best
balance successful recovery from the proper alignments with
effective rejection of false candidates.

C. Inner-code Decoding with Multiple Sub-Candidates

Recall from Section II-B that in the substitutions-only
scheme each candidate y(i,j) is passed to inner-code decoding
and validation. Now with deletions, we need to decode and
validate a set of sub-candidates {y(i,j)

s }. To see how this
should be done, we note the following observation.

Observation 10. Let z[k] ∈ D1(z), and let x = z[id]. Then, for
ei , zi ⊕ zi+1,

xi ⊕ z
[k]
i =

{
0 , i < min(k, id) or i ≥ max(k, id)

ei , otherwise
.

Observation 10 means that if id is the actual deletion index and
k is the one chosen for some sub-candidate, then this mismatch
may introduce errors only between those two indices. Hence

1based on the other scheme parameters and the error statistics.

it is likely that for the proper alignment of x(i) multiple sub-
candidates with deletion indices close to id will correctly de-
code to x(i). This motivates the following treatment of {y(i,j)

s }
in the modified scheme. For every candidate y(i,j) ∈ Y(i):
(1) Decode and validate every sub-candidate u ∈ {y(i,j)

s },
(2) Store any v that was successfully decoded and validated,
and the number of its appearances A(v) along the decoding
instances in {y(i,j)

s }, (3) Apply a majority rule on the set:

Maj(V) =

{
v∗ ,∀v ∈ V \ {v∗} : A(v∗) > A(v)

∅ , there exist no such v∗
. (7)

From this point, the word v∗ takes the place of v as defined
in the decoding of Construction 1, and the rest of the decoding
process is unaltered. Note that the encoding process is also
unchanged. The modified decoding process is summarized
in Algorithm 1, where we denote D1(z, s) as the result of
decoding the word z with respect to H1 within the coset
of syndrome s, and similarly for Do(a,S), with a word a
decoded with respect to Ho to a syndrome S. The derivation
of outer channel probabilities and optimal outer redundancy
are omitted, and are analyzed similarly to the analysis in [1].

Algorithm 1: Decoding Construction 1 with Deletions

Input: E
(
{x(i)}Mi=1

)
,Y,H1, H̄2,Hc,Ho

for 1 ≤ i ≤M do
Align w(i) over Y, and form Y(i)

Set ’found’← 0
for 1 ≤ j ≤ |Y(i)| do // Inner Decoding

Set V = ∅
for every u ∈ {y(i,j)

s } do
Decode v = D1(uI , s

(i)
1 )

Calculate ŝ
(i)
2 = H̄2v

T

if ŝ(i)2 = s
(i)
2 then // Validation

V ← V ∪ {v}, A(v) = A(v) + 1
v∗ = Maj(V) (Eq. 7)
if v∗ 6= ∅ then // Appropriate candidate

if ’found’ = 0 then
Calculate b(i) = Hc(v

∗)T

Set ’found’← 1
else // More Than One Candidate

Set b(i) =
⊗

, break
if ’found’ = 0 then // No Candidates

Set b(i) =
⊗

// Outer Decoding

Decode â = Do(b,S), where b = [b(1), . . . , b(M)]
for 1 ≤ i ≤M do // Inverse Mapping

Map x̂
(i)
I = FH([s(i), â(i)])

Reconstruct x̂(i) from x̂
(i)
I ,w

(i)

Output: {x̂(i)}Mi=1
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