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Abstract—This paper studies coding on channels with the
barrier property: only errors to and from a special barrier state
are possible. This model is motivated by storage media that have
heterogeneous state structure, not admitting the usual multi-bit
scaling of the representation states. Our contributions include
derivation of the channel capacity, efficient maximum-likelihood
and list decoding algorithms, and finite-block-length analysis
using random codes. This work is the first that addresses a
barrier channel with separate parameters for the transitions into
and out of the barrier state. Earlier work addressed special-case
single-parameter models, and focused primarily on the worst-case
coding performance.

I. INTRODUCTION

A key property of next-generation solid-state data-storage
devices, sought by researchers, manufacturers and customers,
is extreme information density. The race toward denser storage
runs two main scaling trajectories: (1) packing more memory
cells per unit area, and (2) increasing the number of represen-
tation levels per memory cell. However, both scaling mech-
anisms suffer from reliability challenges: higher cell density
increases read/write noise+interference, and more representa-
tion levels shrink the noise margins and slow down read and
write. Industry commonly combines these two mechanisms
through the multi-bit cell principle, in which an integer power
of 2 number of levels are uniformly spaced across the cell’s
read/write dynamic range.

Some emerging storage media may be able to span mul-
tiple representation levels/states, but without the regularity
needed for the multi-bit scaling principle. Hence, in this
paper we study a different representation-scaling principle we
call barrier multi-level cell. This principle requires a media
technology in which one of the Q levels is designated as
the barrier level, and the dominant error transitions are from
non-barrier levels to the barrier, and from the barrier to non-
barrier levels. A sample motivation for the barrier model for
the ternary case (Q = 3) is shown in Fig. 1, where the
barrier level is added in between two well-separated levels.
The barrier model may also be useful for magnetic memories
with Q > 3 (see, for example [1]), if one magnetic state is
more “stable”, and thus attracts most of the errors from the
other states. Another motivating example is next-generation
electrically erasable programmable read-only memories (EEP-
ROMs), where information can be stored in three levels, but

transitions between the highest level and the lowest level are
physically not possible [3].

Toward reliable storage over such media, this paper ad-
vances the study of coding over barrier channels. In the
sequel, a barrier channel is defined by two parameters: p and
q, specifying the transition probabilities into and out of the
barrier state, respectively (see Fig. 2). We call this channel
the dual-parameter barrier channel. Two special cases of the
dual-parameter barrier channel have already been studied in
prior work: [2] addresses the one-directional case (q = 0),
and [3] studies another single-parameter barrier channel in
which p = q/2. Since practical channels may not fall into
one of these special cases, it is motivated to study the general
p,q case. For example, the channel described in Fig. 1 has
p and q values that fit neither of the prior models. Another
contribution of the present work is extending error-correction
capabilities beyond the guaranteed-correction regime, which
was the focus of the prior work.

The formal definition of the dual-parameter barrier channel
is now given:

Definition 1: Let ZQ , {0, . . . , Q− 1}. For any input X ∈
ZQ and output Y ∈ ZQ and parameters 0 ≤ p, q ≤ 1, the Q-
ary dual-parameter barrier channel WQ(p, q) has the transition

Fig. 1: Sample cell-level distribution of a ternary media moti-
vating the barrier model. The corresponding barrier parameters
are p = 9 · 10−3, q = 1.3 · 10−1. The transition probability
between the extreme levels is negligible.



probabilities

P (Y |X) =


1− p, Y = X, X ∈ {1, Q− 1}
p, Y = 0, X ∈ {1, Q− 1}
1− q, Y = X, X = 0
q/(Q−1), Y 6= X, X = 0
0, otherwise

(1)

The important special case of Q = 3 is denoted W (p, q) ,
W3(p, q), and is called the ternary dual-parameter barrier
channel. A diagram describing W (p, q) is given in Fig. 2.

The rest of the paper is organized as follows. In Section II,
we derive the capacity of W (p, q). In Section III, we derive
a maximum-likelihood decoder (MLD) for codes constructed
by the state-of-the-art method of [3]. The new MLD is more
efficient than the prior MLD [3] thanks to a reduction to MLD
of lower-alphabet classical codes in the Hamming metric.
We then propose two more tractable alternatives to the new
MLD, based on list decoding of classical codes. Section IV
demonstrates the empirical performance of the new decoders,
and develops a method for analyzing the performance using
finite block-length random linear codes.

II. CHANNEL CAPACITY OF W (p, q)

We start the treatment of the dual-parameter barrier channel
by deriving its channel capacity. The derivation is given for the
special case Q = 3, but can be extended to the general case.
This generalizes the capacity of the single-parameter special
case W (q/2, q), derived in [3].

To simplify the following expressions, we define the func-
tions βp,q(ϕ) , q + (1− p− q)ϕ and γ(a) , h2(a) + a,
where h2(·) is the binary entropy function.

Theorem 1: The capacity of W (p, q), for p+q < 1, is given
by

γ (βp,q(ϕ
∗))− ϕ∗h2(p)− (1− ϕ∗)γ (q) , (2)

where ϕ∗ , min

 1−q−
(

1+2
− γ(p)−1−h2(q)

1−p−q

)−1

1−p−q , 1

.

Before we prove the theorem, we show that the capacity-
achieving input distribution (CAID) of the channel has the
symmetry Pr{X = 1} = Pr{X = 2}.

Lemma 1: Let Φ∗X be the CAID of W (p, q) with arbitrary
p, q. Then there exists 0 ≤ ϕ ≤ 1 such that

Φ∗X(x) =

{
ϕ/2, x 6= 0
1− ϕ, x = 0

(3)

Proof: Let ΦX be an input distribution, and define the
compact notations ϕx , ΦX(x). Denote ϕ , ϕ1 + ϕ2. Since
H(Y |X) = (1 − ϕ)(h2(q) + q) + ϕh2(p) is a function of ϕ
alone, the claim follows by proving that H(Y ) is maximized
with ϕ1 = ϕ2. Define Z as an indicator of the event Y 6= 0.
Since H(Y ) = H(Z) + H(Y |Z), while H(Z) is a function
of ϕ alone, it remains to maximize H(Y |Z). Now,

H(Y |Z) = Pr{Z = 1}H(Y |Z = 1), (4)

which is maximized when Pr{Y = 1} = Pr{Y = 2}. Since
X = 1 and X = 2 have the same transition probability p,
setting ϕ1 = ϕ2 results in Pr{Y = 1} = Pr{Y = 2}.

We now prove Theorem 1.
Proof: Let Φ∗X be the CAID as defined in Lemma 1. The

capacity is given by H(Y )−H(Y |X). Calculating Pr{Y = y}
for every y ∈ {0, 1, 2} leads directly to H(Y ) = h2(1 −
βp,q(ϕ

∗))+βp,q(ϕ
∗). Due to the symmetry of h2(·) around 1/2,

we can substitute 1− βp,q(ϕ∗) with βp,q(ϕ∗) in its argument,
and get H(Y ) = γ (βp,q(ϕ

∗)). It is also straightforward to
see that the conditional entropy is H(Y |X) = ϕ∗h2(p)+(1−
ϕ∗)γ(q).

It remains to find ϕ∗. Calculating the derivative of the
mutual information I(X;Y ) with respect to ϕ, we get

d

dϕ
I (X;Y ) =

(1− q − p) log
(1− βp,q(ϕ)

βp,q(ϕ)

)
+ 1 + h2(q)− γ(p). (5)

It can be observed that I(X;Y ) is concave in ϕ, because the
derivative of the log in (5) is negative from the fact that βp,q(ϕ)
is monotone increasing. Since I (X;Y ) = 0 for ϕ = 0, ϕ∗

equals the maximum point ϕMAX of I (X;Y ) if ϕMAX ≤ 1,
and ϕ∗ = 1 otherwise. By equating (5) to 0, we get

ϕMAX =
1− q −

(
1 + 2−

γ(p)−1−h2(q)
1−p−q

)−1

1− p− q
, (6)

and the theorem statement follows.

Remark 1: The capacity can also be derived with similar
arguments for the (less interesting) case of p+ q > 1, but we
omit this derivation. In the special case of p+ q = 1, βp,q(ϕ)
does not depend on ϕ, which leads to ϕ∗ = 1 for every p, and
capacity of 1− p.
Fig. 3 depicts the channel capacity as a function of p + q,
for several relations between p and q. Note that the channel
obtained by not using the barrier level is simply BEC(p). It can
be seen in Fig. 3 that its capacity is significantly lower than
the capacity of ternary barrier channels with various values of
p and q. The plot also motivates specifically the study of the
dual-parameter version of the channel, by showing that the
known special case p = q/2 has large gaps (both upward and
downward) to other potentially interesting cases.

III. DECODING ALGORITHMS

A. Preliminaries and known results

We first define the type of errors occurring in barrier
channels, assuming state 0 is the barrier state.

Definition 2: Let c ∈ ZnQ be a codeword sent over the
barrier channel, and r ∈ ZnQ be the word received at the
channel output. A barrier error occurred in index i if one of
the following holds:

1) ci = 0 and ri 6= 0.
2) ci 6= 0 and ri = 0.
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Fig. 2: The dual-parameter barrier channel for Q = 3.

Fig. 3: Capacity of the ternary dual-parameter barrier channel
W (p, q), for several relations between p and q.

In this subsection we review the important results previously
derived on correction of barrier errors. [2] derived the size
of codes that guarantee correction of t barrier errors, and
proposed a construction for t = 1. The main contribution of [3]
is a construction method for ternary codes correcting t barrier
errors, using a pair of binary Hamming-metric constituent
codes. We review this construction method for completeness of
the presentation. Let us construct each Q-ary codeword c ∈ C
based on codewords from two codes: (1) θ ∈ Θ where Θ is
a binary code with length n and minimum Hamming distance
2t+ 1; and (2) λ ∈ ΛwH(θ) where Λw is a (Q− 1)-ary code
with length w and minimum Hamming distance t+ 1.

The locations of zeros in the Q-ary codeword c are deter-
mined by the locations of zeros in θ. That is,

ci = 0,∀i : θi = 0. (7)

For the remaining positions, symbols are set according to λ:

ci = ψ
(
λσi(θ)

)
,∀i : θi = 1, (8)

where σi(x) is the number of indices i′ ≤ i that have non-
zeros in x, and ψ(xi) = xi + 1.

A code constructed as above is denoted C = Θ ⊗ {Λw}w,
and it is proved [3] to guarantee correction of up to t barrier
errors.

B. Reduction of MLD to MLD of the simpler constituent codes

In [3], an ML decoder (for the special case p = q/2) is
defined through a distance metric on the ternary alphabet Z3.
For more efficient decoding, we show in this subsection a
reduction of ML decoding to simpler ML decoders of the
constituent codes Θ and Λw. The advantage of this reduction
is that the constituent codes are traditional Hamming-metric
codes over lower-order alphabets (Θ is a binary code, and
when Q = 3 so are Λw). Let r = (r1, . . . , rn) ∈ ZnQ be
the word output from the channel W (p, q). An MLD for a
code C = Θ ⊗ {Λw}w needs to find a pair of codewords
θ ∈ Θ and λ ∈ ΛwH(θ) that jointly maximize the likelihood
of observing r. We now decompose this task using individual
decoders for Θ,Λw, and a rule for combining the individual
decoder outputs.

1) MLD for the code Θ: We first define a mapping from
the channel alphabet to the binary alphabet of Θ.

Definition 3: Let x = (x1, . . . , xn) ∈ ZnQ. The indicator
mapping ı (x) = (ı (x1) , . . . , ı (xn)) is defined as

ı (xj) =

{
1, xj ∈ ZQ \ {0}
0, xj = 0

. (9)

Now we define the following decoder for Θ, invoked on the
input ı (r).

Definition 4: The ML indicator decoder for Θ outputs the
codeword

θ̂ = arg max
θ∈Θ
{µ1ı (r)θT − µ2wH(θ)}, (10)

where µ1 , log
(

(Q−1)(1−p)(1−q)
pq

)
and µ2 , log

(
1−q
p

)
.

We will later show that θ̂ in (10) maximizes the indicator
vector’s likelihood function Pr{ı (r) |θ}, hence the ML qual-
ification in Definition 4.

2) MLD for the codes Λw: We first define a mapping from
the length-n channel output to the decoder input.

Definition 5: Given θ ∈ {0, 1}n, the residual map-
ping maps a vector r ∈ ZnQ to a vector ρ(θ)(r) =(
ρ

(θ)
1 (r), . . . , ρ

(θ)
wH(θ)(r)

)
such that for every 1 ≤ j ≤ n with

θj = 1,

ρ
(θ)
σj(θ)(r) =

{
?, rj = 0
rj − 1, otherwise

(11)



Note that the alphabet of the elements of ρ(θ)(r) is {ZQ−1 ∪
{?}}. Now we define the following decoder for ΛwH(θ),
invoked on the input ρ(θ)(r).

Definition 6: Given θ ∈ {0, 1}n, the ML residual de-
coder for ΛwH(θ) first finds all the codewords λ such that
λi = ρ

(θ)
i (r) for every i with ρ

(θ)
i (r) 6=?. Then the decoder

outputs λ̂ if unique, “fail” if multiple codewords were found,
and “reject” if none were found.

3) Combining the individual MLDs: Let r be the channel
output. We are now ready to define the combined decoder.
Note that Ψ(θ̂, λ̂) in the last line marks the mapping per-

Algorithm 1 MLD for C = Θ⊗ {Λw}w:

Input : r ∈ ZnQ - channel output
Output : ĉ ∈ ZnQ - decoded codeword
Initialize: Θ′ ← Θ
while not returned do

set θ̂ to the output of indicator MLD with input ı (r) and
code Θ′

invoke residual MLD with input ρ(θ̂)(r) and code ΛwH(θ̂)
if “reject” then

Θ′ ← Θ′ \ θ̂
else if “fail” then

return decoding failure
else

return ĉ = Ψ(θ̂, λ̂)
end if

end while

formed by the construction in (7),(8).
4) Proving the ML property of Algorithm 1: Given a

channel output r and a candidate codeword c, we can partition
the n coordinates to 5 disjoint sets: S0 where ri = ci = 0,
S1 where ri = ci 6= 0, S2 where ri = 0, ci 6= 0, S3 where
ri 6= 0, ci = 0, S4 where ri 6= 0, ci 6= 0, ri 6= ci. Thus
the ML codeword is the one that maximizes

∑3
s=0 `s|Ss|,

subject to |S4| = 0, where `0 = log(1− q), `1 = log(1− p),
`2 = log(p), and `3 = log(q/(Q− 1)). This follows from the
channel definition and taking the log of the likelihood function
Pr{r|c}.

Proposition 1: For any r, let ĉ(ML)(r) be a unique ML
codeword from C = Θ ⊗ {Λw}w. Then the output of Algo-
rithm 1 equals ĉ(ML)(r).

Proof: We first prove that the indicator decoder max-
imizes

∑3
s=0 `s|Ss| + `1|S4|. This can be seen by substi-

tuting in this sum the identities |S1| + |S4| = ı (r)θT ,
|S3| = wH(ı (r)) − ı (r)θT , |S2| = wH(θ) − ı (r)θT , and
|S0| = n − wH(ı (r)) − wH(θ) + ı (r)θT . By expressing all
set sizes as functions of wH(θ), ı (r)θT , and ignoring all
terms that do not depend on θ, we get (10).

Next observe that for any c = Ψ(θ,λ), |S4| = 0 if and only
if λ satisfies the condition in Definition 6 that λi = ρ

(θ)
i (r)

for every i with ρ
(θ)
i (r) 6=?. To complete the proof, assume

that the pair θ̂, λ̂ output by Algorithm 1 is different from the
unique ML pair θ̂

(ML)
, λ̂

(ML)
. Case 1 θ̂ 6= θ̂

(ML)
: since

both Q-ary codewords have |S4| = 0 (the former by not being
rejected and the latter by the Q-ary ML condition), a higher Q-
ary likelihood implies a higher value in (10); a contradiction.
Case 2 θ̂ = θ̂

(ML)
: also cannot happen because it implies

that Ψ(θ̂, λ̂
(ML)

), Ψ(θ̂, λ̂) are two distinct ML codewords,
in contradiction to uniqueness. Similarly, the uniqueness also
excludes the case that Algorithm 1 returns decoding failure.

The joint ML decoder in Algorithm 1 improves over
the separate bounded-distance decoders suggested in [3] for
Θ⊗{Λw}w codes. Its main advantage is that the two decoders
cooperate, allowing the residual decoder to reject wrong Θ
codewords with high indicator likelihoods. This feature is
important when the errors exceed the unique-decoding capa-
bilities of Θ.

C. Cooperative List Decoding (CLD)

Algorithm 1 simplifies ML decoding compared to the Q-ary
barrier ML decoder, by reduction to decoding of binary codes
in the Hamming metric and erasure decoding. However, ML
decoding of binary codes is still in general a computationally
hard problem. To mitigate this hardness, we propose a simpli-
fication of Algorithm 1 using list decoding, which is a more
tractable computational task than ML decoding. We define two
variants of this proposition.

1) Cooperative list decoder (CLD): A list decoder for the
code Θ outputs a list of likely codewords {θ̂l}Ll=1, where L
is the list size. Then the CLD for the code C = Θ ⊗ {Λw}w
is obtained by running Algorithm 1 with initializing Θ′ ←
{θ̂l}Ll=1 instead of Θ′ ← Θ. This way, the indicator MLD only
needs to search over the L list codewords, with the benefit that
L� |Θ|.

2) Persistent cooperative list decoder (PCLD): Identical to
CLD, but instead of returning “decoding failure” when residual
MLD fails, it continues to the next codeword in the list (this
amounts to merging the ‘else if’ of Algorithm 1 into the ‘if’
statement, which will now be: if “reject” or “fail”).

It is clear that with CLD and/or PCLD, similarly to the
MLD of Algorithm 1, a decoding success can occur even if the
correct θ is not the ML codeword given the channel output’s
indicator word. Thanks to its persistence, PCLD may succeed
in finding the correct codeword further down the list, while
CLD stops the search upon residual-decoding failure. Note
that neither CLD nor PCLD are equivalent to MLD, because
the list decoder of Θ in general does not guarantee finding
the ML θ codeword. The special case of CLD with L = 1 is
the previously suggested decoder based on unique decoding
of Θ. Our generalization to L > 1 is more powerful not only
thanks to more opportunities to find the most likely indicator
codeword, but also in its ability to reject wrong indicator
codewords using information from the residual decoder.

3) Success conditions for PCLD: The PCLD succeeds in
all instances where the following conditions are met: (1) The
correct codeword θ ∈ Θ is in the list {θ̂l}Ll=1, (2) all other
codewords in the list that have higher or equal likelihoods than



θ given ı (r) reject or fail by the residual decoder, and (3)
residual decoding of ρ(θ)(r) does not return decoding failure.

IV. PERFORMANCE EVALUATION

A. Reed-Muller indicator codes and BCH residual codes

We evaluate the PCLD performance for ternary (Q = 3)
barrier errors using widely adopted binary codes for Θ and
Λw: Reed-Muller (RM) codes for the former and modified
(shortened/lengthened) BCH codes for the latter. To facilitate
comparison with unique decoding, we design both codes such
that C = Θ ⊗ {Λw}w guarantees correction of t barrier
errors (as in Definition 2). Toward this end, we take Θ to
be a RM(r,m) code such that dRM = 2m−r ≥ 2t + 1,
and construct the family of codes {Λw}nw=0 by shortening or
lengthening primitive binary BCH codes with dBCH ≥ t + 1
to fit lengths w ∈ {0, . . . , n}.

When the number of barrier errors is t+τ , for several values
of 0 ≤ τ ≤ n−t, we evaluate the decoding-success probability
of random codewords from C, averaged over all patterns of
barrier errors. We compare the results of three decoders: (1)
unique RM decoder (based on the recursive decoder in [4])
followed by BCH erasure decoding, (2) list RM decoder
(based on the recursive algorithm in [5] and its implementation
in [6]) followed by BCH erasure decoding of the list’s closest
codeword to ı (r) (in the Hamming metric), and (3) the PCLD
decoder that uses the same RM list decoder, but iterates
on the list codewords (as described in Section III-C2) in
increasing Hamming distances to ı (r). Figure 4 compares the
decoding success of the three decoders, for Θ = RM(3, 7)
(block length n = 128). It can be observed that PCLD has
substantial success probability even for τ = 3, 4 errors beyond
the guaranteed t = 7, while the two other decoders degrade
much faster with τ . The performance of PCLD improves
with increasing L, while the non-cooperative list alternative is
significantly inferior even with the maximal list size L = 32.
This demonstrates that the power of PCLD comes from the
cooperation with the residual code, and not merely from the
larger list sizes.

B. Analysis with residual random linear codes (RLC)

Toward a systematic design of the residual codes {Λw}nw=0,
we analyze the outcomes of the residual decoder assuming
random linear codes (RLC) with a prescribed redundancy.
Throughout this sub-section we focus on binary codes Λw
(corresponding to Q = 3), but extension to non-binary codes is
possible. Recall from Section III-C3 that two events related to
the residual codes cause failure of the PCLD: 1) not rejecting
or failing on a wrong codeword θ̂, and 2) decoding failure of
the correct codeword θ. We want to analyze the probabilities
of these events when the residual codes are RLC, defined next.

Definition 7: Define Λ[w,w − r] as a linear random code
defined by a parity-check matrix H with dimensions r × n,
where each entry of H is an independent and identically
distributed (i.i.d.) Bernoulli random variable with parameter
1/2.

Fig. 4: RM-BCH scheme: Probability of successful decoding

Suppose the residual decoder is invoked on ρ(θ)(r) of
the correct codeword θ. Then the probability of it returning
decoding failure is found by the following well known result.

Proposition 2: Let Λ[w,w − r] be a random linear code,
and λ ∈ Λ[w,w−r] be any codeword. The failure probability
of ML-decoding λ with 1 ≤ e ≤ r erasures, denoted f1(r, e),
is

f1(r, e) = 1−
e−1∏
i=0

(
1− 2i−r

)
. (12)

Proof: Immediate from evaluating the probability that the
erasure-positions sub-matrix of H is full rank, and taking the
complement. See e.g. Eq. (3.2) in [7].
For PCLD failures due to a wrong codeword θ̂ not rejected
or failed by the residual decoder, we have the following.

Proposition 3: Let Λ[w,w − r] be a random linear code,
and ρ ∈ {0, 1, ?}w be a length-w word drawn uniformly from
{0, 1}w and erased in 1 ≤ e ≤ r positions. The probability
that ML-decoding ρ neither rejects nor fails, denoted f2(r, e),
equals to

f2(r, e) = [1− f1(r, e)] · 2−(r−e). (13)

Proof: Not failing and not rejecting means that there is a
unique way to complete the erasures of ρ into a codeword.
This requires that He, the erasure-positions sub-matrix of
H , is full rank, whose probability is the first term in (13).
Given a full-rank He, the probability of not rejecting ρ is the
probability that the vector b obtained by multiplying the non-
erasure-position sub-matrix Hē by the non-erased symbols of
ρ is in the column span of He. Since ρ is drawn uniformly
independent of Hē, b is uniformly distributed in {0, 1}r. The
second term in (13) follows as the probability that a uniform
vector in {0, 1}r is in the span of e linearly-independent
random size-r columns.

Propositions 2 and 3 can be used to analyze the success
probability of PCLD once we know the distributions of lengths



Fig. 5: Decoding-success probability using RLC analysis in
conjunction with RM indicator codes.

(w) and erasure counts (e) induced by the output list of the
indicator decoder. We show the outcome of this analysis in
Fig. 5, comparing three different values of the residual-code
redundancy (r).

V. CONCLUSION

The work presented in this paper commenced with a gen-
eralization of a non-binary non-symmetric channel, in which
all errors are either to or from a specific alphabet symbol. We
characterized the channel theoretically by deriving its capacity
and maximum-likelihood decision rule. On the practical side,
we devised a general decoding algorithm that enhances decod-
ing performance compared to previously suggested decoders.
We exemplified the performance improvement in block-error
probability using exhaustive simulations for a code constructed
from Reed-Muller and BCH constituent codes. Finally, we
developed a framework for analyzing our new decoder using
linear random codes.

A straightforward direction for future research is the analy-
sis and evaluation of the newly suggested decoding algorithm
using additional codes for Θ. Specifically, designing the con-
stituent codes according to the channel parameters may further
optimize the scheme. In addition, decoding soft-inputs from
the channel can strengthen the decoder, and allow information
from both codes to be utilized jointly (instead of sequentially
as in CLD/PCLD).
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