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Abstract—We study spatially coupled LDPC codes that allow
access to sub-blocks much smaller than the full code block.
Sub-block access is realized by a semi-global decoder that
decodes a chosen target sub-block by only accessing the target,
plus a prescribed number of helper sub-blocks adjacent in
the code chain. This paper analyzes the semi-global decoding
performance of spatially coupled LDPC codes constructed from
protographs. The main result shows that semi-global decoding
thresholds can be derived from certain thresholds we define
for the single-sub-block graph. These characterizing thresholds
are also used for deriving lower bounds on the decoder’s
performance over channels with variability and memory across
sub-blocks, which are motivated by applications in data storage.

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)
codes [1] have been shown to be an attractive class of graph
codes, thanks to their good performance in both asymptotic
and finite-block regimes. Most of their good properties stem
from the convolution-like structure imposed on their code
graphs. A very popular and effective construction method for
SC-LDPC codes uses chaining of coupled protographs [2],
where extremely simple protographs (e.g. regular) are often
sufficient for extremely good performance [3], [4]. Another
advantage of the convolutional structure lies in its enabling
of efficient low-latency decoders such as the window decoder
[5], [6]. SC-LDPC codes have been the subject of very
active research recently (see e.g. [7], [8], [9], [10], [11]),
improving their performance in different scenarios. In this
paper, we harness the convolutional structure of SC-LDPC
codes toward a new feature: allowing selective decoding
of target sub-blocks within the full code block, without
requiring to start the decoding from the beginning of the
block. This feature is attractive for deploying SC-LDPC
codes in storage applications, which require read access to
small units of data at low latency.

In a recent series of papers [12], [13], [14], [15], a new
type of SC-LDPC codes for efficient sub-block access is
presented and studied. These codes, called SC-LDPCL codes
(suffix ’L’ stands for locality), can be decoded locally at the
level of sub-blocks that are much smaller than the full code
block, thus offering fast access to the coded information
alongside the strong reliability of the global full-block de-
coding. Earlier work on codes with sub-block access includes
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multi-sub-block Reed-Solomon codes in [16], and multi-sub-
block LDPC codes (without spatial coupling) in [17].

This paper contributes a theoretical methodology for an-
alyzing the performance of a general class of SC-LDPCL
codes decoded by the semi-global (SG) decoder, first defined
in [12]. SG decoding is an intermediate decoding mode in
between local and global decoding, in which a prescribed
number d of helper sub-blocks can be accessed in addition
to a target sub-block requested by the user. In Section III,
we detail an efficient method to determine or bound the
SG decoding thresholds (in the limit of large d), for both
cases of starting from a termination or non-termination sub-
block. The key component of this method (Section III-A),
is a characterization of certain thresholds for the single
sub-block code that are shown to govern the performance
of the SG decoder accessing an arbitrary number of sub-
blocks. The link between the single sub-block thresholds
and SG decoding performance is established by a density-
evolution analysis formalizing and accounting for the in-
formation transfer between subsequent sub-blocks in the
decoding process. In Section IV, we study the performance
of SG decoding over channels with variability and memory,
motivated by applications in which the channel quality varies
across information sub-units (e.g., pages in data storage [18],
[19]), and with proximate sub-units having correlated quality
parameters.

This paper extends the prior results of [12] on SC-LDPCL
codes in several ways: 1) it introduces a new analysis method
based on single-sub-block thresholds, and as a result, 2)
it enables the construction of general unit-memory codes
instead of only cutting-vector based as in [12]. In addition, 3)
it extends the analysis on channels with sub-block variability
from an i.i.d. model to a Markov model with spatial memory.
For simplicity and clarity, we present the results assuming
density evolution over the binary erasure channel (BEC), but
the results can be extended to other channels using known
extensions of the density-evolution method [20], [21]. Due
to space limit, key results are given without proofs. The full
proofs can be found in [22].

II. SC-LDPC AND SC-LDPCL BACKGROUND

An LDPC protograph [2] is a bipartite graph represented
via a bi-adjacency matrix B (a protomatrix). The protograph
is used as a base graph to construct a Tanner graph. We focus
here on asymptotic performance, hence we skip the details



of the lifting operation performed for obtaining a long code
from B (see [3]). We analyze the protographs over the binary
erasure channel BEC(ε), and write ε∗(B) for the belief-
propagation (BP) decoding threshold of the protograph B.

An (l, r)-regular SC-LDPC protograph1 is constructed as
follows. Let B = 1l×r be an all-ones base matrix, let
T ≥ 1 be an integer memory parameter, and let {Bτ}Tτ=0

be binary matrices such that B =
∑T
τ=0Bτ (in this paper

we consider only binary B matrices). Coupling M > 1
copies of B amounts to diagonally placing M copies of(
B0;B1; · · · ;BT

)
in the coupled matrix (for more details,

see [3]). Throughout this paper, we consider (l, r)-regular
SC-LDPC protographs with memory T = 1, i.e., B = 1l×r

and B1 = 1l×r − B0. We call such codes unit-memory
binary-regular SC-LDPC codes. The results can be extended
to higher-memory codes with some technical modifications.
For example, using higher memory will add connectivity in
the SC code which can be helpful in terms of SG decoding
over channels with memory.

A. SC-LDPCL: Codes With Sub-Block Locality

To endow SC-LDPC codes with more flexible access, we
divide the codeword to M sub-blocks (SBs), where each
SB corresponds to one copy of (B0;B1) in the coupled
matrix. We define an (l, r, t)-regular SC-LDPC code with
SB locality (in short SC-LDPCL) to be an (l, r)-regular SC-
LDPC protograph with a partitioning that is constrained such
that B0 has l − t ≥ 2 all-one rows and t mixed rows (i.e.,
with ones and zeros). The all-one and mixed rows correspond
to local checks (LC) and coupling checks (CC), respectively
(LCs are connected to only within SBs, and CCs connect
between SBs). The resulting protograph can be visualized
as a chain of M > 1 coupled SBs, where each SB is an
(l− t, r)-regular local code, and adjacent SBs are connected
via t coupling checks with connections specified by the t
mixed rows in B0.

Let Bloc be the (l − t)× r all-ones matrix that forms the
local part of B0, and let Bleft, Bright be the t × r matrices
that form the coupling parts of B0, B1, respectively. Then,
the coupled protomatrix can be written as

. . . Bloc

Bright Bleft

Bloc

Bright Bleft

Bloc
. . .

 . (1)

Bleft and Bright connect a SB to its neighbors on the left
and right, respectively.

Example 1. For l = 3, r = 6, t = 1, the specific SC-LDPCL
construction proposed in [13] yields

Bleft

Bloc

Bright

 =


1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 1 1 1

 . (2)

1The term regular refers to the protomatrix B, while the resulting coupled
graph is not regular due to termination.

B. Semi-Global Decoding

In SG decoding [12], the user is interested in SB m ∈
{1, . . . ,M}, which is called the target SB, and the decoder
decodes it with the help of additional d neighbor SBs called
helper SBs. In SG decoding there are two phases: the
helper phase, and the target phase. In the former, helper
SBs are decoded locally, incorporating information from
other previously decoded helper SBs. In the latter, the target
SB is decoded while incorporating information from its
neighboring helper SBs.

III. THRESHOLD ANALYSIS OF SG DECODING

We now detail the theoretical threshold analysis for SG
decoding of SC-LDPCL protographs defined in Section II-A.
Our key analysis tool is a family of decoding thresholds that
can be efficiently computed from the protomatrix of a single
SB, and in turn be used to derive the performance of the SG
decoder spanning an arbitrary number of SBs.

A. Single-SB Thresholds

The proposed thresholds are defined over erasure-transfer
functions, defined next.

Definition 1. Consider a helper SB during SG decoding. Let
ε ∈ [0, 1] be the SB’s erasure rate, and let δI ∈ [0, 1]t be
the incoming DE values from a previously decoded helper.
The erasure-transfer function outputs δO ∈ [0, 1]t, given
the input arguments ε and δI . We denote by ∆L (ε, δI) and
∆R (ε, δI) the erasure-transfer functions corresponding to
right and left helper SBs, respectively.

When considering an erasure-transfer function ∆(ε, δ)
(right or left), we identify three important channel-parameter
thresholds2 ε∗1, ε

∗
2, ε
∗
3. We call them the single-SB thresholds.

The first threshold ε∗1 is the largest channel parameter that
gives all-0 erasure-transfer output for any δI :

∆(ε, δ) = 0, ∀ε < ε∗1, ∀δ ∈ [0, 1]t. (3)

In [22] it is shown that ε∗1 is the threshold induced by
the protograph Bloc. The second threshold ε∗2 is the largest
channel parameter such that

∆(ε, δ) ≺ δ, ∀ε < ε∗2, ∀δ ∈ [0, 1]t. (4)

Practically, this means that sufficiently many consecutive
helpers with ε < ε∗2 will decrease the transferred erasure
rate to zero. We calculate ε∗2 by computing ∆(ε, δ) for all
δ ∈ [0, 1]t (sampled on a grid) and with increasing values of
ε until (4) is violated. The third threshold ε∗3 is the largest
channel parameter such that incoming all-0 DE values are
preserved in the output, i.e.,

∆(ε, 0) = 0, ∀ε < ε∗3. (5)

In addition, we define ε∗l,r to be the threshold of the regular
(l, r) (block-LDPC) ensemble.

2These thresholds are properties of the protograph used, however, for ease
of reading we make this implicit in the notations.



Example 2. Consider the (l = 3, r = 6, t = 1) SC-LDPCL
protograph from Example 13. The SB thresholds of this
protograph are given by ε∗1 = 0.2, ε∗2 = 0.3719, ε∗3 = 0.4297.
In addition, ε∗l,r = 0.4294.

Finally, we define the two-sided threshold ε∗(δL, δR) as
the maximum erasure rate such that the SB is successfully
decoded locally given incoming DE values δL from left and
δR from right. For example, if δL = δR = 1, then the
SB cannot use any side information, and its threshold is the
local threshold, i.e., ε∗(1, 1) = ε∗1. Furthermore, we have the
following result (proof omitted).

Proposition 1. For left and right helper SBs, ε∗(0, 1) =
ε∗3 = ε∗([Bleft;Bloc]), and ε∗(1, 0) = ε∗3 = ε∗([Bloc;Bright]),
respectively.

B. SG Decoding Thresholds over Memoryless Channels

We now derive the thresholds for SG decoding in the
limit of large d, when decoding starts from a termination
or non-termination SBs. Toward this end, we use a binary
parameter τ ∈ {0, 1} to mark the first-accessed-helper type:
termination (τ = 0) or non-termination (τ = 1). The results
in this section apply to unit-memory binary-regular SC-
LDPC codes, but for terseness we keep this implicit in most
of the result statements. The thresholds are now defined.

Definition 2. Let τL, τR ∈ {0, 1} indicate termination SBs
(τ = 0) or not (τ = 1) from left and right of the target
SB, respectively. We define ετL,τRSG as the largest channel
parameter such that the SG decoder successfully decodes
the target SB in the limit of d→∞ helper SBs.

For simplicity of the derivations, we assume that the SBs
are symmetric (∆L = ∆R , ∆). For τ ∈ {0, 1}, let
δ
(τ)
0 (ε), δ

(τ)
1 (ε), . . . be the sequence of inter-SB DE values

between helper SBs during SG decoding, with τ = 0 if
decoding starts in a termination SB, and τ = 1 otherwise,

δ
(τ)
i+1(ε) = ∆

(
ε, δ

(τ)
i

)
, i ≥ 0, τ ∈ {0, 1},

δ
(0)
0 = 0, δ

(1)
0 = 1.

(6)

For every ε, ∆(ε, δ) is monotonically non-decreasing4 in δ.
Consequently, for τ ∈ {0, 1} the sequences {δ(τ)i (ε)}i≥0
(which are bounded by [0, 1]) converge to some limit value.

Definition 3. For τ ∈ {0, 1}, let δ̂
(τ)

(ε) = limi→∞ δ
(τ)
i (ε).

In view of (6) and Definition 3, for every ε ∈ [0, 1],
∆
(
ε, δ̂

(τ)
(ε)
)

= δ̂
(τ)

(ε).
From the fact that termination can only help and from

symmetry, we know that ε1,1SG ≤ ε
0,1
SG = ε1,0SG ≤ ε

0,0
SG. We now

provide results we can prove on the different SG thresholds
(proofs omitted).

3This protograph has a symmetry property that gives ∆L(·, ·) =
∆R(·, ·), thus we denote both erasure-transfer functions as ∆(·, ·). Note
that for t = 1, the input δI and output δO of ∆(·, ·) are scalars.

4Please do not confuse this property with the fact that ∆(ε, δ) may be
smaller or larger than δ.

Proposition 2. ε1,1SG ≥ ε∗2, where ε∗2 is given in (4).

Proposition 3. ε0,0SG ≤ ε∗(0, 0), where ε∗(·, ·) is defined in
Section III-A

Theorem 4. ε0,1SG ≥ ε∗3. In addition, if ε∗l,r ≤ ε∗3 and for every

ε > ε∗3, δ̂
(0)

(ε) = δ̂
(1)

(ε), then ε0,0SG = ε0,1SG = ε∗3.

Remark 1. The conditions ε∗l,r ≤ ε∗3 and δ̂
(0)

(ε) = δ̂
(1)

(ε)
for ε > ε∗3 hold for many constructions (see Example 2). ε∗l,r
is the threshold of the l× r all-ones matrix, while in view of
Proposition 1, for left helper SBs, ε∗3 equals to the threshold
of the l × r protomatrix [Bleft;Bloc]. For many assignments
of Bleft, we will get ε∗l,r ≤ ε∗3 (see Table I in Section IV-D).

In addition, the condition δ̂
(0)

(ε) = δ̂
(1)

(ε) holds whenever
∆(ε, δ) = δ for a unique δ ∈ [0, 1]t. In all of the DE
enumerations that we have done, this was the case.

The meaning of ε0,0SG = ε0,1SG in Theorem 4 is that for
constructions that satisfy the added conditions in Theorem 4,
if one side starts from a termination, it does not help to start
the other side from termination.

IV. PERFORMANCE OVER THE SUB-BLOCK
MARKOV-VARYING (SBMV) CHANNEL

We now turn to analyze SC-LDPCL codes over channels
with SB-variability and memory. SG decoding is especially
attractive for channels with variability, thanks to the oppor-
tunity to have high-quality helper SBs contributing sufficient
information toward successful target decoding. We model the
channel as a Markov chain (Section IV-A), and for the anal-
ysis we define another: a simplified channel Markov chain to
fit the SB thresholds of the code ensemble (Section IV-B).

A. SBMV Channel Model

Let E = {e1, e2, . . . , e|E|} be the possible channel states
(erasure rates), and let {Em}Mm=1 be a Markov chain describ-
ing the channel state of SBs m ∈ {1, 2, . . . ,M}, with the
transition probabilities

Pr
(
Em = ej

∣∣Em−1 = ei
)

= Pi,j , ∀ 2 ≤ m ≤M, (7)

where P is a given |E|×|E| transition matrix. We make all the
standard assumptions about the Markov chain, in particular
having a unique stationary distribution ν = (ν1, ν2, . . . , ν|E|),
such that the expected erasure rate of the SBMV channel is
E [Em] =

∑|E|
i=1 νiei.

B. Code Ensemble’s Sub-Block States

From the perspective of the chosen code ensemble, the
SB states are the projection of the channel states (from
Section IV-A) on the thresholds defined in (3)–(5). Ac-
cordingly, we define the following four states. s1 (local
decoding interval): when the channel parameter is in [0, ε∗1),
that is, the SB is decodable locally; s2 (error-reduction
interval): for parameters in [ε∗1, ε

∗
2), where the inter-DE values

between SBs decrease; s3 (error-free-preservation interval):
parameters in [ε∗2, ε

∗
3), where all-0 incoming DE values are

preserved; and s4 (anti-termination interval): in [ε∗3, 1], where
the outgoing DE values are arbitrarily high, regardless of



the incoming DE values. Let {Bm}Mm=1 be a Markov chain
describing the state of SBs m ∈ {1, 2, . . . ,M} with a state
space S = {s1, s2, s3, s4}. The following results tie the chain
{Bm}Mm=1 to the channel chain {Em}Mm=1 defined in Sec-
tion IV-A. For every i ∈ {1, 2, 3, 4}, let µi ,

∑
k∈si νk. Then

the transition probabilities of {Bm}Mm=1 can be written as
Qi,j = 1

µi

∑
i′∈si

∑
j′∈sj νi′Pi′,j′ . Moreover, the stationary

distribution of {Bm}Mm=1 is given by µ = (µ1, µ2, µ3, µ4).
In view of the strict monotonicity prescribed in (4), for

every ε < ε∗2, we define

q(ε) = min{k ∈ N : ∆(k) (ε, 1) = 0}, (8)

where ∆(k) denotes the k-th sequential invocation of ∆ with
δO of the i-th invocation used as δI of the i+1-st. q(ε) in (8)
is the minimum number of subsequent sub-blocks needed to
drive the inter-sub-block DE values from 1 (no information)
to 0 (full information). Finally, define the (q + 2)× (q + 2)
matrix

Qq =



1 0 0 0 0

Q2,1 0 Q2,2 · Iq−2 Q2,3 Q2,4

Q2,1 +Q2,2 0 0 Q2,3 Q2,4

Q3,1 Q3,2 0 Q3,3 Q3,4

0 0 0 0 1


.

(9)

C. SG Decoding Performance

We now state lower bounds on the probability of SG-
decoding success over the SBMV channel. We state the main
result of this section omitting the proof from [22], which
interestingly uses a third Markov chain tracking the state of
the decoder.

Proposition 5. Let e be the maximal value in E in the
interval [ε∗1, ε

∗
2), and let q = q(e) according to (8) (q = 0

if no e is in this interval). The success probability of SG-
decoding with parameter d (even), over the SBMV channel
P is lower bounded by p(d) ≥ v

(
Q
d/2
q ⊗ Q̂d/2q

)
uT , where

Qq is defined in (9), Q̂q is constructed as in (9) with the
substitution Q̂i,j =

µj

µi
Qj,i, ⊗ is the Kronecker product, and

v = (v1, . . . , v(q+2)2), u = (u1, . . . , u(q+2)2) are given by

vj+(q+2)(i−1) =


µ1 j = i = 1
µ2 j = i = 2
µ3 j = i = q + 1
µ4 j = i = q + 2
0 otherwise

uj+(q+2)(i−1) =

{
1 i = 1 or j = 1
0 otherwise

, 1 ≤ i, j ≤ q + 2.

Example 3. Consider the SBMV channel with E = {e1 =
0.175, e2 = 0.35, e3 = 0.42, e4 = 0.47}, and

P1 =


0 0.5 0.5 0
β α 1− α− 2β β
β 1− α− 2β α β
0 0.5 0.5 0

 (10)
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Fig. 1. Plots corresponding to Proposition 5 for the SBMV channel P1 with
two α values, and the i.i.d. channel with the same average quality.

for some parameters 0 < α, β < 1 such that α + 2β ≤ 1.
We use the (l = 3, r = 6, t = 1) SC-LDPCL protograph
from Example 1, whose thresholds imply that for every
i ∈ {1, 2, 3, 4}, si = {i}, and q = q(e2) = 3. We set
β = 0.01 in P1, yielding for every 0 ≤ α ≤ 0.98 the
stationary distribution (0.0098, 0.4902, 0.4902, 0.0098), and
compare in Figure 1 this channel with two choices of α and
an i.i.d. channel with the same expected erasure rate. The
α = 0.9 channel, which has positive correlation between
neighboring SBs, shows (in blue) better performance than the
i.i.d. model (black), and a larger advantage over the α = 0.1
channel model (green), for all d.

D. Code Design

We now perform a threshold analysis and performance
evaluation of SG decoding for a family of SC-LDPCL
protographs sharing the same code rate and node degrees,
however, differing in edge spreading. We focus on pro-
tographs that have left/right symmetry, and consider coupling
parameters t ≤ 2. Let l = 4 and r = 6 be the column and
row weight of the underlying base matrix B. We consider
t ∈ {0, 1, 2} (t = 0 corresponds to an isolated SB, and
t ∈ {1, 2} corresponds to a SB in a proper SC-LDPC code).

In the case of t = 0, each SB is an (l, r) code. Since
there are no coupling checks, all of the SBs’ thresholds
coincide ε∗3 = ε∗2 = ε∗1 = 0.5061. For t = 1, we have
only a single edge-spreading rule that induces symmetric
SBs. In this protograph Bleft =

(
1 1 1 0 0 0

)
. The

SB thresholds for the t = 1 code are ε∗1 = 0.4294, ε∗2 =
0.4788, ε∗3 = 0.5474. If we use t = 2 coupling check nodes,
then more edge-spreading rules are possible. We calculated
the SB thresholds for all of the possible edge-spreading rules
for t = 2 and found (see details in [22]) that there is one
code that dominates all others, in terms of SG-decoding
performance. This code is given by

Bleft =

(
1 1 0 0 0 0
0 1 1 1 1 0

)
. (11)

The local threshold is ε∗1 = 0.2; the other thresholds,
alongside with the q value (see (8)) for erasure parameter
0.435, are given in Table I for all of the considered codes
(i.e., t = 0, 1, 2). Also shown are the global thresholds ε∗G: the
threshold of the coupled protograph [12] with M = 50 SBs.



TABLE I
THRESHOLDS OF l = 4, r = 6 (RATE 0.33) SC-LDPCL PROTOGRAPHS.

# t ε∗1 ε∗2 ε∗3 ε∗G q(0.435)
1 0 0.5061 0.5061 0.5061 0.5061 1
2 1 0.4294 0.4788 0.5474 0.5564 2
3 2 0.2 0.4442 0.5722 0.5966 7

.
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Fig. 2. Lower bounds on the success probabilities of SG decoding of three
codes over two SBMV channels.

In what follows, we evaluate the SG performance of the
above codes over the SBMV channel. We consider two chan-
nels, both with the transition matrix P2 =

(
0.9 0.1; 0.1 0.9

)
.

For the first one, E1 = {0.435, 0.54} and for the second,
E2 = {0.435, 0.57}. Note that in some designs in Table I,
the erasure rate in the “bad” state (0.54 and 0.57 for E1
and E2, respectively) is greater than ε∗3. This means that
in these particular cases, “bad” SBs are anti-termination
SBs (i.e, in state s4, see Section IV-B). For these cases,
Proposition 5 simplifies to p(d) = 0 for d

2 < q − 1 and
p(d) ≥ 0.5 · (2αq−1 − α2(q−1)), otherwise. Figure 2 shows
the trade-offs between the different designs. The uncoupled
protograph (t = 0) has the highest success probability for no
helper SBs (d = 0), however, since the SBs are uncoupled,
then adding helper SBs does not improve the performance. In
addition, on one hand, the t = 1 design shows high success
probabilities for the E1 channel, and on the other hand the
performance is poor for the E2 channel. This degradation is
a result of a relatively small ε∗3 threshold (0.5474, see line
2 in Table I). Furthermore, the t = 2 design shows the best
performance for the E2 channel (for d ≥ 18), while it requires
high values for d (see q = 7 in Table I).
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