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Design of Bilayer and Multi-layer LDPC Ensembles
from Individual Degree Distributions

Eshed Ram and Yuval Cassuto, Senior Member, IEEE

Abstract—A new approach for designing bilayer and multi-
layer LDPC codes is proposed and studied in the asymptotic
regime. The ensembles are defined through individual uni-variate
degree distributions, one for each layer. We present a construction
that: 1) enables low-complexity decoding for high-SNR channel
instances, 2) provably approaches capacity for low-SNR instances,
3) scales linearly (in terms of design complexity) in the number
of layers. For the setup where decoding the second layer is
significantly more costly than the first layer, we propose an
optimal-cost decoding schedule and study the trade-off between
code rate and decoding cost.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes and their
message-passing decoding algorithms [1] are an efficient way
to achieve Shannon’s limit on various channels. LDPC codes
are extremely powerful because they can attain competitive
performance with low-complexity decoding (message passing
on sparse bi-partite graphs) and simple code design (random
drawing from explicit code ensembles). Many extensions
of the basic LDPC construction have been proposed to
enhance the code’s functionality through more structured
code graphs, while maintaining the convenience of randomly
drawing codes from ensembles. Some prominent examples
are repeat-accumulate codes [2], [3], protograph-based codes
[4], spatially-coupled codes [5], and multi-edge-type (MET)
codes [6] (which can be viewed as a meta-class containing
all the others). An especially useful class of structured LDPC
codes is bilayer codes [7], [8], [9], [10] (and more generally
multi-layer codes), which allow decoding the same codeword
with two (or more) different decoders. A recent interest in
bilayer LDPC codes is raised by storage applications, in
which the code needs to be designed for both extreme and
average channel conditions [11], [12].

In this paper we develop new tools for the construction and
(asymptotic) analysis of bilayer LDPC code ensembles. An
important feature of these tools is that they lend themselves
well for extending beyond two layers, which we do later in
the paper. A bilayer LDPC code has a code graph in which
the variable nodes are connected to two types of check nodes,
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allowing different connectivity to each type. There are several
applications that motivate codes with bilayer structure: com-
munication over the relay channel [7], decoder parallelization
[13], multi-block coding [11], incremental redundancy [14],
[15], [16], to name a few. Bilayer codes are a special case of
MET codes that are defined at full generality in [6]. However,
to gain tools and insight for construction and analysis, we find
it beneficial to use a more compact specification of the codes
than needed when viewed as MET codes. In particular, this
compact specification is the key to our ability to extend the
results to more than two layers without complexity blow-up.

A. Contributions
Bilayer LDPC codes are designed to simultaneously guar-

antee correction capabilities in two decoding modes: layer
1 only, and layers 1+2. More generally, L-layer codes are
designed for L decoding modes: layer 1, layers 1+2, ... , layers
1+2+· · ·+L. The design of such codes in this paper is pursued
through a new approach: the codes are defined by specifying
each layer separately as a standard degree-distribution pair.
This approach may at first seem less natural given that we
decode layers 1+2 jointly, and not layer 2 separately. Indeed,
prior work [7] designed the joint layer-1+2 code directly. The
advantage of the new approach is that working with standard
degree distributions (specified as uni-variate polynomials),
rather than product degree distributions (specified as multi-
variate polynomials), enables tractable design of explicit code
ensembles with provable asymptotic performance.

The basis of this approach is laid in Section III, where the
correction capability of the layer-1+2 code is characterized
mathematically given the separate layer-1 and layer-2 degree
distributions. This is achieved by deriving a two-dimensional
density-evolution framework, where decoding thresholds are
found as certain fixed points in two variables (each variable
tracks the density on edges of one layer).

Section IV provides a general construction for bilayer codes
with any desired thresholds for layer-1 and layer-1+2 decoding.
The resulting codes are given as explicit degree distributions
(building on known properties of standard single-layer codes),
without need to employ optimization tools such as linear pro-
gramming. In particular, the construction is used to construct
code sequences that approach capacity for layer-1+2 decoding,
while guaranteeing any desired threshold for layer-1 decoding.
Furthermore, the additive gap to capacity of the layer-1+2 code
is characterized (and bounded) given the gaps to capacity of the
individual layer-1 and layer-2 degree distributions. Section V
generalizes the results of Sections III,IV to L-layer codes, for
any L ≥ 2.

In Section VI we treat a model in which layer-2 decoding
iterations are more costly than layer-1, and thus we seek codes
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that successfully decode layers 1+2 with few layer-2 iterations.
For this model we propose optimal-cost decoding schedules,
and study the trade-off between rate (through layer-1 and layer-
2 gaps to capacity) and decoding cost.

All of our results are given for coding over the binary erasure
channel (BEC), however, the same analysis and constructions
extend to other channels (such as the AWGN channel) using
the EXIT method.

B. Related Work
Bilayer LDPC codes are used to implement binning for

the relay channel in [7], [8], [9] ([10] also suggests bilayer
codes with one layer being a low-density generator-matrix
(LDGM) code). The design approach in these works is to
first optimize layer 1 for the source-relay channel (higher
SNR), and then optimize layers 1+2 for the source-destination
channel (lower SNR) constrained to be consistent with layer
1. This approach extends the classical single-layer linear-
programming ensemble-design framework by taking the layer
1+2 optimization variables to be coefficients of a bi-variate
degree-distribution polynomial, and adding the layer-1 consis-
tency constraints. This extension, however, entails solving an
optimization problem with many variables: the product of the
maximal degrees in layer 1 and layer 2. Furthermore, extending
this approach to L-layer codes would make the number of
variables grow exponentially with L (viewed as MET codes
[6], the canonical representation of an L-layer ensemble is by
an L-variate polynomial, whose number of coefficients grows
exponentially with L for a given maximum layer degree.) Our
results in this paper provide a design alternative that avoids
this multiplicative/exponential growth of complexity, and also
extend beyond optimization frameworks to offer analytical
insight.

Relevant to our techniques is the work in [17] where (single-
layer) LDPC codes are used for a BEC with an erasure rate
that can take one of two values: full decoding is sought
for the better channel, while for the worse channel some
partial correction performance is specified. More related work
includes non-asymptotic design of bilayer LDPC codes such
as codes that enable decoder parallelism [13] and codes for
incremental redundancy [14], [15], [16] (whose layer 2 is an
LDGM code). Another indication of interest in bilayer/multi-
layer codes is a parallel work on (non-LDPC) algebraic
bilayer/multi-layer codes [18], [19], [20], [21]. Finally, we
note a different framework that constructs codes with multiple
thresholds, using a puncturing technique [22], [23], [24], which
is useful for communication-with-feedback applications. The
key difference is that bi- and multi-layer codes allow decoding
the same variable nodes with successively more powerful
decoders, while punctured codes need to add variable nodes
to improve decoding.

II. PRELIMINARIES AND NOTATIONS

A. LDPC Codes
A linear block code is an LDPC code if it has at least one

parity-check matrix that is sparse, i.e., the number of 1’s in

H is linear in the block length. Every parity-check matrix H
can be represented by a bipartite graph, called a Tanner graph,
with nodes partitioned to variable nodes and check nodes; there
exists an edge between check node i and variable node j, if
and only if Hij = 1 (this paper focuses on binary linear codes,
but this representation can be generalized). In single-edge-type
LDPC codes, the fraction of variable (resp. check) nodes in a
Tanner graph with degree i is denoted by Λi (resp. Ωi), and
the fraction of edges connected to variable (resp. check) nodes
of degree i is denoted by λi (resp. ρi); Λi and Ωi are called
node-perspective degree distributions, and λi and ρi are called
edge-perspective degree distributions. The degree-distribution
polynomials associated to a Tanner graph are given by

Λ(x) =
∑
i

Λix
i, λ(x) =

∑
i

λix
i−1, x ∈ [0, 1], (1)

Ω(x) =
∑
i

Ωix
i, ρ(x) =

∑
i

ρix
i−1, x ∈ [0, 1]. (2)

B. Bilayer LDPC Codes
1) Graph Structure: In the bilayer Tanner graph, the check

nodes are divided into two disjoint sets: type-1 and type-
2 check nodes. The edges of the graph are partitioned into
two sets as well: edges connecting variable nodes to type-
1 (resp. type-2) check nodes are type-1 (resp. type-2) edges
(see Figure 1). Finally, each variable node has two degrees,
corresponding to the two edge types.

Bilayer codes can also be constructed with a sub-block
structure [11], that is, the variable nodes are partitioned to
disjoint sets called sub-blocks, and each set connects to a
separate layer-1 graph with disjoint type-1 check nodes, while
the layer-2 graph is shared among all sub-blocks as in Figure 1.
Our results in the sequel carry over to this structure, but for
simplicity we present them for the basic structure depicted in
Figure 1.

. . .

. . .

. . .
. . . . . . . . .. . .

. . . . . . . . .. . .

. . . . . . . . .. . .

. . . . . . . . .. . .
Type-2 edge connections

Type-1 edge connections

Fig. 1: An illustration of a bilayer Tanner graph.

We denote by Λ
(1)
i (resp. Λ

(2)
i ) the fraction of variable

nodes with type-1 (resp. type-2) degree i. Similarly, Ω
(1)
i

(resp. Ω
(2)
i ) is the fraction of type-1 (resp. type-2) check

nodes of degree i. λ(1)
i (resp. λ(2)

i ) designates the fraction
of type-1 (resp. type-2) edges connected to a variable node
with type-1 (resp. type-2) degree i, and ρ

(1)
i (resp. ρ(2)

i )
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designates the fraction of type-1 (resp. type-2) edges connected
to a type-1 (resp. type-2) check node of degree i. Note
that since the type-1 sub-graph (i.e., variable nodes, type-
1 check nodes, and type-1 edges) is supposed to be used
in decoding without the type-2 check nodes and edges, then
Λ

(1)
0 = Λ

(1)
1 = 0. However, this is not the case with the type-

2 sub-graph (which is assumed to be used together with the
type-1 sub-graph), and we do allow Λ

(2)
0 ,Λ

(2)
1 > 0 (see also

[7]). In sections III–IV, we use P0 to denote the coefficient
Λ

(2)
0 . The type-1 and type-2 degree-distribution polynomials

Λ(i)(·), λ(i)(·),Ω(i)(·), ρ(i)(·), i ∈ {1, 2} are defined similarly
to the degree-distribution polynomials for ordinary LDPC
codes in (1)-(2).

The ensembles induced by the above description of bilayer
graphs are characterized by the block length n, and the above
degree distributions. The design rate of this ensemble is given
by

R = 1−
∫ 1

0
ρ(1)(x)dx∫ 1

0
λ(1)(x)dx

−
∫ 1

0
ρ(2)(x)dx∫ 1

0
λ(2)(x)dx

(1− P0) . (3)

We can see in (3), that setting P0 > 0 allows increasing the
code rate, which we later find crucial in our constructions.

2) Density Evolution: We distinguish between decoding
using only layer 1, i.e., the type-1 sub-graph, and decoding
using the entire graph (both layers). This separation yields
a two-level threshold behavior: when using only layer 1, the
asymptotic threshold is denoted by ε∗1, and when using both
layers the threshold is marked as ε∗2. Since the second layer
can only help, then ε∗2 ≥ ε∗1. However, decoding using only
layer 1 has complexity advantages, and if the signal-to-noise
ratio (SNR) is high enough, then layer 1 suffices. Moreover,
in applications where bilayer codes have sub-block structure,
layer-1 decoding is performed on fewer variable nodes than
the full code block (see [11]), further reducing the complexity.

When decoding the type-1 sub-graph, one can use the
known density evolution method for LDPC codes to analyze
the performance. Specifically, the fraction of variable-to-check
erasure messages after l BP iterations over the BEC(ε), xl(ε),
is given by the recursive equation [6]

xl(ε) = ελ(1)(1− ρ(1)(1− xl−1(ε))).

From this, ε∗1 can be calculated via

ε∗1 = inf
x∈(0,1]

x

λ(1)(1− ρ(1)(1− x))
. (4)

When decoding both layers, one should consider both
degree-distribution pairs for the analysis, since, as a specific
instance of MET codes, the graph structure plays a crucial role
in the decoding analysis. While MET codes can be specified
in full generality using degree-distributions multinomials [6],
more compact representations are typically helpful for obtain-
ing effective analysis and design tools for particular classes of
MET codes. For example, in [7], it is shown that for a variable
node with type-1 and type-2 degrees i and j, respectively, and
incoming type-1 and type-2 densities (erasure rates) u ∈ [0, 1]

and w ∈ [0, 1], respectively, the outgoing type-1 and type-2
densities x and y, respectively, are given by [7, Eq. (15)–(16)]

x = ε · wj · ui−1, y = ε · wj−1 · ui.

The authors in [7] define the bilayer code through a product
variable-node degree distribution specified by a bivariate poly-
nomial with coefficients λi,j (i for layer 1 and j for layer 2)
and regular check node degrees. They then pursue code design
using linear-programming optimization of the product degree
distribution λi,j , under the constraint that it is consistent with
a given (capacity approaching) degree distribution for layer 1.

We take a different approach and specify (and then design)
the code ensembles through the individual degree distributions(
λ(1)(·), ρ(1)(·)

)
and

(
λ(2)(·), ρ(2)(·), P0

)
. As we will later

see, this approach offers analysis and construction advantages
compared to [7].

III. THRESHOLD

In this section, we study the asymptotic decoding threshold
of bilayer ensembles, as defined in Section II, when using
both layers. Our ultimate goal (in Section IV) is to provide
a design tool for constructing bilayer LDPC codes: given
two noise levels, ε1 and ε2, choose

(
λ(1)(·), ρ(1)(·)

)
such

that layer 1 provides the correction capability to tolerate ε1,
and then set

(
λ(2)(·), ρ(2)(·), P0

)
such that the entire graph

provides the correction capability to tolerate ε2. Working with(
λ(2)(·), ρ(2)(·), P0

)
instead of the product degree distribution

as in [7] enables, among other benefits, finding capacity-
approaching sequences for the full-graph code. The derivations
in this section lay the theoretical infrastructure needed to show
the optimality of our constructions (i.e., capacity achieving in
Section IV).

We assume that the message scheduling when decoding the
entire graph is a flooding schedule: the variable nodes send
messages to the type-1 and type-2 check nodes in parallel
(later in Section VI, we change the schedule from flooding
to be more complexity aware). Consider a random instance
from the bilayer ensemble characterized by block length n
and degree distributions Λ(1),Λ(2),Ω(1),Ω(2) (recall that Λ(2)

includes P0). Let xl(ε) and yl(ε) denote the probability that
a type-1 and type-2 edge, respectively, carry a variable-to-
check erasure message after l BP iterations over the BEC(ε)
as n → ∞. In view of the MET density-evolution equations
in [6], we have

xl(ε) = ε · λ(1)
(
1− ρ(1) (1− xl−1(ε))

)
· Λ(2)

(
1− ρ(2) (1− yl−1(ε))

) , l ≥ 0, (5a)

yl(ε) = ε · Λ(1)
(
1− ρ(1) (1− xl−1(ε))

)
· λ(2)

(
1− ρ(2) (1− yl−1(ε))

) , l ≥ 0, (5b)

x−1(ε) = y−1(ε) = 1 . (5c)

Figure 2 graphically illustrates equations (5a)–(5b): in the
center diagram the right outgoing edge carries the message
in (5a) to a type-1 check and the left outgoing edge carries
the message in (5b) to a type-2 check. To simplify notations,
ε will be omitted from now on if it is clear from the context.
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2

yl−1

wl−1 =1− ρ(2) (1− yl−1)

1

xl−1

ul−1 =1− ρ(1) (1− xl−1)

xl = ελ(1) (ul−1) Λ(2) (wl−1)

wl−1

yl = εΛ(1) (ul−1)λ(2) (wl−1)

ul−1

Fig. 2: Illustration of the DE equations (5a)–(5b).

Remark 1. Although xl and yl in (5a)-(5b) seem symmetric
to each other, it is not necessarily true since we allow variable
nodes to have type-2 degrees 0 (P0 > 0) or 1 (λ(2)(0) > 0),
while their type-1 degrees are forced to be strictly greater then
1. This asymmetry has a crucial effect on the decoding process
which is explained and detailed later in this section. Symmetry
does hold in the special and less interesting case where
ρ(1)(x) = ρ(2)(x) and λ(1)(x) = xl1−1, λ(2)(x) = xl2−1,
in which case, for every iteration l ≥ 0, yl = xl = ελ(1 −
ρ(1− xl−1)), where, ρ(x) , ρ(1)(x), λ(x) , xl1+l2−1. Thus,
if we use identical degree-distributions for type-1 and type-2
check nodes and we force all variable nodes to have regular
degrees, then the 2D-DE equations in (5a)-(5b) degenerate to
the already known 1D-DE equation. However, codes falling
under this special case are less interesting because they are
sub-optimal in their rates and restricted in their thresholds.

Define

f(ε, x, y) = ε · λ(1)
(
1− ρ(1) (1− x)

)
· Λ(2)

(
1− ρ(2) (1− y)

) , x, y, ε ∈ [0, 1]

(6a)
g(ε, x, y) = ε · Λ(1)

(
1− ρ(1) (1− x)

)
· λ(2)

(
1− ρ(2) (1− y)

) , x, y, ε ∈ [0, 1]

(6b)

such that (5a)-(5c) can be re-written as

xl = f (ε, xl−1, yl−1) , l ≥ 0 (7a)
yl = g (ε, xl−1, yl−1) , l ≥ 0 (7b)
x−1 = y−1 = 1. (7c)

Lemma 1. The functions f and g are monotonically non-
decreasing in all of their variables.

Proof: Since the images of
λ(1)(·),Λ(1)(·), λ(2)(·),Λ(2)(·), ρ(1)(·) and ρ(1)(·) lie in
[0, 1], then f and g are monotonically non-decreasing in
ε ∈ [0, 1]. The proof for x, y is similar.

Definition 1. Let ε ∈ (0, 1). We say that (x, y) ∈ [0, 1]2 is an

(f, g)-fixed point if (
x
y

)
=

(
f(ε, x, y)
g(ε, x, y)

)
. (8)

Clearly, for every ε ∈ (0, 1), (x, y) = (0, 0) is a trivial
(f, g)-fixed point. However, it is not clear yet if there exists
a non-trivial (f, g)-fixed point. In particular, we ask: for
which choices of ε, λ(1), ρ(1), λ(2), ρ(2) and P0 there exists
a non-trivial (f, g)-fixed point? The following lemmas help
answering this question.

Lemma 2. Let ε ∈ (0, 1), and let (x, y) ∈ [0, 1]2 be an (f, g)-
fixed point. Then,

1) x = 0 implies y = 0, and if P0 = 0 or λ(2)(0) > 0,
then y = 0 implies x = 0.

2) (x, y) ∈ [0, ε)2.
3) If {xl}∞l=0 and {yl}∞l=0 are defined by (7a)–(7c), then

xl ≥ x, yl ≥ y, ∀l ≥ 0. (9)

Proof: See Appendix A.

Remark 2. Item 1 in Lemma 2 expresses the asymmetry (dis-
cussed in Remark 1) between the type-1 and type-2 densities.
Note that the ensembles where symmetry does not hold are
those that have Λ

(2)
0 > 0 and Λ

(2)
1 = 0, a common combination

in our constructions later in the paper.

Lemma 3. Let xl and yl be defined by (7a)–(7c) and let 0 <
ε ≤ ε′ < 1. Then,

xl+1(ε) ≤ xl(ε), yl+1(ε) ≤ yl(ε), ∀l ≥ 0, (10a)

and

xl(ε) ≤ xl(ε′), yl(ε) ≤ yl(ε′), ∀l ≥ 0. (10b)

Proof: By mathematical induction on l and by Lemma 1.

In view of (7a)–(7c), it can be verified that for every iteration
l ≥ 0, xl(0) = yl(0) = 0, xl(1) = yl(1) = 1. Since xl and
yl are bounded from below by 0, then Lemma 3 implies that
the limits liml→∞ xl(ε) and liml→∞ yl(ε) exist. Thus we can
define a decoding threshold by

ε∗2 = sup

{
ε ∈ [0, 1] : lim

l→∞
yl(ε) = lim

l→∞
xl(ε) = 0

}
. (11)

Note that from the continuity of g in (6b), item 1 in Lemma 2
implies that if liml→∞ xl(ε) = 0, then liml→∞ yl(ε) = 0.
Thus, (11) can be re-written as

ε∗2 = sup

{
ε ∈ [0, 1] : lim

l→∞
xl(ε) = 0

}
. (12)

Theorem 4. ε∗2 = sup {ε ∈ [0, 1] : (8) has no solution with
(x, y) ∈ (0, 1]× [0, 1]}.

Proof: Mark ε̂ as the supremum of all ε ∈ [0, 1] such that
(8) has no solution with (x, y) ∈ (0, 1]× [0, 1], let ε < ε̂, and
let x(ε) = liml→∞ xl(ε), y(ε) = liml→∞ yl(ε). Taking the
limit l →∞ in (7a)–(7c) yields that (x(ε), y(ε)) is an (f, g)-
fixed point. Since ε < ε̂, it follows that x(ε) = 0. From (12)
we have ε < ε∗2, for every ε < ε̂; this implies that ε̂ ≤ ε∗2.
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For the other direction, let ε > ε̂ and let (z1, z2) be an
(f, g)-fixed point such that z1 > 0. Lemma 2-item 3 implies
that for every iteration l, xl(ε) ≥ z1 > 0, ∀l ≥ 0, thus
liml→∞ xl(ε) > 0, where the existence of this limit is assured
due to Lemma 3; hence, ε > ε∗2. Since this is true for all ε > ε̂,
then we deduce that ε̂ ≥ ε∗2 and complete the proof.

We proceed by providing a numerical way to calculate the
threshold of a given set of degree distributions. Define

q1(x) , x ·
Λ(1)

(
1− ρ(1) (1− x)

)
λ(1)

(
1− ρ(1) (1− x)

) , x ∈ (0, 1],

q2(x) , x ·
Λ(2)

(
1− ρ(2) (1− x)

)
λ(2)

(
1− ρ(2) (1− x)

) , x ∈ (0, 1].

(13)

Lemma 5. limx→0 q1(x) = 0.

Proof: See Appendix B.
Since q1(1) = 1, Lemma 5 and the intermediate-value

theorem imply that for every w ∈ (0, 1], there exists x ∈ (0, 1]
such that q1(x) = w. Note that it is not true in general that
limx→0 q2(x) = 0 (another evidence of asymmetry); this limit
may be infinite (for example the case P0 > 0, ρ(2)(x) = x3

and λ(2)(x) = x2).

Definition 2. For every y > 0 such that q2(y) ≤ 1 define

q(y) , max{x : q1(x) = q2(y)}. (14)

Theorem 6. Let λ(1), ρ(1), λ(2), ρ(2) be degree-distribution
polynomials, let P0 ∈ [0, 1], and let ε∗2 be the decoding
threshold of the bilayer ensemble characterized by these degree
distributions as n→∞.
If P0 = 0 or λ(2)(0) > 0 , then

ε∗2 = inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
. (15)

Else,

ε∗2 =min

 inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
,

1

P0
inf
(0,1]

x

λ(1)
(
1− ρ(1)(1− x)

)
.

(16)

Proof: See Appendix C.

Remark 3. Although the right-hand side of (15) and the first
argument in the min operator of (16) only have the variable
y in them and thus may appear to only depend on layer 2, in
fact their values depend on both layers through the function
q(·). Moreover, it is not clear, apriori, which argument of the
min operator of (16) will be smaller, and one must use the
above procedure to calculate the values.

Example 1. Consider an ensemble characterized by λ(1)(x) =
x, ρ(1)(x) = x9, λ(2)(x) = 0.3396x+0.6604x4, P0 = 0.2667,
ρ(2)(x) = x9. Using (3) and (4), the design rate is R = 0.5571
and the type-1 decoding threshold is ε∗1 = 0.1112. In view

of (16), the decoding threshold1 when using both layers
is ε∗2 = min{0.35, 0.4168} = 0.35. Figure 3 illustrates
the 2D-DE equations in (5a)-(5c) for three different erasure
probabilities: 0.33, 0.35, 0.37. When the channel’s erasure
probability is ε = 0.33, there are no non-trivial (f, g)-fixed
points – the decoding process ends successfully, and when
ε = 0.37, there are two (f, g)-fixed points, (0.335, 0.3202)
and (0.2266, 0.1795) – the decoding process gets stuck at
(0.335, 0.3202). When ε = 0.35 = ε∗2, there is exactly one
(f, g)-fixed point at (0.27, 0.237), and the dashed and dotted
lines are tangent.

0 0.1 0.2 0.3
0

0.1

0.2

0.3

x (layer 1)
y

(l
ay

er
2)

ε = 0.33

0 0.1 0.2 0.3

x (layer 1)

ε = 0.35

0 0.1 0.2 0.3
0

0.1

0.2

0.3

x (layer 1)

y
(l

ay
er

2
)

ε = 0.37

DE x = f(ε, x, y) y = g(ε, x, y)

Fig. 3: Illustration of the density-evolution equations in
(5a)-(5c) for the ensemble in Example 1, which induce a
decoding threshold of ε∗2 = 0.35. The evolved channel erasure
probabilities are ε = 0.33, 0.35, 0.37.

IV. CODE CONSTRUCTION AND APPROACHING CAPACITY

In this section, we present a code construction, and show
how to use this construction to optimally combine two degree
distributions (type 1 and type 2) in order to approach capacity.
The inputs for the construction are the desired decoding

1better thresholds for that rate are achieved in the next section, and these
degree distributions are given to graphically exemplify the results derived so
far.
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thresholds, ε1 and ε2, and the outputs are degree-distributions(
λ(1), ρ(1), λ(2), ρ(2), P0

)
such that

ε∗1

(
λ(1), ρ(1)

)
= ε1 ε∗2

(
λ(1), ρ(1), λ(2), ρ(2), P0

)
= ε2.

The specified parameters ε1 and ε2 can be arbitrarily chosen as
fit for the specific application using the codes. ε2 is logically
chosen to meet the “worst-case” noise level in extreme channel
instances, while ε1 should specify a lower noise tolerance that
is sufficient for a significant fraction of channel instances.

In principle, setting P0 = 0, and picking any two LDPC
ensembles

(
λ(1), ρ(1)

)
and

(
λ(2), ρ(2)

)
that induce thresholds

ε1 and ε2, respectively, would suffice, but this choice yields
poor rates (intuitively, with that choice the type-1 and type-2
codes do not “cooperate”). Another solution is not using the
second layer at all, i.e., choosing

(
λ(1), ρ(1)

)
that induce a

threshold that equals to ε2, and setting P0 = 1. However, this
solution is undesired since it would miss the opportunity to
have a low-complexity decoder for the majority of decoding
instances where the erasure probabilities are below ε1.

Definition 3. Let
(
λ(1), ρ(1)

)
be type-1 degree-distribution

(DD) polynomials, and let ε1 be their decoding threshold. For
ε ∈ (ε1, 1), let

1) hε(x) = ε · λ(1)(1− ρ(1)(1− x))− x, x ∈ [0, 1]
2) xs(ε) = max{x ∈ [0, 1] : hε(x) ≥ 0}
3) as(ε) = Λ(1)

(
1− ρ(1) (1− xs(ε))

)
For every x ∈ [0, 1], hε(x) is the erasure-probability change

in one BP iteration on the type-1 sub-graph, if the current
erasure probability is x. By definition, since ε > ε1, the type-1
sub-graph fails to decode, and hε(x) > 0 for some x ∈ [0, 1].
In addition, for every x > ε, hε(x) < 0, so xs(ε) is well
defined. Operationally, xs(ε) is the type-1 erasure probability
when the decoder gets stuck (using only type-1 edges). Items 1
and 2 have appeared in [5]; we add as(ε) as a function of xs(ε)
that encapsulates the erasure probability passed from layer 1
to layer 2.

A. Code Construction
Construction 1.

Input: thresholds ε1 and ε2 > ε1.
1) Choose any type-1 DD (λ(1), ρ(1)) that induce a thresh-

old ε1.
2) Calculate as(ε2).
3) Choose any type-2 DD (λ(2), ρ(2)) that induce a thresh-

old ε2 · as(ε2).
4) Set P0 = ε1/ε2.

Remark 4. The main feature of the above construction is
that one can use off-the-shelf codes for the two layers and
no further optimization is needed. Moreover, if the component
codes are efficient (in rate) then so is their combination.
We will later investigate how the type-1 and type-2 gaps to
capacity affect the overall gap to capacity.

Theorem 7. Let (λ(1), ρ(1), λ(2), ρ(2), P0) be degree
distributions constructed by Construction 1. Then
ε∗2(λ(1), ρ(1), λ(2), ρ(2), P0) = ε2.

Proof: From (4) and Theorem 6, since P0 = ε1/ε2 > 0,
we have

ε∗2 ≤
1

P0
· inf

(0,1]

x

λ(1)
(
1− ρ(1) (1− x)

) =
ε1
P0

= ε2. (17)

For the opposite direction, let ε1 < ε < ε2. In view of
Theorem 4, it suffices to show that (8) has no solution for
(x, y) ∈ (0, 1]× [0, 1]. In view of (6a), for every x ∈ (0, 1],

f(ε, x, 0) = ελ(1)(1− ρ(1)(1− x))P0

< P0ε2λ
(1)(1− ρ(1)(1− x))

= ε1λ
(1)(1− ρ(1)(1− x))

≤ x. (18)

Furthermore, Definition 3 implies that for every (x, y) ∈
(xs(ε), 1)× [0, 1],

f(ε, x, y) = ελ(1)(1− ρ(1)(1− x))Λ(2)
(

1− ρ(2) (1− y)
)

< xΛ(2)
(

1− ρ(2) (1− y)
)

≤ x, (19)

and from Lemma 1, if (x, y) ∈ (0, xs(ε)]× (0, 1],

g(ε, x, y) ≤ g(ε, xs(ε), y)

= ελ(2)(1− ρ(2)(1− y))Λ(1)
(

1− ρ(1) (1− xs(ε))
)

= ελ(2)(1− ρ(2)(1− y))as(ε). (20)

Since ε < ε2, then ε2 · as(ε2) > ε · as(ε); thus (20) yields

g(ε, x, y) < y, ∀(x, y) ∈ (0, xs(ε)]× (0, 1]. (21)

Combining (18), (19), and (21) implies that (8) has no solution
in (0, 1]× [0, 1]. Thus ε∗2 ≥ ε. Since this is true for any ε < ε2,
we conclude that

ε∗2 ≥ ε2,

which combined with (17) completes the proof.

Remark 5. In most cases, it is hard to produce an analytical
expression for xs(ε), but if we limit the type-1 degrees of the
ensemble to be small, then a closed-form expression could be
derived for xs(ε) and as(ε).

Example 2. Consider type-1 degree distributions taking the
form:

λ(1)(x) = x, ρ(1)(x) = ρ
(1)
2 x+ ρ

(1)
3 x2 + ρ

(1)
4 x3, (22)

where ρ(1)
i ≥ 0,

∑4
i=2 ρ

(1)
i = 1. In view of (4), for the family

of ensembles given in (22), ε1 = 1

1+ρ
(1)
3 +2ρ

(1)
4

. In addition,

for every ε2 ∈ (ε1, 1),

xs(ε2) =


1− 1

ρ
(1)
3

(1/ε2 − 1) , ρ
(1)
4 = 0

ρ
(1)
3 +3ρ

(1)
4 −

√(
ρ
(1)
3 +ρ

(1)
4

)2
+4ρ

(1)
4 (1/ε2−1)

2ρ
(1)
4

, ρ
(1)
4 > 0

.
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Finally, since Λ(1)(x) = x2, and in view of Definition 3,

as(ε2) = Λ(1)(1− ρ(1)(1− xs(ε2))) =

(
xs(ε2)

ε2

)2

.

These closed-form expressions of xs and as can be used
for constructing a layer-1 code designed for certain param-
eters ε1 , ε2, using a simple optimization of the parameters
ρ

(1)
2 , ρ

(1)
3 , ρ

(1)
4 . This optimization maximizes the fraction of

bits layer 1 uncovers for layer 2 in case the channel parameter
is ε2, while guaranteeing its own noise resilience ε1 (we omit
the details here).

B. Approaching Capacity
In this sub-section, we show how to approach capac-

ity in the bilayer framework, using the construction pro-
posed in Section IV-A. More specifically, we upper bound
the bilayer additive gap to capacity with a certain lin-
ear combination of the gaps to capacity of the two com-
ponent codes. During the derivation, we refer to δ(λ, ρ)
as the additive gap to capacity of the (single layer)
LDPC(λ, ρ) ensemble, i.e., δ(λ, ρ) = 1 − ε∗(λ, ρ) −
R(λ, ρ). Similarly, we define δ

(
λ(1), ρ(1), λ(2), ρ(2), P0

)
=

1−ε∗2(λ(1), ρ(1), λ(2), ρ(2), P0)−R(λ(1), ρ(1), λ(2), ρ(2), P0) as
the bilayer gap to capacity.

Definition 4. A sequence of bilayer degree distributions{
λ(1;k)(·), ρ(1;k)(·), λ(2;k)(·), ρ(2;k)(·), P0k

}
k≥1

with associ-
ated rates {Rk}k≥1 is said to approach capacity on a BEC
with two channel parameters 0 < ε1 < ε2 < 1 if:

1) The threshold of layer 1 approaches ε1 as k →∞.
2) The threshold with both layers approaches ε2 as k →
∞.

3) Rk approaches 1− ε2 as k →∞.

Note that items 2 and 3 imply that
limk→∞ δ

(
λ(1;k)(·), ρ(1;k)(·), λ(2;k)(·), ρ(2;k)(·), P0k

)
= 0.

Lemma 8. Let
(
λ(1), ρ(1), λ(2), ρ(2), P0

)
be bilayer degree-

distribution polynomials constructed according to Construc-
tion 1, and let δ1 , δ(λ(1), ρ(1)) and δ2 , δ(λ(2), ρ(2)) be
the type-1 and type-2 (additive) gaps to capacity, respectively.
Then,

δ
(
λ(1), ρ(1), λ(2), ρ(2), P0

)
≤ δ1 + δ2 · (1− P0) . (23)

Proof: See Appendix D for the proof for the general case
with L ≥ 2 layers.

Remark 6. In principle, the bound in Lamma 8 is not tight
since as(ε2)ε2 < ε2, and the gap to capacity is smaller.
However, since the left-hand side of the last inequality depends
on the particular degree distributions used in Construction 1,
the bound (23) has the advantage of applying in full generality.

At this point, it should be clear how to construct a
capacity-approaching sequence of bilayer ensembles with two
thresholds 0 < ε1 < ε2 < 1. Choose any two sequences
of “ordinary” LDPC ensembles

{
λ(1;k)(·), ρ(1;k)(·)

}
k≥1

and{
λ(2;k)(·), ρ(2;k)(·)

}
k≥1

that achieve capacity on the BEC(ε1)

and BEC(ε2), respectively, and set P0k = (1− ε1/ε2), for all
k ≥ 1. Item 1 in Definition 4 clearly holds for this sequence,
and in view of Theorem 7, item 2 in Definition 4 holds as
well. Finally, Lemma 8 implies that

lim
k→∞

δ
(
λ(1;k)(·), ρ(1;k)(·), λ(2;k)(·), ρ(2;k)(·), P0k

)
≤ lim
k→∞

δ
(
λ(1;k)(·), ρ(1;k)(·)

)
+ lim
k→∞

δ
(
λ(2;k)(·), ρ(2;k)(·)

)
(1− ε1/ε2)

= 0.

Example 3. We construct a bilayer capacity-achieving se-
quence with thresholds ε1 = 0.05 and ε2 = 0.2. We set
P0 = ε1/ε2 = 0.25 and use the Tornado capacity-approaching
sequence [25],

λ(1)(x) =
1

H(D1)

D1∑
i=1

xi

i
, λ(2)(x) =

1

H(D2)

D2∑
i=1

xi

i
,

ρ(1)(x) = e−α1

∞∑
i=0

(α1x)i

i!
, ρ(2)(x) = e−α2

∞∑
i=0

(α2x)i

i!
,

(24)

where H(·) is the harmonic sum, αj =
H(Dj)
εj

, j ∈ {1, 2} (the
check degree-distribution series are truncated to get degree-
distribution polynomials with finite degrees). D1 (resp. D2)
controls the type-1 (resp. type-2) gap to capacity δ1 (resp.
δ2); the bigger it is, the smaller the gap is.

Figure 4 exemplifies how the sequence{
λ(1), ρ(1), λ(2), ρ(2), P0

}
approaches capacity as

D1 → ∞, D2 → ∞: Theorem 7 implies that for every
value of D1 and D2, the global decoding threshold is
ε∗2 ≥ 0.2; the type-1 gap to capacity δ1 and type-2 gap to
capacity δ2 both vanish as D1 → ∞ and D2 → ∞, which
in view of (23), implies that the overall gap to capacity δ
vanishes as well. In addition, as demonstrated in Figure 4, δ1
vanishes much faster with D1 thanks to the lower ε1.

Remark 7. Figure 4 (in particular the second from bottom
row in the table) shows the advantage of the bilayer scheme:
one can get very close to capacity with type-1 ensembles that
are extremely low complexity thanks to their low D1 values.

C. Complexity Advantage
As mentioned in Section II-B2, decoding bilayer LDPC

codes using only layer 1 has complexity advantages over
decoding ordinary LDPC codes. This comes from the fact
that since layer 1 is designed for lower noise levels, for the
same gap to capacity its node degrees are lower than those
of the ordinary LDPC. For the BEC, counting edges in the
Tanner graph is a first-order approximation of the decoding
complexity. We now perform a comparison between two codes:
Code 1 is a bilayer LDPC code, and Code 2 an ordinary LDPC
code. Code 1 is constructed by Construction 1 for erasure
levels 0 < ε1 < ε2 < 1, and Code 2 is designed for the worst-
case channel parameter ε2. In particular, we take Code 1 degree
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1 0.05 10 0.02 0.735
1 0.05 100 0.002 0.745
2 0.025 100 0.002 0.775
5 0.01 100 0.002 0.79
∞ 0 ∞ 0 0.8

Fig. 4: Top: design rate of a the bilayer ensembles constructed
by Construction 1 with two Tornado component codes from
Example 3. The horizontal axis D2 and the different plots
D1 are the degree of the polynomials λ(2)(·) and λ(1)(·),
respectively. Bottom: type-1 gap to capacity δ1, type-2 gap to
capacity δ2, and rate of the bilayer capacity-achieving sequence
from Example 3.

distributions
(
λ(1), ρ(1), λ(2), ρ(2), P0

)
from Example 3 with

D1 = 2, D2 = 10. Code 2’s degree distributions are λ(2), ρ(2).
The variable-node type-1 and type-2 average degrees in Code 1
(bilayer) are denoted by d1 and d2, respectively. The variable-
node average degree in Code 2 is denoted by d. It is known
that if the variable-node degree distribution is given by λ(·),
then their average degree is given by 1/

∫ 1

0
λ. Hence

d1 =

(∫ 1

0

λ(1)(x)dx

)−1

= 2.25,

d2 = (1− P0) ·
(∫ 1

0

λ(2)(x)dx

)−1

= 2.41

d =

(∫ 1

0

λ(2)(x)dx

)−1

= 3.22.

The complexity reduction when decoding layer 1 is 30.16%
compared to the ordinary LDPC code. When decoding both
layers we pay with an increase of 45.37% in the average
degree, but this applies only to the 2-layers decoder which
we assume to be used either infrequently (if most decoding
instances have erasure rates below ε1) or by nodes where
computational parsimony is less critical (compared to nodes
performing layer-1 decoding).

V. GENERAL MULTI-LAYER CONSTRUCTION

In this section, we show how to generalize Construction 1
to more than two layers. This generalization is motivated,
for example, by multi-block coding [11] with a hierarchical
structure where a number of sub-blocks are joined to form a
super-block, and a number of super-blocks are joined further,
etc. Another example is a multiple-relay channel, with a
source, L − 1 relays, and a destination (see [7] for the relay
channel with L = 2). The source sends a message to all relays
and destination, and for every i ∈ {1, 2, . . . , L − 1}, the i-th
relay decodes its incoming message and forwards parity bits
to relays j ∈ {i+ 1, . . . , L− 1}, and to the destination.

The advantage of the framework developed in this paper
toward the multi-layer extension is that the number of param-
eters of the ensemble grows linearly with L. An extension of
[7] to multi-layer codes through multi-variate DD polynomials
would imply exponential growth of the number of ensemble
parameters.

A. Code Structure & Density Evolution

Let L > 1 be an integer. The L-layer ensemble is char-
acterized by the block length n, and L degree-distributions
polynomials

{(
Λ(i)(·),Ω(i)(·)

)}L
i=1

. Each variable node has
L types of edges emanating from it with degrees specified
by {Λ(i)(·)}Li=1, and check nodes are divided into L types
with degrees specified by {Ω(i)(·)}Li=1 where check nodes
can connect only to edges of the same type. For every
layer i ∈ {1, 2, . . . , L}, we denote by P

(i)
0 = Λ(i)(0)

the fraction of variable-nodes with no type-i edges. From
edge perspective the degree-distribution polynimals are given

by
{(
λ(i)(·), ρ(i)(·), P (i)

0

)}L
i=1

. Since layer 1 should have

a positive threshold, then we require that P (1)
0 = 0. For

i ∈ {2, 3, . . . , L} we allow P
(i)
0 > 0.

The generalization of the density-evolution equations in
(5a)–(5c) for the multi-layer ensemble are given by

x
(i)
l (ε) = ε · λ(i)

(
1− ρ(i)

(
1− x(i)

l−1(ε)
))

·
∏
j 6=i

Λj

(
1− ρj

(
1− x(j)

l−1(ε)
))

, fi

(
ε,x

(L)
l−1(ε)

)
, l ≥ 0, ∀1 ≤ i ≤ L,

x
(i)
−1(ε) = 1, ∀1 ≤ i ≤ L,

(25)

where for every i ∈ {1, 2, . . . , L}, x(i)
l (ε) is the probability

that a type-i edge carries a variable-to-check erasure mes-
sages after l BP iterations over the BEC(ε), and x

(i)
l (ε) =(

x
(1)
l (ε), x

(2)
l (ε), . . . , x

(i)
l (ε)

)
. In what follows, we omit ε

from x
(i)
l (ε), and for brevity we re-write (25) as x

(i)
l =

F (i)
(
ε,x

(L)
l−1

)
where F (i) : [0, 1]L+1 → [0, 1]i encapsulates

the first i density-evolution equations.
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B. Code Construction
Construction 2.
• Input: thresholds 0 < ε1 < ε2 < · · · < εL < 1.
• Output: degree distributions{(

λ(i)(·), ρ(i)(·), P (i)
0

)}L
i=1

such that for every
i ∈ {1, 2, . . . , L}, the decoding threshold of the first i
layers equals εi.

1) Choose any degree distributions (λ(1), ρ(1)) such that
ε∗(λ(1), ρ(1)) = ε1.

2) For each i ∈ {1, 2, . . . , L− 1} do:

a) Calculate
(
x

(1)
s , x

(2)
s , . . . , x

(i)
s

)
as the largest

(element-wise) fixed point of
F (i)

(
εi+1, x

(1), x(2), . . . , x(i), 1, 1, . . . , 1
)
.

b) Calculate a
(i)
s =

∏i
j=1 Λj

(
1− ρj

(
1− x(j)

s

))
(quantifies the amount by which layers 1, 2, . . . , i
help when decoding i+ 1 layers).

c) Choose any degree distributions (λi+1, ρi+1) that
induce a threshold εi+1 · a(i)

s (since a(i)
s ≤ 1, it

is possible to find such degree distributions [6,
Section 3.15]).

d) Set P (i+1)
0 = εi/εi+1.

Note that any set of thresholds 0 < ε1 < ε2 < · · · < εL <

1 is achievable using Construction 2 since a
(i)
s ≤ 1 for all

i ∈ {1, 2, . . . , L}. As pointed out in Section IV-C for the two-
layer case, there is a trade-off between the layers thresholds
and their decoding complexity. For example, if we increase εi
for some 1 ≤ i < L, then the complexity (in terms of edge
density) of decoding layers 1, 2, . . . , i will increase as well.

Lemma 9. Let δ be the additive gap to capacity of the above
ensemble. Then,

δ ≤
L∑
i=1

δi · (1− P (i)
0 ), (26)

where δi is the individual additive gap to capacity of the i-th
layer (λ(i), ρ(i)).

Proof: See Appendix D.
The advantage of the design approach suggested in this

paper is made clearer in view of Construction 2. For each layer
we need only to calculate steps 2a–2b, and then choose any
code that meets the criteria in step 2c. On the other hand, in the
construction of [7], linear programming is used to optimize the
product degree distribution of all layers; thus the complexity
of Construction 2 is much smaller.

VI. REDUCING THE NUMBER OF TYPE-2 ITERATIONS

We now return to the specific case of two layers.
It has not been emphasized earlier in the paper, but in prac-

tical settings, the type-1 and type-2 decoding iterations may
be very different in terms of cost. For example, the hardware
that implements the layer-2 checks may be more costly to
operate due to higher code complexity. That means that even
when decoding the two layers, we would like to reduce the

number of layer-2 iterations. We define the number of layer-2
iterations performed during decoding by N2, where a layer-
2 decoding iteration is a round of variable-to-type-2-check
messages and type-2-check-to-variable messages. Ideally, the
decoder successfully decodes on the type-1 sub-graph, and
no type-2 iterations are needed (N2 = 0); in the asymptotic
regime, this happens when the fraction of erased bits ε is equal
or less than the type-1 threshold, i.e., ε ≤ ε1. However, if
ε > ε1, then at least one type-2 iteration is necessary (N2 ≥ 1).

In this section, we suggest a scheduling scheme for updating
layer 2 during the decoding of the entire graph. We prove that
our scheduling scheme is optimal in the sense of minimizing
N2. It is known that there is a trade-off between rate and
the number of decoding iterations (see, for example, [16,
Table III]). We extend this observation and study how the
parameters of the type-1 and type-2 degree distributions affect
N2 when using the optimal scheduling scheme. Note that our
notion of scheduling differs from the standard meaning of
scheduling algorithms for iterative-decoding (see [26], [27],
[28]). We consider scheduling of type-2 decoding iterations,
while previous work considered the order of message passing
between nodes in the Tanner graph.

A. An N2-optimal scheduling scheme

Recall that in the bilayer density-evolution equations, (7a)
and (7b) express a type-1 and a type-2 iteration, respectively.
A scheduling scheme prescribes decoder access to the type-2
check nodes in only part of the iterations, and thus replaces
(7b) with

yl =

{
g (ε, xl−1, yl−1) l ∈ A
yl−1 l /∈ A (27)

for some A ⊆ N representing the iteration numbers where
type-2 checks are accessed; in this case we have N2 = |A|.
Since Lemma 3 (monotonicity) still holds when (7b) is re-
placed with (27), the limits liml→∞ xl and liml→∞ yl exist
for every scheduling scheme.

Given type-1 and type-2 degree distributions, a scheduling
scheme is called valid if for every ε less than the ensem-
ble’s threshold ε2, liml→∞ xl(ε) = 0 (successful decoding).
Our goal is to find an optimal scheduling scheme: a valid
scheduling scheme that minimizes N2. For example, if A = ∅,
then N2 = 0 but liml→∞ xl(ε) > 0 if ε ∈ (ε1, ε2); thus,
the scheduling scheme is not valid. If, on the other hand,
type-2 checks are accessed in every iteration (as assumed
in Sections III–IV), then the scheduling scheme is valid, but
N2 equals the total number of iterations, which is the worst
case. We do not require the scheduling scheme to be pre-
determined, and it can use “on-line” information about the
decoding process. For example, it can use the current fraction
of erasure messages or the change in this fraction between two
consecutive iterations.

Definition 5. Let (Λ(2), ρ(2)) be type-2 degree-distribution
polynomials, let ε ∈ (0, 1) be the erasure probability of a BEC,
and let y ∈ [0, 1] be an instantaneous erasure probability of
a type-2 edge. We define the effective erasure probability from
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layer 1’s perspective as

ε
(1)
eff (ε, y) = ε · Λ(2)

(
1− ρ(2)(1− y)

)
. (28)

In view of (6a) and (28), we have

xl = f(ε, xl−1, yl−1) = ε
(1)
eff (ε, yl−1)λ(1)(1− ρ(1)(1− xl−1)).

(29)

ε
(1)
eff (ε, yl−1) takes the role of ε when layer 1 is viewed as

a standard LDPC code, hence the term “effective erasure
probability from layer 1’s perspective”.

Our proposed scheduling scheme is parameterized by η > 0,
and is given by

xl = f(ε, xl−1, yl−1)

yl =

{
g(ε, xl−1, yl−1) |xl−2 − xl−1| ≤ η, ε(1)

eff(ε, yl−1) ≥ ε1
yl−1 else

.

(30)

Lemma 10. For every η > 0, the scheduling scheme described
in (30) is valid.

Proof: See Appendix E.
Note that if η = 0, the scheduling scheme described in (30)

is not valid. However, since type-1 iterations have zero cost in
our model, we can assume that we can apply arbitrarily many
type-1 iterations to get arbitrarily close to η = 0. Numerical
simulations show that η = 10−4 suffices for achieving minimal
N2. For the following analysis we will assume that η = 0, and
that the scheduling scheme is still valid. In this scheduling
scheme, the decoder tries to decode the type-1 sub-graph until
it gets “stuck”, which refers to not being able to reduce the
erasure probability while it is still strictly greater than zero.
This happens first when xl1 = xs(ε), for some iteration l1,
where xs(ε) is given in Definition 3. So, in the first type-2
update we have

xl1 = xs(ε), yl1 = 1
xl1+1 = xs(ε), yl1+1 = g(ε, xs(ε), 1).

In view of (29), the type-1 sub-graph now “sees”
ε
(1)
eff (ε, yl1+1) < ε as an effective erasure probability, and it

can continue the decoding algorithm without accessing type-2
edges. It may get “stuck” again and another type-2 update will
be invoked; this procedure continues until ε(1)

eff (ε, ylp+1) < ε1
in the p-th (and last) update, which enables successful decod-
ing (i.e., N2 = p). In general, let {lk}N2

k=1 be the type-2 update
iterations of the scheduling scheme described above and let εk
be the effective erasure probability from layer-1 perspective
between type-2 updates k − 1 and k. Then,

yl1 = 1, ε1 = ε, xl1 = xs(ε), (31a)
ylk = g

(
ε, xlk−1

, ylk−1

)
, 2 ≤ k ≤ N2, (31b)

εk = ε
(1)
eff (ε, ylk), 2 ≤ k ≤ N2, (31c)

xlk = xs(εk), 2 ≤ k ≤ N2, (31d)

where

ε = ε1 > ε2 > . . . > εN2−1 ≥ ε1 > εN2 . (32)

Lemma 11. The scheduling scheme described above is opti-
mal.

Proof: See Appendix F.
We assume from now on that the decoder applies the optimal

scheduling scheme suggested above.

B. The Rate-vs.-N2 Trade-Off
We will now see that the smaller the gap to capacity is, the

higher N2 is; therefore, to decrease N2 we have to pay with
rate, and there are several ways to do so. In this section we
study how the parameters of the component layers affect N2.
In particular, we focus on how the type-1 and type-2 additive
gaps to capacity δ1 and δ2, receptively, affect N2.

It is well known that if
{
λ(1;k), ρ(1;k)

}∞
k=1

is a (ordinary)
capacity-approaching sequence for the BEC(ε1), then

lim
k→∞

ε1λ
(1;k)(1− ρ(1;k)(1− x)) = x, x ∈ [0, ε1] (33)

(see [29]). This leads to the following lemma.

Lemma 12. Let 0 < ε1 < ε < 1, and let
{
λ(1;k), ρ(1;k)

}∞
k=1

be a capacity-approaching sequence for the BEC(ε1). Then,

xs(ε) , lim
k→∞

x(1;k)
s (ε) = ε,

where x
(1;k)
s (ε) corresponds to Definition 3 with(

λ(1;k), ρ(1;k)
)
.

Proof: See Appendix G.
Lemma 12 asserts that if the type-1 degree-distribution

polynomials imply a threshold ε1 and a design rate that is very
close to capacity (1− ε1), and the channel erasure probability
ε is greater than ε1, then the BP decoding algorithm on the
type-1 sub-graph gets “stuck” immediately after correcting
only a small fraction of the erasures. This leads, in view of
(31b), to a small change in the erasure-message probability
on the type-2 update, which in turn yields a minor progress
in the type-1 side. Therefore, choosing close to capacity type-
1 degree-distribution polynomials implies high N2. Another
consequence of (33) is that the change in the erasure-message
probability in one iteration of the BP decoding algorithm
is small. Thus, close to capacity type-2 degree-distribution
polynomials yield high N2, regardless of the type-1 degree-
distribution polynomials.

Example 4. Let ε1 = 0.05 and ε2 = 0.2. We use the
capacity-achieving sequence given in Example 3. A computer
program simulated (31a)-(31d) with ε = 0.1998 (99.9% of
ε2) and degree distributions from (24) with the same values
of D1 and D2 as in Figure 4. The results are presented in
Figure 5. Figure 4 and Figure 5 exemplify the trade-off between
rate and N2: when the ensemble is close to capacity with
δ1 = 10−2, δ2 = 2.5 · 10−4 (D1 = 5, D2 = 800, R = 0.79),
we get N2 = 570, and to reduce N2 we have to pay with
rate. However, there are several ways to do so. For example,
changing the type-1 gap to δ1 = 5 · 10−2 (D1 = 1) while the
type-2 gap stays δ2 = 2.5 · 10−4 (red circle labeled A in the
plot) yields R = 0.75 and N2 = 26, and changing the type-1
and type-2 gap to δ1 = 2.5 · 10−2 (D1 = 2) and δ2 = 4 · 10−2
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(D2 = 5), respectively (blue circle labeled B), yields the same
R = 0.75 but a smaller N2 = 11.

10−3 10−2 10−1
0

200

400

600

A B

δ2

N
2

δ1 = 0.01
δ1 = 0.025
δ1 = 0.05

Fig. 5: Plot of N2 as a function of the type-2 additive gap to
capacity δ2 for different values of the type-1 additive gap to
capacity δ1. The simulated erasure rate is ε = 0.1998 (99.9%
of ε2 = 0.2).

VII. SUMMARY

This paper develops new tools for the construction and anal-
ysis of bilayer (and more generally multi-layer) LDPC code
ensembles. In particular, we derived a code-analysis framework
which resulted in a simple way to construct capacity-achieving
sequences. Our design approach lends itself well for an ex-
tension to multi-layer code construction without complexity
blow-up. We showed that using this design framework can give
codes that enjoy low-complexity layer-1 decoding in low error
rates, while still having small gaps to capacity for decoding
layers 1+2 in high error rates. Since in some applications it
is of interest that the decoding algorithm will avoid layer-
2 messages as much as possible, we studied another trade-
off regarding the number of layer-2 iterations and the gap to
capacity.

Interesting future work includes combining the asymptotic
design techniques with finite-block design techniques for the
BEC and other channels. In addition, one can study gener-
alizations of the decoding modes in the L-layer framework.
Instead of considering L modes: layer 1, layers 1+2,. . ., layers
1+2+. . .+L , one can consider other subsets, for example
layers 2+3+5+8. In this case, it would be interesting to use
the design approach suggested in this paper to optimize the
rate and decoding thresholds.
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APPENDIX A
PROOF OF LEMMA 2

1) Assume that x = 0. Since λ(1)(0) = 0, (6b) implies that
y = g(ε, 0, y) = 0. Moreover, if y = 0 and P0 = 0,
then (6a) yields x = f(ε, x, 0) = 0. Finally, if y = 0
and λ(2)(0) > 0, then (6b) implies that 0 = λ(1)(1 −
ρ(1)(1− x)), hence ρ(1)(1− x) = 1 and x = 0.

2) Follows immediately from (6a), (6b) and (8).
3) We prove (9) by a mathematical induction. For l = 0,

(9) holds due to Item 2 and the fact that x0 = y0 = ε.
Assume correctness of (9) for some l ≥ 0 and consider
iteration l+ 1. In view of Lemma 1, (7a)–(7c) and the
induction assumption, it follows that

xl+1 = f (ε, xl, yl) ≥ f(ε, x, y) = x,

yl+1 = g (ε, xl, yl) ≥ g(ε, x, y) = y.
(34)

This prove correctness of (9) for l + 1 and by mathe-
matical induction proves (9) for all l ≥ 0.

APPENDIX B
PROOF OF LEMMA 5

Let I = min{i : Λ
(1)
i > 0} be the first non-zero coeficient

of Λ(1)(·), and let C = d
duΛ(1)(u)

∣∣
u=1

. Clearly, I ≥ 2. Since
λ(1)(u) = 1

C ·
d

duΛ(1)(u), then

lim
u→0

Λ(1)(u)

λ(1)(u)
= lim
u→0

Λ(1)(u)
d

duΛ(1)(u)
· C

= C · lim
u→0

∑
i≥I Λ

(1)
i ui∑

i≥I iΛ
(1)
i ui−1

= C · lim
u→0

uI
∑
i≥I Λ

(1)
i ui−I

uI−1
∑
i≥I iΛ

(1)
i ui−I

= C ·
Λ

(1)
I

IΛ
(1)
I

· lim
u→0

u

= 0. (35)

Further, let u(x) = 1−ρ(1)(1−x) and note that limx→0 u(x) =
0. Thus,

lim
x→0

x ·
Λ(1)

(
1− ρ(1) (1− x)

)
λ(1)

(
1− ρ(1) (1− x)

) = lim
x→0

x · lim
x→0

Λ(1)(u(x))

λ(1)(u(x))

= lim
x→0

x · lim
u→0

Λ(1)(u)

λ(1)(u)

= 0.

APPENDIX C
PROOF OF THEOREM 6

Lemma 13. If (x, y) is an (f, g)-fixed point with y > 0, then
x ≤ q(y).

Proof: Let ε ∈ (0, 1) and let (x, y) be a solution to (8)
with y > 0. In view of (6a) and (6b), dividing the first equation
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of (8) with the second one yields

x

y
=
λ(1)

(
1− ρ(1) (1− x)

)
· Λ(2)

(
1− ρ(2) (1− y)

)
λ(2)

(
1− ρ(2) (1− y)

)
· Λ(1)

(
1− ρ(1) (1− x)

) (36)

which after some rearrangements implies

q2(y) = q1(x), (37)

where q2(·) and q1(·) are defined in (13). In view of (13),
since (x, y) is an (f, g)-fixed point, then

q2(y) = y ·
Λ(2)

(
1− ρ(2) (1− y)

)
λ(2)

(
1− ρ(2) (1− y)

)
= g(ε, x, y) ·

Λ(2)
(
1− ρ(2) (1− y)

)
λ(2)

(
1− ρ(2) (1− y)

)
=

≤1︷︸︸︷
ε ·

≤1︷ ︸︸ ︷
Λ(2)

(
1− ρ(2) (1− y)

)
·

≤1︷ ︸︸ ︷
Λ(1)

(
1− ρ(1) (1− x)

)
≤ 1, (38)

which together with Definition 2 and (37) completes the proof.

Let

1 > ε > inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
. (39)

From the continuity of y
g(1,q(y),y) (for y ∈ (0, 1], q2(y) ≤ 1),

and from the fact that for y = 1, y
g(1,q(y),y) = 1, there exists

y0 ∈ (0, 1] such that q2(y0) ≤ 1 and

y0 = ε · g(1, q(y0), y0)

= ε · λ(2)(1− ρ(2)(1− y0)) · Λ(1)(1− ρ(1)(1− q(y0))).
(40)

In view of (14),

q1(q(y0)) = q2(y0), (41)

which combined with (6a), (13) and (40) yields

q(y0) =
λ(1)(1− ρ(1)(1− q(y0)))

Λ(1)(1− ρ(1)(1− q(y0)))
· y0 ·

Λ(2)(1− ρ(2)(1− y0))

λ(2)(1− ρ(2)(1− y0))

= ε · λ(1)(1− ρ(1)(1− q(y0))) · Λ(2)(1− ρ(2)(1− y0))

= f(ε, q(y0), y0). (42)

Thus, (q(y0), y0) is a non-zero (f, g)-fixed point, which in
view of Theorem 4 implies that ε > ε∗2. Hence,

ε∗2 ≤ inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
. (43)

Next, let

ε < inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
(44)

or equivalently, for every y ∈ (0, 1] such that q2(y) ≤ 1,

g(ε, q(y), y) = ε · g(1, q(y), y) < y. (45)

Let (x, y) be a solution to (8); in what follows, we prove that
y = 0. Assume to the contrary that y > 0. From Lemma 13 it
follows that x ≤ q(y), which in view Lemma 1, (38) and (45)
implies

y = g(ε, x, y) ≤ g(ε, q(y), y) < y, (46)

in contradiction; thus, y = 0. Next, consider two cases:
1) If P0 = 0 or λ(2)(0) > 0, then Item 1 of Lemma 2

implies that x = 0. Hence, every (f, g)-fixed point
satisfies y = x = 0. In view of Theorem 4, it follows
that if (44) holds, then ε < ε∗2, so

ε∗2 ≥ inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
(47)

which with (43) completes the proof when P0 = 0 or
λ(2)(0) > 0.

2) If P0 > 0 and λ(2)(0) = 0, it is not true in general
that for every fixed point (x, y), y = 0 implies x = 0.
However, if in addition to (44),

ε <
1

P0
· inf

(0,1]

x

λ(1)
(
1− ρ(1) (1− x)

) , (48)

and y = 0 for some fixed point (x, y), then x = 0. To
see this, assume to the contrary that x > 0. In view of
(6a) and (48) it follows that

x = f(ε, x, 0) = ε · P0 · λ(1)
(

1− ρ(1) (1− x)
)
< x

(49)

in contradiction; hence, if (44) and (48) hold, x = 0
thus ε < ε∗2. This means that

ε∗2 ≥ min

 inf
y∈(0,1]
q2(y)≤1

y
g(1,q(y),y) ,

1
P0
· inf

(0,1]

x

λ(1)(1−ρ(1)(1−x))

 .

(50)

To complete the proof, we must show that when P0 > 0
and λ(2)(0) = 0, then

ε∗2 ≤ min

 inf
y∈(0,1]
q2(y)≤1

y
g(1,q(y),y) ,

1
P0
· inf

(0,1]

x

λ(1)(1−ρ(1)(1−x))

 .

(51)

If

inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
≤ 1

P0
inf
(0,1]

y

λ(1)
(
1− ρ(1) (1− y)

) ,
then (51) follows immediately from (43); hence we can
assume that

inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
>

1

P0
inf
(0,1]

y

λ(1)
(
1− ρ(1) (1− y)

) .
(52)
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Let

inf
y∈(0,1]
q2(y)≤1

y

g(1, q(y), y)
> ε >

1

P0
inf
(0,1]

y

λ(1)
(
1− ρ(1) (1− y)

) ,
(53)

and let x0 ∈ (0, 1], such that x0 = ε · P0 ·
λ(1)

(
1− ρ(1) (1− x0)

)
. Since λ(2)(0) = 0, it fol-

lows that (x0, 0) is a fixed point with x0 >
0, thus ε > ε∗2. Since this is true for ev-
ery ε > 1

P0
inf(0,1]

y

λ(1)(1−ρ(1)(1−y))
, then ε∗2 ≤

1
P0

inf(0,1]
y

λ(1)(1−ρ(1)(1−y))
. In view of (52), it follows

that (51) holds. This completes the proof for the P0 > 0
and λ(2)(0) = 0 case.

APPENDIX D
PROOF OF LEMMA 9

The design rate of the L-layer ensemble is given by

R = 1−
L∑
i=1

∫ 1

0
ρ(i)(x)dx∫ 1

0
λ(i)(x)dx

(
1− P (i)

0

)
,

and the threshold is εL. Thus, the overall gap to capacity is
given by

δ = 1−R− εL

=

L∑
i=1

∫ 1

0
ρ(i)(x)dx∫ 1

0
λ(i)(x)dx

(
1− P (i)

0

)
− εL

= ε1 + δ1 +

L∑
i=2

(
εia

(i−1)
s + δi

)(
1− P (i)

0

)
− εL

= δ1 +

L∑
i=2

δi

(
1− P (i)

0

)
+ ε1 +

L∑
i=2

εia
(i−1)
s

(
1− P (i)

0

)
− εL.

(54)

In view of Construction 2, P (i)
0 = εi−1/εi and a(i)

s ≤ 1. Hence,

ε1 +

L∑
i=2

(
εia

(i−1)
s

)(
1− P (i)

0

)
− εL

= ε1 +

L∑
i=2

a(i−1)
s (εi − εi−1)− εL

= ε1 +

L∑
i=2

a(i−1)
s (εi − εi−1)− εL

− ε2 −
L−1∑
i=3

(εi − εi−1) + εL−1

=

L∑
i=2

(
a(i−1)
s − 1

)
(εi − εi−1)

≤ 0,

which combined with (54) completes the proof.

APPENDIX E
PROOF OF LEMMA 10

To prove Lemma 10 we need the following lemma.

Lemma 14. A scheduling scheme is valid if and only if,
ε
(1)
eff (yl) < ε1, for some iteration l.

Proof: Recall the definition of the type-1 threshold,

ε1 = sup{ε : x = ελ(1)(1− ρ(1)(1− x)) has no solution in (0, 1]},
(55)

and let x = liml→∞ xl and y = liml→∞ yl. Since under every
scheduling scheme yl is monotonically non-increasing in l,
then in view of (29),

∃l ∈ N, ε(1)
eff (yl) < ε1
m

ε
(1)
eff (y) < ε1
m

x = ε
(1)
eff (y)λ(1)(1− ρ(1)(1− x)) has no solution for x ∈ (0, 1]

m
lim
l→∞

xl = 0.

We proceed with the proof of Lemma 10. Let (xl, yl) be
defined as in (30), let (x, y) = liml→∞(xl, yl), and assume in
contradiction that ε(1)

eff (y) ≥ ε1. Since η > 0, letting l → ∞
in (30) implies that (x, y) is a non-trivial (f, g)-fixed point.
However, in view of Theorem 4, if ε < ε2, then every (f, g)-
fixed point is the trivial point, in contradiction. Thus, ε(1)

eff (y) <
ε1 which, due to Lemma 14, completes the proof.

APPENDIX F
PROOF OF LEMMA 11

Let
{
l
[1]
k

}N [1]
L2

k=1
and

{
l
[2]
k

}N([2]
L2

k=1
be the type-2-update itera-

tions of the scheduling scheme described in (31d) and in some
arbitrary valid scheduling scheme, respectively. We need to
show that N [1]

2 ≤ N
[2]
2 . To proceed we need the following

lemmas:

Lemma 15. xs(ε) as defined in Definition 3 is monotone non-
decreasing in ε.

Proof: Let ε1 ≤ ε2, and consider xs(ε1), xs(ε2) . In view
of Definition 3,

hε2 (xs(ε1)) , ε2λ
(1)(1− ρ(1)(1− xs(ε1)))− xs(ε1)

≥ ε1λ(1)(1− ρ(1)(1− xs(ε1)))− xs(ε1)

, hε1 (xs(ε1))

≥ 0 .

Thus, xs(ε2) , max{x ∈ [0, 1] : hε2 (x) ≥ 0} ≥ xs(ε1) .

Lemma 16. Let

ε
[1]
k = ε

(1)
eff

(
y
l
[1]
k

)
, 1 ≤ k ≤ N [1]

2 ,

ε
[2]
k = ε

(1)
eff

(
y
l
[2]
k

)
, 1 ≤ k ≤ N [2]

2 .
(56)



14

Then, for every 1 ≤ k ≤ min
(
N

[1]
2 , N

[2]
2

)
,

y
l
[1]
k

≤ y
l
[2]
k

, and ε
[1]
k ≤ ε

[2]
k , and x

l
[1]
k

≤ x
l
[2]
k

. (57)

Proof: By induction on 1 ≤ k ≤ min
(
N

[1]
2 , N

[2]
2

)
.

In the first type-2 update, we have y
l
[1]
1

= 1 = y
l
[2]
1

and

ε1 , ε
[1]
eff

(
y
l
[1]
1

)
= ε. Thus, in view of Definition 3, in

the first type-2 update = x
l
[2]
1
≥ xs(ε) = x

l
[1]
1

. Hence
(57) holds for k = 1. Assume correctness for some type-2
update k < min

(
N

[1]
2 , N

[2]
2

)
, and consider update k + 1. In

view of Lemma 1, (31b)-(31d), and the induction assumption,
y
l
[1]
k+1

= g
(
ε, x

l
[1]
k

, y
l
[1]
k

)
≤ g

(
ε, x

l
[2]
k

, y
l
[2]
k

)
= y

l
[2]
k+1

, which

together with (31c) implies that ε
[1]
k+1 , ε

(1)
eff

(
y
l
[1]
k+1

)
≤

ε
(1)
eff

(
y
l
[2]
k+1

)
, ε

[2]
k+1. In view of Lemma 15, it follows that

x
l
[1]
k+1

, xs(ε
[1]
k+1) ≤ xs(ε

[2]
k+1) ≤ x

l
[2]
k+1

. By induction, we
complete the proof.

We proceed with the proof of Lemma 11. Assume, on the
contrary, that N [1]

2 > N
[2]
2 . Lemma 16 and the monotonicity

of εk in k imply that

ε
[2]

N
[2]
2

≥ ε[1]

N
[2]
2

≥ ε[1]

N
[1]
2 −1

≥ ε1, (58)

which, in view of Lemma 14 yields that the scheduling scheme

indexed by
{
l
[2]
k

}N [2]
2

k=1
is not valid, in contradiction. Thus,

N
[1]
2 ≤ N

[2]
2 .

APPENDIX G
PROOF OF LEMMA 12

In view of Definition 3, let h(k)
ε (x) = ελ(k)(1 − ρ(k)(1 −

x))− x. Eq. (33) yields

hε(x) = lim
k→∞

h(k)
ε (x) =

{ (
ε
ε1
− 1
)
x 0 ≤ x ≤ ε1

ε− x ε1 ≤ x ≤ ε
(59)

For every k ∈ N, and x ∈ (ε, 1],

h(k)
ε (x) = ελ(k)(1− ρ(k)(1− x))− x

≤ ε− x
< 0,

Thus

x(k)
s (ε) ≤ ε, ∀k ∈ N. (60)

In addition, for every 0 < a < ε there exists K0 such that

h(k)
ε (ε− a) > 0, ∀k ≥ K0,

so x(k)
s (ε) ≥ ε− a, for every k ≥ K0; hence,

lim inf
k→∞

x(k)
s (ε) ≥ ε. (61)

Combining (60) and (61) implies that limk→∞ x
(k)
s (ε) exists,

and completes the proof.
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