
Boosting for Straggling and Flipping Classifiers
Yuval Cassuto∗, Yongjune Kim†

∗Viterbi Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
†Department of Information and Communication Engineering, DGIST, Daegu 42988, South Korea

Email: ycassuto@ee.technion.ac.il, yjk@dgist.ac.kr

Abstract—Boosting is a well-known method in machine learn-
ing for combining multiple weak classifiers into one strong
classifier. When used in distributed setting, accuracy is hurt
by classifiers that flip or straggle due to communication and/or
computation unreliability. While unreliability in the form of noisy
data is well-treated by the boosting literature, the unreliability
of the classifier outputs has not been explicitly addressed.
Protecting the classifier outputs with an error/erasure-correcting
code requires reliable encoding of multiple classifier outputs,
which is not feasible in common distributed settings. In this
paper we address the problem of training boosted classifiers
subject to straggling or flips at classification time. We propose
two approaches: one based on minimizing the usual exponential
loss but in expectation over the classifier errors, and one by
defining and minimizing a new worst-case loss for a specified
bound on the number of unreliable classifiers.

I. INTRODUCTION

To enable inference tasks on computationally limited de-
vices, ensemble methods in machine learning [1] were devised
to combine multiple weak learners to one powerful learner.
The ensemble paradigm is especially suitable for distributed
inference, in which multiple weak nodes join together to
perform an ambitious inference task. When deployed in a
distributed setting, the nodes are subject to unreliability,
manifested in instances where they fail to correctly deliver
their output toward the combined result. In this paper we
specifically address the binary classification inference task,
and consider unreliability in the form of nodes that flip their
value, or fail (straggle) to give any value.

Ensemble classification schemes train an ensemble of
(weak) base classifiers, and specify how the final classification
output is aggregated from the base-classifier outputs. The
piece missing in the art of ensemble methods for distributed
classification is how to deal with the unreliability of the nodes
realizing the base classifiers. This extrinsic unreliability is
distinct from the intrinsic inaccuracy of the base classifiers,
because it feeds the aggregate classification with inputs that
differ from what the base classifiers were designed and trained
to output. Prior work on ensemble reliability mostly focuses
on noise in the data labels (see e.g. [2] and survey therein),
or assumes that training and classification are performed on
the same unreliable hardware [3], [4]. Recently, [5] addressed

∗ Work supported in part by the US-Israel Binational Science Foundation
and by the Israel Science Foundation.
† Work supported in part by the Daegu Gyeongbuk Institute of Science and

Technology (DGIST) Start-up Fund Program of the Ministry of Science and
ICT under Grant 2021010014.

the problem of resource allocation for unreliable ensembles,
assuming the classifiers are given post-training.

The particular ensemble method we pursue in this paper for
distributed classification is adaptive boosting (Adaboost) [6],
owing to its generality, its proven optimization properties,
and its performance superiority in many classification tasks.
The main feature of Adaboost (and arguably its source of
advantage) is that the base classifiers are trained adaptively in
sequence, whereby each classifier is trained with a weighting
of the training data points that is adapted according to the
accuracy of previous classifiers in the sequence. Our main
contribution in this paper is toward extending the Adaboost
scheme to handle base classifiers that are unreliable in two
natural ways: 1) classifiers that straggle and thus their output
is unavailable to the aggregator, and 2) classifiers that deliver
a flipped binary value relative to the designed-classifier’s
output. It turns out that erasure/error correcting codes that look
natural for dealing with straggling/flipping are not ideal for
the distributed ensemble setup, because they require reliable
encoding of multiple classifier outputs. Instead, our approach
is to consider the unreliability model (straggling or flipping)
in the training of the ensemble, such that the aggregator can
achieve better classification accuracy (success over the test set)
when combining these classifiers.

The first part of the paper (Sections III, IV) presents
boosting algorithms for a specified probability of straggling
(Section III) and flipping (Section IV). Similarly to the ordi-
nary Adaboost algorithm, the proposed algorithms guarantee
optimal exponential loss by each classifier in the sequence,
but do so in expectation over the possible subsets of strag-
gling/flipping classifiers. We show the performance improve-
ments of these algorithms over a synthetic dataset, and also
compare to the non-adaptive ensemble method called bagging
(bootstrap aggregation) [7]. In the second part (Section V), we
depart from the i.i.d. probabilistic model to a worst-case model
of mitigating any single flipping classifier in the ensemble.
For this setting we introduce a new loss measure we call
the ensemble’s 1-flip loss, which captures the classification
sensitivity to the worst flipping classifier in the ensemble. To
lower the 1-flip loss, we propose a boosting algorithm we
call reliability-regularized Adaboost, and suggest an efficient
bisection algorithm to look for the regularization parameter
that minimizes the 1-flip loss. Evaluating on the widely-
available CBCL face-detection dataset [8], the new scheme
is shown to give better 1-flip accuracies compared to ordinary
Adaboost.

II. REVIEW OF THE ADABOOST ALGORITHM

Consider a training dataset D = {(x1, y1), . . . , (xm, ym)}
where each xi is a data vector and each yi is a binary
label in {−1, 1}; a pair (xi , yi) is called a data point. The
elementary building block of the Adaboost classifier is a base
classifier h(·) mapping x to a binary label y ∈ {−1, 1};
h is trained to minimize an empirical risk RD,W(h) =
∑

m
i=1 wi I(h(xi) 6= yi), in which data points are weighted by

W = (wi)
m
i=1 : ∑

m
i=1 wi = 1, and I(e) is the indicator function

that evaluates to 1 when event e occurs and to 0 otherwise.
The Adaboost algorithm uses D to train a combined classifier
of the form H(x) = sign

(
∑

M
t=1αtht(x)

)
, where each ht(·),

t ∈ {1, . . . , M}, is a base classifier. A well known result
on the classifiers ht and their coefficients αt output by the
Adaboost algorithm is the following.

Proposition 1 ([9]) At each iteration t of Adaboost, the
classifier ht and the classifier coefficient αt minimize the
exponential loss ∑

m
i=1 exp

{
−yi ∑

t
j=1α jh j(xi)

}
, given the

classifiers h1, . . . , ht−1 and their coefficients α1, . . . ,αt−1
found in previous iterations.

III. BOOSTING WITH STRAGGLING CLASSIFIERS

In a distributed-classification setup, at classification time an
aggregator node may face the issue of straggling base classi-
fiers failing to deliver their input for the combined classifier.
In the i.i.d. straggling model, each classifier straggles with
probability η, independently from other classifiers. Formally,
now H̃(x) = sign

(
∑

M
t=1αt h̃t(x)

)
, where h̃t(x) = ht(x)

with probability 1 − η and h̃t(x) = 0 with probability η.
To mitigate the potential degradation of performance, we next
modify the Adaboost training procedure to address straggling
classifiers. Note that at training time the identities of the
straggling classifiers are not known (in fact, these may change
between classification instances), and we only assume the
straggling probability η is known. For a set S of base classi-
fiers, a subset A ⊆ S defines a partition of S to non-straggling
classifiers in A and straggling classifiers in S \ A. We denote
by Pη(A) the probability that (A, S \ A) is the partition of
S to non-straggling,straggling classifiers. Let |X| denote the
size of a set X; for the i.i.d. straggling model we have

Pη(A) = (1− η)|A| · η|S|−|A|. (1)

A. Adaboost training for straggling classifiers

Instead of just ignoring straggling classifiers (by taking their
values as 0s), a better approach is to train the individual
classifiers ht(·) taking into account that they straggle i.i.d.
with probability η. Recall from Proposition 1 that Adaboost
training performs sequential minimization of an exponential
loss function, that is, looking for ht,αt that minimize

E =
m

∑
i=1

exp{−yiSt(xi)} =
m

∑
i=1

t

∏
j=1

exp{−yiα jh j(xi)},

(2)

where St(x) , ∑
t
j=1α jh j(x), and we know {h j,α j}t−1

j=1 from
previous iterations of the algorithm. In the ordinary case (with
no stragglers) we can now rewrite

E =
m

∑
i=1

exp{−yiSt−1(xi)} exp{−yiαtht(xi)}, (3)

and minimize only the second exponent. With stragglers,
however, we replace St(·) by S̃t(x) , ∑

t
j=1α j h̃ j(x) in (2),

and the latter is not deterministically known at training time.
So instead we need to minimize the expected exponential loss
function

Ē =
m

∑
i=1

∑
A⊆[1,t]

Pη(A)
t

∏
j=1
j∈A

exp{−yiα jh j(xi)}, (4)

where the expectation is taken as a sum over all subsets
A ⊆ [1, t] of non-straggling classifiers. From the i.i.d. de-
composition of Pη(A) in (1) and using the distributive law
we get

Ē =
m

∑
i=1

t

∏
j=1

[
(1− η) exp{−yiα jh j(xi)}+ η

]
. (5)

Similarly to the classical Adaboost analysis we split the
product of (5) to a term w

(t)
i already known from previous

iterations and a term to be optimized in this iteration:

Ē =
m

∑
i=1

w
(t)
i · [(1− η) exp{−yiαtht(xi)}+ η] . (6)

This now suggests the following algorithm, called Stragboost,
to successively minimize the expected exponential loss func-
tion in the presence of straggling classifiers.

Algorithm 1 (Stragboost) For t = 1, . . . , M, train ht(·) to
minimize

εt ,
m

∑
i=1

w
(t)
i I(ht(xi) 6= yi), (7)

where

w
(t>1)
i ,

t−1

∏
j=1

[
(1− η) exp{−yiα jh j(xi)}+ η

]
, w

(1)
i , 1.

(8)
Then set

αt =
1
2

ln
(

1−εt

εt

)
. (9)

Proposition 2 For i.i.d. straggling classifiers, at each itera-
tion t of Algorithm 1, the data weights w

(t)
i and classifier

coefficient αt of ht minimize the expected exponential loss

Ē , ∑
A⊆[1,t]

Pη(A)
m

∑
i=1

exp

−yi

t

∑
j=1
j∈A

α jh j(xi)

 ,

given the classifiers h1, . . . , ht−1 and their coefficients
α1, . . . ,αt−1 found in previous iterations.

Proof: (sketch) Extracting from (6) only the term that
depends on ht,αt, we need to minimize (1 − η)∑

m
i=1 w

(t)
i ·

exp{−yiαtht(xi)} which, by similar arguments to the ordi-
nary Adaboost, reduces to training ht with the weights w

(t)
i

of (8) and setting αt by (9).
Proposition 2 implies that the presence of stragglers in the
system changes the weighting of the data points during train-
ing (8) (effectively “slowing down” the training sequence),
but leaves unchanged the formula that computes the classifier
coefficients (9). Note that although there is no change in the
formula, the final coefficients {αt}M

t=1 will differ from ordi-
nary Adaboost’s because they depend on different classifiers
and different data weights.

B. Re-weighting the non-straggling classifiers

Although the straggler identities are not known at training
time, the fact that they are known at classification time allows
re-weighting of their coefficients according to the instanta-
neous set A. We do this in the following.

Algorithm 2 (Re-weighted Stragboost) Let {ht}M
t=1 be the

classifiers trained in Algorithm 1. Given a subset A ⊆ [1, M]
of non-straggling classifiers, for t ∈ A given in increasing
order t1, t2, . . ., set

v
(t>t1)
i , ∏

j<t
j∈A

exp{−yiα
′
jh j(xi)}, v

(t1)
i , 1, (10)

where

ε′t ,
m

∑
i=1

v
(t)
i I(ht(xi) 6= yi), α′t ,

1
2

ln
(

1−ε′t
ε′t

)
. (11)

For Algorithm 2, the classifiers ht are trained using the data
weights w

(t)
i in Algorithm 1, but different data weights v

(t)
i

are used to calculate a new coefficient α′t for the classifier
depending on the instantaneous set A. In practice, we run
Algorithm 2 at training time with different subsets A ⊆
[1, M], and store the resulting sets of coefficients {α′t}t∈A
at the aggregator for use at classification time. It can be
shown that α′t in (11) minimizes the exponential loss function
of the combined classifier ∑ j≤t

j∈A
α′jh j(x), conditioned on the

coefficients of the previous indices in A.

C. Empirical evaluation: straggling classifiers

We evaluate the performance of Stragboost with i.i.d.
straggling classifiers. For the evaluation we use a synthetic
dataset, generated from a depth-2 decision-tree model, and
compare to the performance of ordinary Adaboost on the
same dataset. In all the empirical results of this paper we use
base classifiers based on decision stumps (depth-1 decision
trees). We plot in Figure 1 the average accuracy results of
the algorithms (M = 8) on the test set, as a function of
the straggling probability η. Accuracy is the fraction of test-
set data points that were correctly classified, and averaging
is done over 25000 drawings of the set A ⊆ [1, M]. We

can see that Stragboost (circle markers) offers a performance
improvement over ordinary Adaboost (square markers), and
the re-weighted version (Algorithm 2) improves even further.
We also compare the performance to bagging, which is less
affected by stragglers but in general inferior to boosting.

Fig. 1. Average accuracy as a function of straggling probability η for adaptive
boosting classifiers, evaluated on synthetic data.

IV. BOOSTING WITH FLIPPING CLASSIFIERS

A straggling classifier considered in Section III delivers
a “null” classification h̃t(x) = 0 instead of the desired
h̃t(x) = ht(x). In this section we deal with classifiers that
fail differently: they deliver a flipped classification h̃t(x) =
−ht(x). Intuitively, flipping classifiers are a more serious
hindrance to accurate classification than straggling classifiers,
because they silently contaminate the combined classifier with
false inputs. In the i.i.d. flipping model, we assume that
at classification time a base classifier flips with probability
ε < 0.5, independently from other classifiers. We use the
term “flip” – and not the more common term “error” – to
distinguish these from the fact that ht(x) itself makes intrinsic
classification errors. We extend the definition of the set A from
Section III to contain the indices of the non-flipping classifiers
in S. We denote by Pε(A) the probability that (A, S \ A) is
the partition of S to non-flipping,flipping classifiers. For the
i.i.d. flipping model we have

Pε(A) = (1−ε)|A| ·ε|S|−|A|. (12)

A simple variation of Algorithm 1 to the case of flipping
classifiers gives the following algorithm, called Flipboost, that
similarly minimizes the expected exponential loss function
(formal result omitted).

Algorithm 3 (Flipboost) identical to Algorithm 1, only re-
placing w

(t>1)
i in (8) by

w
(t>1)
i ,

t−1

∏
j=1

[
ψ j(xi , yi)

]
, (13)

where

ψ j(x, y) , (1−ε) exp{−yα jh j(x)}+ε exp{yα jh j(x)},

and (7) by

εt =
m

∑
i=1

w
(t)
i [(1−ε)I(ht(xi) 6= yi) +εI(ht(xi) = yi)] .

(14)

Note that unlike in the straggling case, the classifier coefficient
αt depends (through εt) on the flipping probability ε. If αt is
interpreted as the “confidence” of the combined classifier in
h̃t, then (14) implies that this confidence is reduced as ε grows.

A. Empirical evaluation: flipping classifiers

We use the same synthetic dataset from Section III-C and
plot in Figure 2 the accuracy of Algorithm 3 (circle markers) in
comparison to ordinary Adaboost (square markers), for M =
8. We also show the inferior performance of bagging on the
same dataset.

Fig. 2. Average accuracy as a function of flipping probability ε for adaptive
boosting classifiers, evaluated on synthetic data.

V. SINGLE-ERROR-CORRECTING ADABOOST

So far in the paper, the mitigation of classifier errors
(stragglers and flips) is done through minimizing the expected
loss given the parameter of the i.i.d error source. While
this is a natural optimization criterion, also showing some
accuracy improvements empirically, it does not directly seek
to maximize the accuracy of the aggregate classifier. Hence, in
this section we pursue a more direct optimization of the error-
prone classifier accuracy – for the special case of a single
erring classifier. The same method can be extended to more
than one error, with some increase in the training complexity
(we discuss this extension in more detail later in the paper).
Another difference from the preceding sections, is that we
aim at high worst-case performance, that is, maximizing the
minimum accuracy obtained under any single erring classifier.

In the sequel we limit the discussion to flipping errors, but the
results can be easily extended to straggling errors as well.

A. The 1-flip loss

Let S(x) , ∑
M
j=1α jh j(x), and define S(t)(x) , S(x) −

2αtht(x), which is the ensemble weighted sum when classifier
t flips. We now define the 1-flip loss of this ensemble.

Definition 1 The 1-flip loss of an ensemble {h j}M
j=1,{α j}M

j=1
over a labeled dataset D = {(x1, y1), . . . , (xm, ym)} is
defined as

max
t∈1,...,M

{
m

∑
i=1

exp
(
−yiS(t)(xi)

)}
. (15)

When 1 classifier is allowed to flip arbitrarily frequently, the
1-flip loss replaces the usual exponential loss as a measure
of ensemble quality. The t-th classifier has a dual role in
suppressing the 1-flip loss: 1) trying to make yiS(t′)(xi) as
positive as possible for t′ 6= t, and 2) not hurting yiS(t)(xi)
too much when ht flips. It is possible to extend Definition 1
to more than one flip, by taking the max over pairs, triples,
quadruples, etc.

B. Reliability regularization of Adaboost

Recall (Proposition 1) that in Adaboost, each classifier’s co-
efficient αt minimizes the exponential loss given the previous
classifiers and coefficients. When the t-th classifier flips, αt
also determines the magnitude by which the noisy weighted
sum S(t)(x) differs from the reliable value S(x). That suggests
a regularized version of Adaboost for balancing the two effects
of αt.

Definition 2 Given a positive real number ᾱ, the reliability-
regularized Adaboost is identical to Adaboost, except in
setting its coefficients to (cf. (9))

ᾱt = min
{
ᾱ,

1
2

ln
(

1−εt

εt

)}
. (16)

By upper-bounding the classifiers’ coefficients, the reliability-
regularized Adaboost limits the effect of their flips, while
potentially compromising the exploitation of their quality
when they don’t flip. Setting ᾱ too high would lead a flipping
classifier to cause frequent classification errors, while setting
it too low would give poor minimization of the training error.
Thus a very important question is: how to set ᾱ to optimally
balance these two considerations?

A useful tool toward picking the value of ᾱ is the 1-flip
loss of Definition 1. Given two possible values ᾱ,ᾱ′, we can
run the regularized algorithm with each, and pick the one
whose resulting ensemble achieves the lower 1-flip loss on
the training set. Furthermore, evaluating the 1-flip loss on a
sweep of ᾱ values confirms its role as a balance between the
quality and reliability of the ensemble; training on the CBCL
dataset, the 1-flip loss exhibits a U-shaped curve as a function
of ᾱ: first decreasing thanks to improving the quality of the

ensemble, and then starting to increase again due to stronger
effects of single flips. This motivates an efficient method for
finding the ᾱ value minimizing the 1-flip loss.

C. A bisection algorithm for finding ᾱ

Minimizing the 1-flip loss over a sweep of ᾱ values is a
valid approach, but highly inefficient. For each value in the
sweep we need to re-invoke the Adaboost algorithm, and many
invocations are needed for a sufficiently fine search. In this
subsection we propose a more efficient method based on a
bisection algorithm. To allow bisecting the search space, we
need a tool to answer the question of whether the current ᾱ is
too high or too low. For such a tool, we recall the relation (9)
betweenαt and the classifier error εt, and revisit a well-known
identity [10] tying the exponential loss and the values of εt

1
m

m

∑
i=1

exp (−yiS(xi)) =
M

∏
j=1

√
1− 4

(
1
2
−ε j

)2
. (17)

The relevant interpretation of (17) is that a set of {α j}M
j=1

values imply (through {ε j}M
j=1) a certain value of the full-

ensemble’s exponential loss. (The right-hand side of (17) may
be more familiar as an upper bound on the training error.) That
interpretation suggests the following idea. Suppose we replace
the left-hand side of (17) with the 1-flip loss from (15), and
at the right-hand side substitute the values ε̄t inverse mapped
from the ᾱt values from (16) (note that ε̄t do not correspond
to real classifier errors). Then we change the equality to a
hypothesis test, getting

max
t∈1,...,M

{
1
m

m

∑
i=1

exp
(
−yiS(t)(xi)

)} ?
≷

M

∏
j=1

√
1− 4

(
1
2
− ε̄ j

)2

(18)

As we increase ᾱ, the right-hand side in general decreases
thanks to larger ᾱt values (smaller ε̄t values). The direction
of the inequality in (18) can tell us about the current value of
ᾱ. If the left-hand side is greater, that means the ᾱt values are
too high. Said differently, the high confidence we put in the
classifiers does not pay in lowering the 1-flip loss accordingly.
Conversely, a greater right-hand side suggests ᾱt that are too
low to predict the 1-flip loss, and thus can be increased.

We use (18) in a bisection algorithm that starts from unre-
stricted Adaboost (ᾱ = ∞), sets the initial search boundaries
ᾱmax = maxM

j=1(α j), ᾱmin = 0, and at each iteration halves
the search interval downward or upward according to if the
result of (18) is > or <, respectively. The running time (and
the number of training instances) of the bisection algorithm is
significantly lower than the sweep, and it empirically reached
final ᾱ values that are within a few percentage points from the
optimal value in the sweep.

D. Empirical evaluation: 1-flip loss minimization

On the CBCL face-detection dataset [8], we ran the bisec-
tion algorithm on the training set, and recorded the final ᾱ for
each M ∈ {8, . . . , 16}. We took the ensembles selected in the
previous step and evaluated their accuracy on the test set, each
time with a different index t flipping on all the data points.
We evaluated the bottom-3 accuracy, which is the average
of the 3 worst accuracies out of the M options of a single
flipping classifier. We plot the resulting values in Figure 3
(circle markers), in comparison to ordinary Adaboost (square
markers). While not every value of M sees improvement, the
accuracy advantages are significant compared to the much
smaller differences when Adaboost is a little better.

Fig. 3. Bottom-3 accuracy of proposed 1-flip algorithm vs. Adaboost.

VI. DISCUSSION AND CONCLUSION

Using boosted ensembles in distributed classification is
highly promising, but introduces reliability issues. In the
non-asymptotic case where M is fairly small, even a single
flipping classifier can degrade the accuracy considerably if
not mitigated. We proposed two approaches to address the
issue within the boosting framework. The first (Stragboost,
Flipboost) provides provable minimum-loss guarantees, but
requires probabilistic assumptions on the errors. An interesting
direction is to generalize the proposed algorithms to non-i.i.d.
straggling/flipping models. The second approach (1-flip loss
minimization+bisection) seeks high worst-case performance
for a specified number of flipping classifiers. A potential
improvement of the second method can be by using the 1-flip
loss in an adaptive way within the training sequence itself,
thus reducing the training complexity further. The challenge
in doing so is that the 1-flip loss is inherently a global measure
(1 out of M), and using it with different intermediate values
M′ < M did not lead to good performance. More broadly,
the problem of ensemble unreliability can be addressed by
many other tools, for example by introducing some redun-
dancy among the classifier outputs, and potentially detecting
a flipping classifier prior to its aggregation.

REFERENCES

[1] T. Diettereich, “Ensemble methods in machine learning,” Multiple Clas-
sifier Systems, Springer, Berlin, Heidelberg, pp. 1–15, Dec. 2000.

[2] Z. Xiao, Z. Luo, B. Zhong, and X. Dang, “Robust and efficient
boosting method using the conditional risk,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 7, pp. 3069–3083,
Jul. 2018.

[3] Z. Wang, R. Schapire, and N. Verma, “Error adaptive classifier boosting
(EACB): Leveraging data-driven training towards hardware resilience
for signal inference,” IEEE Trans. Circuits Syst. I, vol. 62, no. 4, pp.
1136–1145, Apr. 2015.

[4] Z. Wang, K. Lee, and N. Verma, “Overcoming computational errors in
sensing platforms through embedded machine-learning kernels,” IEEE
Trans. VLSI Syst., vol. 23, no. 8, pp. 1459–1470, Aug. 2015.

[5] Y. Kim, Y. Cassuto, and L. Varshney, “Distributed boosting classifiers
over noisy channels,” in Proc. Asilomar Conference on Signals, Systems,
and Computers. IEEE, Nov. 2020.

[6] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[7] L. Breiman, “Bagging predictors,” Machine Learning, Springer, Berlin,
Heidelberg, vol. 24, no. 2, pp. 123–140, Aug. 1996.

[8] “CBCL FACE DATABASE,” Center for Biologi-
cal and Computational Learning at MIT. Available:
http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz, 2000.

[9] M. Frean and T. Downs, “A simple cost function for boosting,” De-
partment of Computer Science and Electrical Engineering, University
of Queensland, Tech. Rep., 1998.

[10] R. Schapire and Y. Freund, Boosting: Foundations and Algorithms.
Cambridge MA, USA: MIT Press, 2012.

