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Abstract—In this paper we present a new compression scheme
for genomic read data produced by modern sequencing technolo-
gies. In this setting, a reference genome similar to the one being
sequenced is available only at the decoder, while the starting index
of each read in this reference in unknown. The proposed scheme
significantly reduces the encoding complexity relative to known
reference-based compression schemes. The results include a code
construction based on generalized concatenation coset codes,
analysis of the decoding failure probability, and optimization of
the scheme parameters for minimal compression rate.

I. INTRODUCTION

Genomic sequencing is a process in which the order of
nucleic acids within a DNA molecule (genomic sequence) is
analyzed. In most modern sequencing technologies, a large
set of short sequence fragments, called reads, is produced and
represented by a string of characters (usually A,C,G,T). In this
method, called shotgun sequencing [1], each read’s location
within the sequence is generally unknown. Furthermore, the
sequencing machine introduces mutation errors into the reads.
Therefore, the sequence assembly from the reads requires a
large number of reads and high computational effort. Effective
compression of pre-assembly reads data is therefore an essen-
tial problem. A large number of read-compression methods
are available [2]–[4], partitioned into two main categories:
reference-free and reference-based tools, differing by whether
a closely similar reference genome is shared by the encoder
and decoder. In some applications, genome reads will be
produced at an edge node, e.g. a physician’s office, and then
sent for processing to a central node, e.g. a cloud database.
In such scenarios, the cost of known reference-based methods
may be too high for the edge node’s limited resources, due
to the need to store long references and perform the reads’
alignment on them. Alternatively, in this paper we propose a
compression scheme in which the encoder needs to neither
store nor process any reference, while benefiting from a
reference available at the central node decoding the reads.

Compression with reference available only at the decoder
is an instance of the well known Slepian-Wolf (SW) coding
problem [5]. Several works have addressed the problem with
explicit constructive codes [6]–[12], some specifically for
genomic data [13], [14], but focused on either full-block or
streamlined data, and not fragmented reads. When compress-
ing fragmented reads, the known capability of recovering a
read from a similar reference is not sufficient, and additional
information is needed for aligning the read within the full
reference. The construction proposed in this paper offers both

capabilities, using the framework of generalized error-locating
(GEL) [15] coset codes. GEL coset codes were used in [12] for
full-block compression, and the novelty of this present work
is in using the GEL’s hierarchy of inner codes to combine all
the information for read recovery into the same codeword: one
layer for alignment, one for similarity reconstruction and one
for alignment validation. In the fourth layer, a batch of reads
is encoded with an outer code to provide extremely low failure
probability. In addition to proposing the code construction in
Section III, in Section IV we analyze the success probability of
the code, taking into account the effect of read misalignments
within the reference. In Section V, we seek the optimization
of the various code parameters to minimize the compression
rate for a specified success probability. The similarity measure
considered in this paper is the rate of substitutions, which are
the most dominant mutations observed in common sequencing
technologies. Extending the scheme to deal with insertions and
deletions is left as an interesting future work.

II. PROBLEM FORMULATION

A. Problem Setting

A genome data being sequenced in an edge node is repre-
sented by a string X ∈ AL. A closely similar reference of
this data, represented by Y, is stored in a central node, and
is unavailable at the edge node. The differences between X
and Y are assumed to be caused by genetic diversity [16]. A
sequencing machine at the edge node is generating a set of M
reads from X, denoted by {x(i)}Mi=1. Each read x(i) ∈ An
is an approximate substring of X, taken from an unknown
random location within X, and introduced with sequencing
errors. Our goal is to encode the reads data {x(i)}Mi=1 to
a minimal size, such that the reads can be recovered from
the similar reference Y without loss. The encoder output is
communicated to the central node without errors.

B. Error Channel Model
In this work, we assume that both genomic diversity and

sequencing errors are modeled by substitutions only, without
insertions and deletions (indel errors), but supporting indels
is possible with modification of the alignment procedure at
the central node. A q-ary, length-L substitution channel with
substitution probability p1, between input and output strings
X = X1, . . . , XL and Y = Y1, . . . , YL, is defined as a
memoryless q-ary symmetric channel, that is:

P (Y|X) =

L∏
j=1

P (Yj |Xj), P (Yj |Xj) =

{
1− p1 Yj = Xj

p1/(q − 1) Yj 6= Xj



Fig. 1: Left: DNA reads generated as fragments of a genome. Right: read-identifier-based alignment of a single read.

The channel output string will be denoted by Y =
Sq,L(X, p1). Let X(i) = Xki , Xki+1, . . . , Xki+n−1 be a
substring observed by the sequencer, where ki is a random, un-
known starting index. The corresponding read x(i) is modeled
by x(i) = Sq,n(X(i), p2). Let y(i) = Yki , Yki+1, . . . , Yki+n−1
be the substring of Y with proper alignment to the read x(i).
Based on the models above, we get that y(i) = Sq,n(x(i), p∗),
where p∗ , p1 · [1− p2/(q − 1)] + (1− p1) · p2. That is, the
differences between reads and their references are modeled as
a single substitution channel with parameter p∗. This model
can be extended to richer models (e.g. [17]), potentially ex-
ploiting the dependence between two overlapping reads, whose
references pass through the same instantiation of the channel
Sq,L(X, p1). The relations between the genome, reference and
reads are illustrated in Fig 1.

C. Pre-Decoding Alignment

We wish to encode x(i) such that only the information re-
quired to reconstruct it from y(i) is transmitted. Nevertheless,
for this reconstruction to work, the decoder first needs to know
the starting index ki of this read. Therefore, the encoder must
transmit some additional information enabling the decoder to
align the read within the reference, while accounting for the
substitution errors. This alignment information is an `-bit read
identifier, output from a function denoted by f`(x

(i)). Such
identifier and the tradeoffs in setting the value ` are discussed
in Sections III and IV, respectively.

Since only partial information is provided for alignment,
additional improper alignments, i.e., erroneous starting indices,
are likely to be found. This process provides the decoder with
a set

{
z(i,j)|j = 1, 2, . . .

}
of length-n substrings of Y as

candidates for read alignment. Every z(i,j) 6= y(i) can be
regarded as having been obtained from x(i) passing through a
useless channel with zero mutual information. The alignment
process is illustrated in Fig 1 (right). Clearly, only the proper
alignment is desired for decoding, thus a method for rejecting
false candidates is required. This method, described in Section
III, is referred to as validation.

III. CODE CONSTRUCTION

For simplicity, throughout this section we assume q = 2, but
the construction can be generalized to any q that is a prime
power. Furthermore, cyclic indices will be used, i.e., every

index j in X,Y will be taken as ([(j − 1) mod L] + 1) ∈
{1, . . . , L}, to avoid edge effects.

A. Read Identifier

A simple bit sampling approach is found to be very suitable
for read identifiers. Let 1 ≤ i1 < · · · < i` ≤ n be a predefined
set of indices, known to both the encoder and decoder. Now,
let f`(x(i)) = xi1 , . . . , xi` be the read identifier. In this case,
an aligner at the central node simply correlates this identifier
along the reference by evaluating the Hamming distance with
respect to each starting index, and produces the set

Z(i) =
{
z(i,j)

∣∣∣ dH (f`(x(i)), f`(z
(i,j))

)
≤ T

}Ki

j=1
, (1)

where dH(·, ·) is the Hamming distance, T is a predefined
threshold, and

{
z(i,j) =

[
Y
k
(j)
i
, . . . , Y

k
(j)
i +n−1

]}
is the set of

possible alignments of x(i) within Y. The remainder of the
read, i.e., the indices outside of the identifier, is denoted by
x
(i)
I , where I = {1, . . . , n} \ {i1, . . . , i`}, |I| = n− `.

B. General Code Construction

Our goal is to design a coding scheme for transmitting reads
from X ∈ {0, 1}L such that a decoder with access to Y =
S2,L(X, p∗) will be able to perfectly reconstruct them with
high probability.

Definition 1. A (M,n,R, p∗, Ps)-code is a pair (E ,D) of
encoder-decoder for a set {x(i)}Mi=1 of length-n reads such that:

1) E ,D have access only to {x(i)}Mi=1,Y, respectively,
2) the encoded size satisfies∣∣∣E ({x(i)}Mi=1

)∣∣∣ = (nM) · R,

3) the correct decoding probability satisfies

Pr
{
D
[
E
(
{x(i)}Mi=1

)
,Y
]

= {x(i)}Mi=1

}
≥ Ps.

Our general code construction is based on generalized error
locating (GEL) codes [15], adapted to use as a source code
with alignment-validation capabilities.

Construction 1. Let C1, C2 be a pair of binary linear codes
with parameters [n− `, ki − `, di] , i = {1, 2}, where k1 ≥ k2.
Let H1,H2 be parity-check matrices of these codes, respec-
tively, such that they form a nested pair, i.e., all rows of H1



appear in H2 in concatenation with additional τ , k1 − k2
rows denoted by H̄2, the validation matrix. Let Hc be a matrix
such that the concatenation of its rows with H2 forms a square
full-rank matrix H. This structure is illustrated in Fig. 2.

Fig. 2: Structure and sizes of the construction’s inner-code
parity-check matrices.

Finally, let Co be a [M,ko, do] linear code over GF(2ν), with
parity-check matrix Ho, and where ν = n− `− (ρ+ τ). This
code will be referred to as the outer code.

The encoding and decoding processes are introduced in
Algorithms 1 and 2, respectively. We note that the syndrome
s(i) with respect to H2, calculated in Algorithm 1, is of the
form s(i) = [s

(i)
1 , s

(i)
2 ], where s

(i)
1 , s

(i)
2 correspond to H1, H̄2,

respectively. In Algorithm 2, we denote by D1(z, s) the result
of decoding the word z with respect to H1 within the coset
of syndrome s. The same is done for Do(a,S), with a word
a decoded with respect to Ho to a syndrome S. We denote
by FH(u) the linear mapping of u to the single codeword of
syndrome u in the code defined by H. Finally, we denote by⊗

an erasure occurring if either more than one alignment was
validated or all of them failed to be validated.

Algorithm 1: Construction 1 Encoding

Input: {x(i)}Mi=1,H2,Hc,Ho

for 1 ≤ i ≤M do // Inner Encoding

Extract w(i) = f`(x
(i))

Calculate s(i) = H2

[
x
(i)
I

]T
, a(i) = Hc

[
x
(i)
I

]T
end
Form a =

[
a(1), . . . ,a(M)

]
∈ [GF(2ν)]

M

Calculate S = Hoa
T // Outer Encoding

Output: E
(
{x(i)}Mi=1

)
=
{
{w(i)}Mi=1, {s(i)}Mi=1,S

}
Note that the term validation in Algorithm 2 and in the

sequel includes cases of misvalidation, that is, validation of a
vector v 6= x

(i)
I , whereas a failed validation, i.e. ŝ(i)2 6= s

(i)
2 ,

forms a rejection of the candidate.

Proposition 2. The rate of Construction 1 is given by

R = 1− ko
M
· n− `− (ρ+ τ)

n
= 1− ko

M
· k2 − `

n
.

Proposition 3. Construction 1 yields a (M,n,R, p∗, Ps)-code
if and only if at the outer decoder output Pr{â = a} ≥ Ps.

By Proposition 3, the success of the scheme depends on the
success in decoding the outer code over a channel induced by
the inner-decoding outcomes. In the next section we turn to
analyze this induced channel, which requires accounting for
both the alignment and the inner-decoder performance.

Algorithm 2: Construction 1 Decoding

Input: E
(
{x(i)}Mi=1

)
,Y,H1, H̄2,Hc,Ho

for 1 ≤ i ≤M do
Align w(i) over Y, and form Z(i) (Eq. 1)
for 1 ≤ j ≤ |Z(i)| do // Inner Decoding

Set ’found’← 0
Decode v = D1(z

(i,j)
I , s

(i)
1 )

Calculate ŝ
(i)
2 = H̄2v

T

if ŝ(i)2 = s
(i)
2 then // Validation

if ’found’ = 0 then
Calculate b(i) = Hcv

T , Set ’found’← 1
else // More Than One Candidate

Set b(i) =
⊗

, break
end

end
end
if ’found’ = 0 then // No Candidates

Set b(i) =
⊗

end
end
// Outer Decoding

Decode â = Do(b,S), where b = [b(1), . . . , b(M)]
for 1 ≤ i ≤M do // Inverse Mapping

Map x̂
(i)
I = FH([s(i), â(i)])

Reconstruct x̂(i) from x̂
(i)
I ,w

(i)

end
Output: {x̂(i)}Mi=1

IV. SCHEME ANALYSIS

Throughout this section, the sequenced genome is assumed
to be a random sequence in which each symbol is drawn i.i.d.
from the Bernoulli(1/2) distribution. This assumption is only
needed for analyzing the misalignments of the read x(i), and
the scheme’s handling of the proper alignment does not rely on
it. Extension of the analysis to other genome statistical models
can be done based on related studies such as [1], [18].
A. Inner-Code Analysis

The inner decoder is invoked in Algorithm 2 on both the
proper alignment of x(i) in Y (if found) and, possibly, on
improperly aligned z(i,j) vectors that are not related to x(i).
The scheme’s performance depends on the inner-decoding
outcomes for both types of inputs, which we now analyze.

Definition 4. LetZ(i) be the set of possible alignments of some
read x

(i)
I . The following terms are defined:

• Pa.s - the probability of the proper alignment being found,
i.e., y(i) ∈ Z(i).

• K
(i)
f =

∣∣Z(i) \ {y(i)}
∣∣ - the number of improper alignments.

Let Fb(n, p, t) denote the CDF of a binomial random variable
with parameters (n, p), evaluated at the value of t.

Lemma 5. The following expressions are immediate:
Pa.s = Fb(`, p

∗,T), E[K
(i)
f ] , Kf = (L− 1) · Fb(`, 1/2,T).



Definition 6. For each alignment candidate z(i,j) ∈ Z(i) of
some read x

(i)
I , the following probabilities are defined:

• Psuc - for successful inner decoding, that is, v = x
(i)
I .

• Pmiv - for misvalidated inner decoding, that is, D1 returns
v 6= x

(i)
I , and ŝ

(i)
2 = s

(i)
2 .

• Prej = 1− Psuc − Pmiv - for detected inner-decoding error.
We further add a superscript (x) ∈ {(p), (i.p)} to the above
probabilities, corresponding to whether z(i,j) is the proper or
improper alignment, respectively. Let t1 , bd1−12 c, n` , n−`,
and Vn(t) denote the volume of a Hamming ball with radius t
of length-n words. Then we have the following.

Lemma 7. The following equalities and approximations hold:

P (p)
suc = Fb(n`, p

∗, t1), P (i.p)
suc ' 0, (2)

P
(i.p)
miv =

Vn`
(t1)

2ρ+τ
, P

(p)
miv . P

(i.p)
miv , (3)

P
(i.p)
rej ' 1− P (i.p)

miv . (4)

Proof: In (2) the equality follows from C1 having mini-
mum distance d1, and the ' 0 represents the negligible prob-
ability that a z

(i,j)
I would somehow successfully decode to an

unrelated x
(i)
I . In the left equality of (3), since the improper

alignment is not related to the encoder input x(i)
I , P (i.p)

miv equals
the probability that a random length-n` vector has a codeword
of C2 at distance at most t1. This can be shown to equal the
right-hand side. The . inequality follows from the fact that the
probable proximity of x(i)

I to the proper alignment in general
reduces the probability of misvalidation. For this inequality to
hold formally, the inner codes need to satisfy a natural property
called properness [19]. Finally, (4) follows from the second
claim in (2) and the definition of Prej.

B. Outer-Code Analysis
In the outer code, the syndromes with respect to Hc are

treated as symbols in GF(2ν). As seen in Algorithm 2, these
symbols may be erased depending on the outcome of the inner
decoding. Furthermore, a misvalidated inner-decoder output v
may introduce an erroneous symbol. The outer decoded word
b can thus be modeled as transmitting the correct codeword a
through an outer channel, which produces erasures and errors.
The probabilities of these events are directly induced by the
coding scheme parameters {`, k1, τ,T}. We can now exam-
ine the erasure and error probabilities of the outer channel,
denoted by Pers, Perr, respectively. For the next lemma, we
assume that equation (4) holds by equality.

Lemma 8. Let Pp.a , Pa.s ·
(

1− P (p)
rej

)
, Pp.m , Pa.s · P (p)

miv ,
then the outer channel probabilities satisfy:

Pers ≤ Pp.a

[
KfP

(i.p)
miv (1 +B1)

]
+ (1− Pp.a)

[
1− KfP

(i.p)
miv (1 +B1)

]
,

Perr ≤ Pp.m

[
1− KfP

(i.p)
miv (1 +B1)

]
+ (1− Pp.a)

[
KfP

(i.p)
miv (1 +B1)

]
,

(5)

where B1 are terms bounded from above by KfP
(i.p)
miv when

KfP
(i.p)
miv < 1 , and are thus negligible when KfP

(i.p)
miv � 1.

Proof: (sketch): For Pers the events of interest are: 1)
having 1 proper validation and 1 or more improper validations
(first term), and 2) having 0 proper validations and not exactly
1 improper validation (second term). For Perr the events of
interest are: 1) having 1 proper mis-validation and no improper
validations (first term), and 2) having 0 proper validations
and 1 improper validation (second term). Each probability is
expanded with the Taylor series, and B1 encapsulates only
terms of order at least 1 in KfP

(i.p)
miv . Since K

(i)
f are themselves

binomially distributed, marginalizing the probability over Kf

gives the raw binomial moments, all of which are order at
least 1 in KfP

(i.p)
miv [20].

We note that relieving the assumption regarding equation
(4), the lemma still holds by simply replacing P

(i.p)
miv terms

with 1− P (i.p)
rej .

It is well known that a code with minimum distance d can
correct up to m1 erasures and m2 errors as long as m1 +
2m2 ≤ d − 1 [21]. That means the redundancy of the outer
code should be set by the following.

Proposition 9. Let Co be a maximum distance separable (MDS)
code, and define the random variable W = m1 + 2m2. Then
the minimal required redundancy M − ko of Co equals

ρ∗o = min{w} such that P (W ≤ w) ≥ Ps ,

where

P (W = u) =
∑

m∈S(M,u)

M !

m0!m1!m2!
(1−Pers−Perr)

m0 ·Pm1
ers ·Pm2

err ,

for m = (m0,m1,m2) and

S(M,u) , {m |m1 + 2m2 = u , m0 +m1 +m2 = M } .

V. PARAMETER OPTIMIZATION

Given the specified system parameters M,n,L, p∗, Ps, to
obtain minimal-rate compression by Construction 1 we need
to optimize the free parameters of the construction. More
concretely, the optimal parameters are defined in the following.

Definition 10. The optimal parameters of a (M,n,R, p∗, Ps)-
code from Construction 1 are

{k1, τ, `,T}? = arg max
{k1,τ,`,T}

L(k1, τ, `,T), (6)

where
L(k1, τ, `,T) , (k1 − τ − `) · (M − ρ∗o). (7)

The optimality of {k1, τ, `,T}? in Definition 10 follows im-
mediately from Propositions 2 and 9. The challenge in finding
the optimal values lies in that maximizing (7) needs to account
for the complex dependence of ρ∗o on the other parameters
affecting the rate.

A. Choosing the Alignment Parameters

Finding the four parameters of (6) simultaneously is dif-
ficult, so we first deal with the alignment parameters `,T
separately. We observe that these parameters have importance
beyond the above optimization: they control the expected
number of improper alignments, and thus the decoding com-
plexity (the expected number of inner-decoder invocations).
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Fig. 3: Example of Construction 1 using BCH inner codes for L = 105, n = M = 255. Left: outer channel erasure and error
probabilities and required outer redundancy symbols. Right: optimal rate R∗ as a function of p∗ for three failure probabilities.

Therefore, we limit ourselves to values that maintain a limit
on this expected number, as follows.

Proposition 11. Given an upper bound Km for the expected
number of improper alignments Kf , a valid region for threshold
T values, for every read identifier length `, is obtained by

TV(Km, `) =
{
T : V`(T) · 2−` ≤ Km/L

}
.

The valid region for ` is then `V(Km) = {` : TV(Km, `) 6= ∅}.
The pairs `,T allowed by Proposition 11 are independent of
all other (system+construction) parameters except L, and so
can be calculated once and reused for every parameter setup.

B. Approximating the Outer Redundancy

For efficient evaluation of parameter sets during optimiza-
tion, it is helpful to simplify the dependence of ρ∗o on Pers,Perr

relative to the exact trinomial CDF in Proposition 9. For
that, we approximate the trinomial distribution of W with
parameters M,Pers, Perr by a Normal distribution with the
same mean and same variance, as follows.

Lemma 12. Let Pred , Pers + 2Perr. The outer redundancy can
be approximated by

ρ∗o ≈ µW +Q−1(Pf) · σW + β(Pf), (8)

where µW = MPred , σ
2
W = MPred(1 − Pred) + 2MPerr,

and Q(·) is the Normal distribution’s tail function, Pf = 1−Ps

is the allowed failure probability, and β(·) is some empirical
correction function of Pf .

The advantage of (8) is that ρ∗o can be approximated in closed
form, using a single fitting parameter β for each Pf , and can be
used for any pair Pers,Perr induced by inner-code parameters.

C. Optimization Procedure

Finding a solution to the problem in (6) can now be done
in the following stages: (i.) Given Km, find the valid regions
`V(Km),TV(Km, `), (ii.) set k1 and iterate over valid pairs
(`,T), and numerically find the optimal τ? by evaluating
equations (5), (7) and (8) (neglecting B1 terms), (iii.) find
the optimal set {τ, `,T}? for k1, by comparing the results of
each pair (`,T), and (iv.) find the optimal set {k1, τ, `,T}?
by comparing the results of each k1. Since the set of available
dimensions k1 of an error-correcting code family (e.g. BCH)
is relatively small, the search space in (iv) is manageable.

Similarly, the search space of τ? in (ii) is relatively small,
since the misvalidation probability decays exponentially with
the number of validation bits.

VI. NUMERICAL RESULTS
We demonstrate the optimization procedure by showing

numerical results for Construction 1 employing binary BCH
codes as C1, C2, and a Reed-Solomon code as Co. In this set-
ting, the parameter τ is obtained by choosing the difference in
minimum distance between C1 and C2, denoted ∆d , d2−d1.
In Fig. 3 (left), we plot the induced outer channel probabilities
(left axis) and corresponding outer redundancy (right axis)
as a function of k1, for L = 105, n = M = 255, p∗ =
0.01, Ps = 1 − 10−6. The tradeoff of redundancy allocation
between codes is clear by examining the (non-linear) increase
in required outer redundancy with the weakening of the inner
code (increase in k1). The plot reveals a floor value of 10−2 for
the erasure probability, attributed to failed proper alignment,
which cannot be solved by strengthening the inner code. A
solution of the rate optimization problem for different values
of substitution rate p∗ is shown for Pf =

{
10−9, 10−6, 10−3

}
in Fig. 3 (right). Finally, we compare in Fig. 4 the rates of the
proposed scheme with a powerful fixed-rate benchmark that
assumes the encoder knows both Y and the correct alignment
of every x(i) in Y (and can thus communicate the alignment
index plus a fixed-rate encoding of the difference y(i)−x(i)). It
is shown that for Pf = 10−9, the proposed scheme outperforms
the benchmark for every p∗ starting at 10−4, while saving the
space and computation effort at the encoder required to store
Y and align the reads to it.
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Fig. 4: Optimal (+) vs. benchmark (4) rates for Pf = 10−9.
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