
Distributed Boosting Classifiers over
Noisy Channels

Yongjune Kim∗, Yuval Cassuto†, and Lav R. Varshney‡§
∗DGIST, Daegu, South Korea, yjk@dgist.ac.kr

†Technion – Israel Institute of Technology, Haifa, Israel, ycassuto@ee.technion.ac.il
‡University of Illinois at Urbana-Champaign, Urbana, IL, USA, varshney@illinois.edu

§Salesforce Research, Palo Alto, CA, USA, lvarshney@salesforce.com

Abstract—We present a principled framework to address
resource allocation for realizing boosting algorithms on substrates
with communication noise. Boosting classifiers (e.g., AdaBoost)
make a final decision via a weighted vote from local decisions
of many base classifiers (weak classifiers). Suppose the base
classifiers’ outputs are communicated over noisy channels; these
noisy outputs will degrade the final classification accuracy. We
show this degradation can be effectively reduced by allocating
more system resources for more important base classifiers. We
formulate resource optimization problems in terms of importance
metrics for boosting. Moreover, we show that the optimized noisy
boosting classifiers can be more robust than bagging for noise
during inference (test stage). We provide numerical evidence to
demonstrate the benefits of our approach.

I. INTRODUCTION

Boosting methods in machine learning construct a set of
base (weak) classifiers and then classify a new data point
by taking a weighted vote of their decisions [1]. Boosting
can achieve good classification accuracy even if the base
classifiers have performance that is only slightly better than
random guessing [2], [3]. Adaptive boosting (AdaBoost) is
the most widely used form of boosting [2], [4]; it works well
for classification problems such as face detection [5] and can
be extended to regression problems [6].

Consider the standard supervised classification problem.
For the given training set S = {(x1, y1), . . . , (xN , yN)}, the
objective of learning is to estimate the unknown classification
function f(·). The input vector is xn = (xn,1, . . . , xn,D)
where D denotes the dimension of the input vectors. The
output variables yn are typically drawn from a discrete set
of classes, i.e., y ∈ {1, . . . ,K} where K denotes the num-
ber of classes. For a binary classification problem, we set
y ∈ {+1,−1}, which we focus on.

The final output of AdaBoost is as follows:

f(x) = sign

(
T∑
t=1

αtft(x)

)
, (1)

where ft(x) and αt denote the local decision and the co-
efficient of the t-th base classifier, respectively. The final

Y. Kim was supported by the DGIST Start-up Fund Program of the Ministry
of Science and ICT 2020090013. L. R. Varshney was supported in part by
the National Science Foundation under Grant CCF-1717530. Y. Cassuto was
supported in part by the US-Israel Binational Science Foundation and the
Israel Science Foundation.

Base

Classifier 1

Base

Classifier T

sign(‧)

 !(")

 #(")

$!

$#
"

sign(‧)

sign(‧)

Fig. 1. Noisy boosting classifier. The final output of noisy boosting classifier
f̂(x) is given by (2).

output (decision) f(x) is the weighted voting from local
decisions as shown in (1). AdaBoost assigns larger coefficients
to more accurate (or important) base classifiers [3], [4]. Unlike
AdaBoost, the coefficients of bagging classifiers are uniform
(i.e., αt = 1

T for all t ∈ {1, . . . , T}) and the output of bagging
corresponds to majority voting [7].

Suppose that the outputs of base classifiers are corrupted by
random noise as shown in Fig. 1. The noise z = (z1, . . . , zT)
captures communication errors over the channel between the
base classifiers and the weighted voter. Alternatively, z can
originate from noise in the computation hardware of base
classifiers [8]. The corrupted output of the t-th base classifier
is denoted by f̂t(x) ∈ {+1,−1}. We assume that the weighted
vote is implemented in a noiseless manner.

We observe that noise in the individual base classifiers
affects the overall classification accuracy in a way that strongly
depends on the coefficient vector α. That is, an erroneous
f̂t with a large coefficient αt is more likely to corrupt
the final classification output than a base classifier with a
smaller coefficient. Following this observation, we develop a
principled framework to optimize the classification accuracy
by allocating system resources to base classifiers according to
their importance prescribed in the coefficient vector α.

In this paper, we assume that the impact of z can be
controlled by allocating system resources. Ideally, the system
resources should be allocated to minimize the classification
error probability. However, the classification error probability
of boosting depends on the data sets and base classifiers (and
their training algorithms); the classification error probability is
not simply related to the system resources and does not yield
tractable optimization procedures.

To circumvent this problem, we minimize proxies instead

of the classification error probability. First, we define three
proxies: 1) Markov proxy, 2) Chernoff proxy, and 3) Gaussian
proxy. Next, we formulate optimization problems to minimize
these proxies for a given resource budget. This kind of indirect
approach is effective in many problems, e.g., [9]–[11].

In particular, we investigate an example where the outputs
of base classifiers are corrupted by additive noise over the
channels between base classifiers and the aggregator (weighted
voter). Here, the noise level over these channels can be
controlled by allocating transmit power. We show the pro-
posed framework can effectively reduce the classification error
probability for a given transmit-power budget. Our approach
provides a general framework to allocate a limited resource
for boosting classifiers and can also be applied to settings of
noisy computations. For example, the quality of computations
on noisy hardware can be changed by controlling supply
voltage [8], replicating computations [12], [13], and imple-
menting granular bit precisions [10]. Based on the proposed
framework, we can optimize these system resources in a
principled manner.

Our problem of noisy AdaBoost is distinct from AdaBoost
in the presence of noisy labels. A well-known model of
random classification noise (RCN) assumes that each label y
in the training set is flipped independently [14], [15]. Several
studies have investigated the behavior of AdaBoost under label
noise and proposed more robust training algorithms [16]–
[18]. Note that the data noise affects all base classifiers
during training; hence, it affects the AdaBoost model (i.e.,
base classifiers and their coefficients) permanently. Our model
assumes that the system noise during inference (test stage)
affects the decisions of base classifiers independently. We
optimize system resources to mitigate the noise impact without
altering the trained AdaBoost models.

It is well known that classification accuracy of AdaBoost
tends to degrade more than that of bagging for the RCN
model [16], [19]. The reason is that AdaBoost more ag-
gressively fits noisy instances in the training set [15], [16].
Contrarily, we show that AdaBoost can be more robust than
bagging in our problem setting where noise flips the base
classifiers’ outputs during inference (test). This is because the
accuracy improvement by the proposed optimization is more
effective as the coefficient variability increases, or formally,
as the geometric mean of the coefficients decreases.

The rest of this paper is organized as follows. Section II
explains the noisy AdaBoost model. Section III develops
three metrics for the importance of base classifiers originating
from three optimization problems. Section IV formulates and
solves resource-allocation problems based on these importance
metrics. Section V provides numerical results and Section VI
concludes.

II. NOISY ADABOOST MODEL

A. AdaBoost

AdaBoost trains the base classifiers in sequence to minimize
an exponential error function [3], [4]. Each base classifier is
trained using a weighted form of the training set in which the

data weights w = (w1, . . . , wN) depend on the performance
of previous base classifiers. In particular, data points that are
misclassified by one of the base classifiers are given greater
weight when used to train the next base classifier. Once all
base classifiers have been trained, their outputs are combined
through weighted voting [3].

Note that the data weights w = (w1, . . . , wN) are distinct
from the classifier coefficients α = (α1, . . . , αT). AdaBoost
determines both values during training. Once training is done,
only the coefficients α are used to classify new data points.
The training of AdaBoost is described in Algorithm 1. The
indicator function I(ft(xn) 6= yn) equals 1 if ft(xn) 6= yn
and 0 otherwise.

Algorithm 1 Training of AdaBoost for binary classification [3]

1: Initialize the data weights w by setting w(1)
n = 1

N .
2: for t = 1 : T do
3: Fit a base classifier ft(x) to the training set by

minimizing Jt =
∑N
n=1 w

(t)
n I(ft(xn) 6= yn).

4: Evaluate εt =
∑N

n=1 w
(t)
n I(ft(xn)6=yn)∑N
n=1 w

(t)
n

.

5: Compute αt = log 1−εt
εt

.
6: Update w(t+1)

n = w
(t)
n exp {αtI(ft(xn) 6= yn)}.

7: end for
8: return the trained base classifiers {ft(·)} and the corre-

sponding coefficients α for t ∈ {1, . . . , T}.

The classification error probability of the trained model f(·)
is given by Pe,f = Pr(f(x) 6= y) where y is the true label
corresponding to x.

Remark 1 (Positive Coefficients): If a base classifier is better
than random guessing, then αt > 0 for any t ∈ {1, . . . , T} [2].

Remark 2 (Normalized Coefficients): We normalize the
coefficients such that

∑T
t=1 αt = 1. Note that normalization

does not affect the classification output in (1).

B. Noisy AdaBoost
Suppose that the base classifiers’ outputs may be flipped

due to the noise zt, i.e., ft(x) 6= f̂t(x) where f̂t(x) =
sign (ft(x) + zt) as shown in Fig. 1. The mismatch event of
the t-th base classifier is denoted by δt = I(ft(x) 6= f̂t(x)).
Then, we can define the base classifiers’ mismatch probabil-
ities as p = (p1, . . . , pT) where pt , Pr(ft(x) 6= f̂t(x)) =
E[δt]. In the sequel, the expectation over the distribution of
x will be replaced by the empirical mean over the given data
set.

The final output of noisy AdaBoost is given by

f̂(x) = sign

(
T∑
t=1

αtf̂t(x)

)
. (2)

Then, the final mismatch probability (i.e., mismatch probabil-
ity of the final output) is given by

Pm , Pr(f(x) 6= f̂(x)), (3)

which captures the negative impact of z on the final clas-
sification accuracy. We can expect that the final mismatch

probability Pm depends on the base classifiers’ mismatch
probabilities p.

The classification error probability of the noisy AdaBoost
is upper bounded by

Pe = Pe,f̂ ≤ Pe,f + Pm, (4)

where Pe,f denotes the classification error probability of noise-
free AdaBoost. Note that Pe,f solely depends on the AdaBoost
algorithm and the dataset, i.e., Pe,f is independent of z. Hence,
we focus on Pm to reduce the deleterious impact of z.

III. IMPORTANCE METRICS OF BASE CLASSIFIERS

We define three proxies to the mismatch probability: 1)
Markov proxy, 2) Chernoff proxy, and 3) Gaussian proxy.
These proxies induce different importance metrics of base
classifiers. We provide theoretical justification for the proxies
and the corresponding metrics.

A. Markov Proxy

Let us define the Markov proxy, which comes from
Markov’s inequality.

Definition 3 (Markov Proxy): The Markov proxy p̂M of the
mismatch probability is given by

p̂M =

T∑
t=1

αtpt, (5)

which is the nonnegative weighted sum of pt.
We derive an upper bound on the mismatch probability Pm

based on Markov’s inequality and show that this upper bound
can be lowered by minimizing the Markov proxy p̂M .

Theorem 4 (Upper Bound by Markov’s Inequality): The
mismatch probability of xn is upper bounded as follows:

Pm(xn) ≤
2p̂M
γn

, (6)

where

γn =

∣∣∣∣∣
T∑
t=1

αtft(xn)

∣∣∣∣∣ , (7)

which represents the decision margin of xn. Then, an upper
bound on the mismatch probability Pm is given by Pm ≤(

2
N

∑N
n=1

1
γn

)
· p̂M .

Proof: The proof is given in [20].
Higher decision margin γn and/or lower Markov proxy p̂M

reduce the upper bound on the mismatch probability. The
margin γn depends only on the input vector xn and the
trained AdaBoost classifier model. In contrast, p̂M depends on
z, whose distribution we can control by resource allocation;
hence minimizing p̂M is pursued in Section IV.

Remark 5: For a given dataset and trained AdaBoost
classifier model, the upper bound (6) depends only on the
Markov proxy p̂M . Hence, our objective is to minimize p̂M
by controlling p = (p1, . . . , pT).

B. Chernoff Proxy

We define the Chernoff proxy via the Chernoff bound.
Definition 6 (Chernoff Proxy): The Chernoff proxy p̂C of

the mismatch probability is given by

p̂C(s) =

T∑
t=1

(esαt − 1) pt, (8)

where s > 0 is a parameter.
Remark 7: Since αt > 0 and s > 0, esαt − 1 > 0.
We derive an upper bound on the mismatch probability Pm

from the Chernoff bound and show that this upper bound can
be reduced by minimizing the Chernoff proxy p̂C .

Theorem 8 (Upper Bound by Chernoff Bound): The mis-
match probability is upper bounded as follows:

Pm ≤ E
[
exp

(
−s · γn

2

)]
· exp (p̂C(s)) , (9)

for any s > 0. Note that E
[
exp

(
−s · γn2

)]
can be calculated

by E
[
exp

(
−s · γn2

)]
= 1

N

∑N
n=1 exp

(
−s · γn2

)
.

Proof: The proof is given in [20].
This upper bound can be tightened by minimizing the

Chernoff proxy p̂C . Also, similarly to the Markov proxy,
a higher decision margin γn decreases the upper bound. In
addition, s should be carefully chosen because of a trade-
off relation between E

[
exp

(
−s · γn2

)]
and p̂C . A smaller s

decreases p̂C while increasing E
[
exp

(
−s · γn2

)]
.

C. Gaussian Proxy

As in Definition 3 and Definition 6, we define a third proxy
metric via Gaussian approximation.

Definition 9 (Gaussian Proxy): The Gaussian proxy p̂G of
the mismatch probability is given by

p̂G =

T∑
t=1

α2
tpt. (10)

Suppose f̂(xn) = sign(ĝ(xn)) where ĝ(xn) is given by

ĝ(xn) =

T∑
t=1

αtf̂t(xn) = ±γn + vn, (11)

where we set ±γn and vn as signal term and the noise term,
respectively. The signal term γn follows from (7). The noise
term vn is vn = −2

(∑
t∈T +

n
αtδt,n −

∑
t∈T −

n
αtδt,n

)
where

T +
n = {t | ft(xn) = 1} and T −n = {t | ft(xn) = −1},

respectively. Also, δt,n = I(ft(xn) 6= f̂t(xn)).
Theorem 10: The noise term vn for n ∈ {1, . . . , N} can be

modeled as a Gaussian distribution, i.e., vn ∼ N (µv, σ
2
v) by

the central limit theorem. Then,

µv = −2

∑
t∈T +

n

αtpt −
∑
t∈T −

n

αtpt

 , (12)

σ2
v = 4

T∑
t=1

α2
tpt(1− pt). (13)

TABLE I
COMPARISON OF IMPORTANCE METRICS OF BASE CLASSIFIERS

Proxy Importance metric β Remarks

Markov α Definition 3

Chernoff esα − 1 Definition 6

Gaussian α2 Definition 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trained Coefficients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
p
o
rt

a
n
c
e
 M

e
tr

ic
s

Markov

Chernoff

Gaussian

Fig. 2. Comparison of importance metrics β in Table I (with s = log 2 for
the Chernoff proxy).

Proof: The proof is given in [20].
Observe that the variance in (13) is data independent, and

thus its minimization by resource allocation is an effective
way to reduce the classification error probability. Based on
the Gaussian approximation, we can derive an estimate of the
mismatch probability Pm.

Corollary 11: An estimate of the mismatch probability is

Pm(xn) = Q

(
γn − µv
σv

)
≈ Q

(
γn − µv
2
√
p̂G

)
, (14)

where σ2
v ≈ 4p̂G for pt � 1 (i.e., p2t � pt). Note that Q(x) =

1√
2π

∫∞
x

exp
(
−u

2

2

)
du.

The minimum µv and the minimum p̂G are desired to reduce
the estimate of mismatch probability. However, µv depends
on the input vector xn, hence, we cannot easily minimize
µv . In contrast, the Gaussian proxy depends only on the
trained α and the base classifiers’ mismatch probability p.
Thus, we minimize the Gaussian proxy to reduce the mismatch
probability.

Each of the three proxies can be described by
∑T
t=1 βtpt

where βt denotes the importance metric of the t-th base
classifier. Table I lists the importance metrics for the three
proxies. Fig. 2 plots the dependence of each importance metric
on α. It illustrates how resource allocation based on β would
give preference to a larger α.

Remark 12: The importance metrics are positive (i.e., βt >
0) because of αt > 0 (Remark 1) and esαt−1 > 0 (Remark 7).

IV. RESOURCE ALLOCATION FOR NOISY ADABOOST

A. Formulation of Optimization Problems

We investigate optimization approaches to determine the
optimal p = (p1, . . . , pT) for a given resource constraint.

By optimizing the proposed proxies, we attempt to reduce
the mismatch probability, i.e., reduce the noise impact on
classification accuracy.

An important assumption is that the mismatch probabilities
of base classifiers can be controlled by allocating the system
resources. Suppose that the mismatch probability of the base
classifier pt can be described by resource rt, i.e., pt = p(rt).
Then, we can formulate the following optimization problem
for a given resource budget C:

minimize
r

T∑
t=1

βtp(rt)

subject to
T∑
t=1

c(rt) ≤ C

(15)

where the objective function depends on the importance metric
β = (β1, . . . , βT). Also, c(rt) denotes the cost of the allocated
resource to the t-th base classifier.

If p(rt) and c(rt) are convex, then the optimization problem
(15) is also convex because βt is positive for all t in any
of the three proxies (Remark 12). In such cases, for the
Markov proxy and the Gaussian proxy, we can obtain the
optimal resource allocation by solving (15) directly using
convex programming. For the Chernoff proxy (8), due to the
free parameter s, we propose an iterative algorithm to jointly
find the optimal s and p (see [20, Algorithm 2]).

B. Example: Communication Power Allocation

Suppose that ft(x) ∈ {+1,−1} is transmitted using a
symbol from {rt,−rt}, which is corrupted by the noise zt as
in Fig. 1. We assume that the additive noise can be modeled
as Gaussian distribution, i.e., zt ∼ N (0, σ2

t). Then p(rt) =

Q
(√

SNRt
)
= Q

(
rt
σt

)
where the signal-to-noise ratio (SNR)

corresponding to the t-th base classifier is SNRt =
r2t
σ2
t

. Hence,
pt can be controlled by allocating transmit power c(rt) = r2t .
Then, the optimization problem (15) will be

minimize
r

T∑
t=1

βtQ

(
rt
σt

)

subject to
T∑
t=1

r2t ≤ C, rt ≥ 0, t = 1, . . . , T

(16)

where C represents the total power budget.
Remark 13: The power allocation problem (16) is a convex

optimization problem since p(rt) = Q(rt) is convex for rt ≥
0. Note that d2Q(x)

dx2 = x√
2π

exp
(
−x

2

2

)
≥ 0. The optimal

solution of (16) is derived in [20].
Corollary 14: If σt = σ for all t ∈ {1, . . . , T}, then the

optimized proxy of (16) can be approximated as:

T∑
t=1

βtQ

(
r∗t
σt

)
≈ T

2
exp

(
− C
2Tσ2

)(T∏
t=1

βt

) 1
T

(17)

where
(∏T

t=1 βt

) 1
T

is the geometric mean of β.

0 2 4 6 8 10 12 14 16 18 20

Total SNR [dB]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
is

m
a
tc

h
 P

ro
b
a
b
ili

ty

Uniform allocation

Markov proxy

Chernoff proxy

Gaussian proxy

(a)

0 2 4 6 8 10 12 14 16 18 20

Total SNR [dB]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

P
ro

b
a
b
ili

ty

Uniform allocation

Markov proxy

Chernoff proxy

Gaussian proxy

(b)

Fig. 3. Evaluation of optimized SNRs (T = 20): (a) Mismatch probability
and (b) classification error probability.

Proof: The proof is given in [20].
We observe that a smaller geometric mean of β implies a
lower proxy value.

Remark 15: The geometric mean of β is maximized for the
uniform α =

(
1
T , . . . ,

1
T

)
. Thus the non-uniform coefficients

of AdaBoost’s classifiers contribute to lower classification
error probability. This suggests an advantage of AdaBoost over
bagging that assigns the same coefficients to all classifiers (i.e.,
α =

(
1
T , . . . ,

1
T

)
). This is a noteworthy fact because AdaBoost

is known to be less robust than bagging in the problem of noisy
data labels [15], [16].

V. NUMERICAL RESULTS

We validate the tools and analytic results with the UCI
breast cancer dataset [21]. We compare mismatch probabil-
ities and classification error probabilities of uniform resource
allocation and optimized resource allocations for Markov,
Chernoff, and Gaussian proxies. The noise-free AdaBoost
was trained by Algorithm 1 with decision stumps as base
classifiers. Based on the training output α, we compute β
as shown in Table I and solve the corresponding optimization
problems by (16).

Fig. 3 evaluates the mismatch probabilities and the clas-
sification error probabilities of the test set for T = 20, re-
spectively. We observe that nonuniform communication power

0 2 4 6 8 10 12 14 16 18 20

Total SNR [dB]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
is

m
a
tc

h
 P

ro
b
a
b
ili

ty

Uniform allocation

Gaussian proxy

Estimate of uniform allocation

Estimate of Gaussian proxy

Fig. 4. Mismatch probabilities and their estimates by (14) for T = 20.

allocations can lower the mismatch probability as well as the
classification error probability. Among the three nonuniform
power allocations (Markov proxy, Chernoff proxy, and Gaus-
sian proxy), the power allocation based on Gaussian proxy
achieves the best performance in this dataset. We emphasize
that Fig. 3 plots the actual mismatch and classification error
probabilities over the test set optimized with different proxies,
and not the values of the proxies themselves. Note that the
horizontal axis corresponds to the total SNR budget Cσ2 . The
SNR gain is 4.2 dB at Pe = 0.1. For higher SNR, the
mismatch probabilities converge to zero.

Fig. 4 shows the mismatch probabilities and their estimates
for the uniform power allocation and the optimized power allo-
cation using the Gaussian proxy, respectively. The estimates of
mismatch probability are calculated by (14). We observe that
the estimates match the mismatch probabilities well, which
justifies using the Gaussian approximation in Section III-C. On
the other hand, the other proxies (Markov and Chernoff) have
the advantage that their values are proven upper bounds on the
mismatch probability (while the Gaussian proxy in general is
not a bound).

VI. CONCLUSION

In this paper, we propose a principled approach to optimize
resource allocation for boosting classifiers. We defined three
proxies and the corresponding importance metrics for base
classifiers based on Markov inequality, Chernoff bound, and
Gaussian approximation. By exploiting the positivity of the
importance metrics, we formulated convex resource-allocation
problems to minimize the impact of noise. We showed that the
proposed approach can effectively improve the classification
accuracy for the additive Gaussian noise model. Also, we
found that the non-uniform coefficients in boosting offer an
advantage over uniform ones (e.g., in bagging) for this noise
model.

REFERENCES

[1] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc. Int.
Workshop Multiple Classifier Syst., Dec. 2000, pp. 1–15.

[2] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, Dec. 1997.

[3] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[4] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Proc. Int. Conf. Mach. Learn. (ICML), Jul. 1996, pp.
148–156.

[5] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogni-
tion (CVPR), Dec. 2001, pp. I–511–I–518.

[6] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Stat., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[7] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp.
123–140, Aug. 1996.

[8] N. R. Shanbhag, N. Verma, Y. Kim, A. D. Patil, and L. R. Varshney,
“Shannon-inspired statistical computing for the nanoscale era,” Proc.
IEEE, vol. 107, no. 1, pp. 90–107, Jan. 2019.

[9] H. V. Poor and J. B. Thomas, “Applications of Ali-Silvey distance
measures in the design of generalized quantizers for binary decision
systems,” IEEE Trans. Commun., vol. 25, no. 9, pp. 893–900, Sep. 1977.

[10] C. Sakr, Y. Kim, and N. Shanbhag, “Analytical guarantees on numerical
precision of deep neural networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), Aug. 2017, pp. 3007–3016.

[11] C. Sakr, A. Patil, S. Zhang, Y. Kim, and N. Shanbhag, “Minimum
precision requirements for the SVM-SGD learning algorithm,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2017,
pp. 1138–1142.

[12] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, vol. 34, pp.
43–98, 1956.

[13] M. A. Donmez, M. Raginsky, A. C. Singer, and L. R. Varshney, “Cost-
reliability tradeoffs in fusing unreliable computational units,” IEEE Open
J. Signal Process., vol. 1, pp. 77–89, May 2020.

[14] D. Angluin and P. Laird, “Learning from noisy examples,” Mach. Learn.,
vol. 2, no. 4, pp. 343–370, Apr. 1988.

[15] B. Frenay and M. Verleysen, “Classification in the presence of label
noise: A survey,” IEEE Trans. Neural Netw., vol. 25, no. 5, pp. 845–
869, May 2014.

[16] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Mach. Learn., vol. 40, no. 2, pp. 139–157, Aug. 2000.

[17] C. Domingo and O. Watanabe, “MadaBoost: A modification of ad-
aBoost,” in Proc. Annu. Conf. Comput. Learn. Theory (COLT), Jun.-Jul.
2000, pp. 180–189.

[18] P. M. Long and R. A. Servedio, “Random classification noise defeats all
convex potential boosters,” Mach. Learn., vol. 78, no. 3, pp. 287–304,
Mar. 2010.

[19] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning, 2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[20] Y. Kim, Y. Cassuto, and L. R. Varshney, “Boosting classifiers with noisy
inference,” arXiv preprint arXiv:1909.04766, 2019.

[21] A. Asuncion and D. Newman, “UCI machine learning repository,”
2007. [Online]. Available: http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

	Introduction
	Noisy AdaBoost Model
	AdaBoost
	Noisy AdaBoost

	Importance Metrics of Base Classifiers
	Markov Proxy
	Chernoff Proxy
	Gaussian Proxy

	Resource Allocation for Noisy AdaBoost
	Formulation of Optimization Problems
	Example: Communication Power Allocation

	Numerical Results
	Conclusion
	References

