
1

Spatially Coupled LDPC Codes with Sub-Block
Locality
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Abstract—A new type of spatially coupled low-density parity-
check (SC-LDPC) codes motivated by practical storage applica-
tions is presented. SC-LDPCL codes (suffix ’L’ stands for locality)
can be decoded locally at the level of sub-blocks that are much
smaller than the full code block, thus offering flexible access to
the coded information alongside the strong reliability of the global
full-block decoding. Toward that, we propose constructions of SC-
LDPCL codes that allow controlling the trade-off between local
and global correction performance. In addition to local and global
decoding, the paper develops a density-evolution analysis for a
decoding mode we call semi-global decoding, in which the decoder
has access to the requested sub-block plus a prescribed number of
sub-blocks around it. SC-LDPCL codes are also studied under
a channel model with variability across sub-blocks, for which
decoding-performance lower bounds are derived.

Keywords: Codes with locality, coding for memories, den-
sity evolution (DE), iterative decoding, multi-sub-block cod-
ing, spatially coupled low-density parity-check (SC-LDPC)
codes.

I. INTRODUCTION

Spatial coupling (SC) of low-density parity-check (LDPC)
codes is an extremely useful technique to construct block
codes with superior correction capability and efficient de-
coders. These properties make spatially coupled LDPC (SC-
LDPC) codes attractive for implementation and deployment
in real systems. In this paper, we endow SC-LDPC codes
with an additional desired property: the ability to access and
decode sub-blocks much smaller than the full code block. This
property is especially needed in memory and storage systems
that require flexible access (a.k.a. random access) to small data
units alongside high data reliability.

SC-LDPC codes were extensively studied recently and were
shown to have many desired properties. For example, in [1] it
was proven that SC-LDPC codes achieve capacity universally
on memoryless binary symmetric channels under belief prop-
agation (BP) decoding due to a phenomenon called threshold
saturation; in [2] it was exemplified that the minimum distance
of protograph-based SC-LDPC codes grows linearly with the
block length without compromising in thresholds; [3] showed
that typical protograph-based SC-LDPC codes present linear-
growth of the size of minimal trapping sets. These properties
imply good bit-error rate (BER) performance in the waterfall
and error floor regions, for the BP decoder. Moreover, the

E. Ram and Y. Cassuto are with the Andrew and Erna Viterbi Department
of Electrical Engineering, Technion – Israel Institute of Technology, Haifa
32000, Israel. E-mails: {s6eshedr@campus, ycassuto@ee}.technion.ac.il .

This work has been supported by the Israeli Science Foundation (ISF) under
Grant 2525/19 and by the US-Israel Binational Science Foundation (BSF)
under Grant 2016703. Part of the results of this paper was presented at the
2018 International Symposium on Turbo Coding and the 2019 International
Symposium on Information Theory.

special structure of SC-LDPC codes, where bits participating
in a particular parity-check equation are spatially close to
each other, renders a locality property that can be exploited
to implement low-latency high-throughput belief-propagation
based decoders; such decoders are pipelined decoders [4], [5]
and window decoders [6], [7], [8].

When used in data-storage applications, where decoding
failures imply data-losses, an error-correcting code must
protect against extremely high noise levels (although most
noise instances are much milder), requiring very large block
lengths and complex decoding, thus degrading the latency and
throughput of the device. A possible solution to this problem
is sub-block-access codes [9], [10] that enable decoding small
sub-blocks (i.e., local decoding) for fast read access, while
providing a high data-reliability “safety net” decoding over the
large code block (i.e., global decoding). Formally, in a sub-
block-access code, a code block of length N is divided into
M sub-blocks of length n each. Each sub-block is a codeword
of one code, and the concatenation of the M sub-blocks
forms a codeword of another (stronger) code. In this paper,
we construct SC-LDPC codes with this sub-block structure
that offer sub-block decoding capabilities; we call these codes
SC-LDPCL codes (suffix ’L’ stands for locality). The key to
achieving this is designing spatially coupled protographs that
have suitable correction performance under a variety of access-
locality modes.

A. Contributions
Our main scope in this paper is SC-LDPCL codes con-

structed by coupling regular protographs. The analysis focuses
on the binary erasure channel (BEC), but can be readily
extended to other channels, e.g. via extrinsic-information
transfer (EXIT) [11] functions. Moreover, the constructed
codes are simulated over the BEC and over the additive
white Gaussian noise (AWGN) channel, performing as pre-
dicted by the theoretical analysis. The paper is organized
as follows. In Section III, we derive bounds on decoding
thresholds of protographs and show that existing protograph-
based SC-LDPC codes do not enable sub-block access, in
the sense that the decoding threshold of such access is zero.
These results help characterize the design measures needed
for non-trivial sub-block decoding performance, which lead
to a construction offering a tradeoff between local and global
decoding performance. In Section IV, we suggest a new BP-
based decoding strategy we call semi-global (SG) decoding,
in which in addition to the requested sub-block, the decoder
has access to some prescribed number of sub-blocks around
it. This section derives (and simplifies) a density-evolution
analysis of semi-global decoding for the construction in Sec-
tion III. In Section V, we examine the performance of SG
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decoding and show that it exhibits a significant complexity
reduction compared to global decoding, while costing only a
small fraction in the threshold. We then consider a practically
motivated data-storage model in which variability is introduced
to the channel quality (as motivated by recent empirical studies
[12], [13]). Using lower bounds we derive on decoding success
probabilities, we show that SG decoding is highly motivated
by this model. Finally, in Section VI we generalize our
SC-LDPCL construction (which in Section III is restricted
to memory 1), and suggest a richer family of SC-LDPCL
codes, including codes with two-dimensional coupling. We
then discuss SG decoding over these codes.

B. Related Work

SC-LDPC codes date back to 1999 [4], and have been
studied extensively in the past decade. Many protograph-based
[14] constructions of SC codes were suggested (see [2] and ref-
erences therein) including reshaping and enhancing SC codes
for improved asymptotic and finite-length performance [15].
More recent contributions propose multi-dimensional spatially
coupled LDPC codes for global performance improvements
[15], [16], [17], [18], and for special channel models [19], [20].
As far as we know, none of this previous work constructed
codes that enable sub-block access. Furthermore, decoding of
our codes is operationally different since in the local and semi-
global modes we seek decoding only a single target sub-block.

The semi-global decoding mode we propose and study
in this paper resembles sliding-window decoders [7], [8]
that were suggested for channels with memory (e.g. bursty
and Gilbert-Elliott channels) and parallel channels (see [6]
and [19], respectively). Our work differs from these prior
works since the semi-global decoder accesses the codeword
differently from the window decoder, for the purpose of reap-
ing latency and complexity benefits. The semi-global access
mode also motivates analysis over channels with sub-block
variability [21], which are not addressed by prior work.

A large body of work has been devoted to codes that possess
certain locality properties, including locally recoverable codes
[22], [23] and regenerating codes [24]; the former codes target
the problem of reducing the number of nodes needed to
recover a failed node, and the latter are designed to reduce the
repair bandwidth. Both of these types assume an error model
in which every node (sub-block in our context) is either fully
known or fully erased. However, in many applications a finer
error model is assumed, i.e., a few errors in each sub-block.
We consider this model and suggest sub-block access with a
certain level of data protection, combined with increased data-
reliability access with full-block access. Earlier work on sub-
block-access codes includes multi-block Reed-Solomon codes
in [9] and sub-block-access LDPC codes in [10]. The former
suggests algebraic constructions and properties, and the later
deals with ordinary (i.e., not spatially coupled) LDPC codes.
As we will see later, using SC-LDPC codes as our underlying
code renders new design trade-offs and decoding strategies
that are motivated by practical storage applications.

II. PRELIMINARIES

A. Protograph Based LDPC Codes

An LDPC protograph is a (small) bipartite graph G =
(V ∪ C, E), where V =

{
v1, . . . , v|V|

}
, C =

{
c1, . . . , c|C|

}
,

and E are the sets of variable nodes (VNs), check nodes (CNs),
and edges, respectively. For every VN v ∈ V , we denote by dv
its edge degree. Similarly, we write dc for the edge degree of
a CN c ∈ C. A Tanner graph is generated from a protograph
G by a lifting (”copy-and-permute”) operation specified by a
lifting parameter L (for more details see [14] and [2]). The
design rate of the derived LDPC code is independent of L
and given by RG = 1 −

∣∣C∣∣/∣∣V∣∣. If we let L → ∞, then
we can analyze the performance of the BP decoder on the
resulting ensemble of Tanner graphs via density evolution on
the original protograph. Formally, for the BEC we have:

Fact 1. Let G = (V ∪ C, E) be an LDPC protograph, let v ∈ V
be a variable node of degree dv , and let c ∈ C be a check
node of degree dc. Let {ev1, ev2, . . . , evdv} be the set of all edges
connected to v, and let {ec1, ec2, . . . , ecdc} be the set of all edges
connected to c. Consider a transmission over the BEC(ε), of
a codeword from a binary linear code that corresponds to a
random Tanner graph lifted from G with lifting parameter L,
denoted by GL. For every i ∈ {1, 2, . . . , dv}, let x` (evi ) and
u` (evi ) be the fraction of evi -type edges in lifted graph GL that
carry VN-to-CN and CN-to-VN erasure messages, respectively,
after ` BP iterations. Similarly, for every j ∈ {1, 2, . . . , dc},
let x`

(
ecj
)

and u`
(
ecj
)

be the fraction of ecj-type edges in GL
that carry VN-to-CN and CN-to-VN erasure messages after `
BP iterations. Then, as L→∞

x` (evi , ε) = ε ·
∏

1≤i′≤dv
i′ 6=i

u` (evi′) , (1a)

u`
(
ecj
)

= 1−
∏

1≤j′≤dc
j′ 6=j

(
1− x`−1

(
ecj′
))
, (1b)

x−1 (evi ) = u−1
(
ecj
)

= 1. (1c)

Moreover, as L → ∞ the probability that v is erased after `
BP iterations is given by

P`(v, ε) = ε
∏

1≤i≤dv

u` (evi ) . (2)

The BP decoding threshold of an LDPC protograph G is
defined by

ε∗BP (G) = sup{ε ∈ [0, 1] : lim
`→∞

P`(v, ε) = 0, ∀v ∈ V}.
(3)

For simplicity of notations, in the rest of the paper, we remove
the subscript BP from the threshold notation.

A protograph G = (V ∪ C, E) is frequently represented
through a bi-adjacency matrix HG , where the VNs in V are
indexed by the columns of HG , the CNs in C by the rows, and
an element in HG represents the number of edges connecting
the corresponding VN and CN. In this matrix representation,
we write ε∗ (HG) to denote the (BP) decoding threshold
defined in (3). If the protograph is (l, r)-regular (every VN
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and CN are of degree l and r, respectively), then we write
ε∗(l, r) to denote its threshold.

B. SC-LDPC Codes

An (l, r)-regular SC-LDPC protograph is constructed by
coupling together a number of (l, r)-regular protographs and
truncating the resulting chain. This coupling operation intro-
duces a convolutional structure to the code, which can be
visualized through the matrix representation of the protograph.
Let B = 1l×r be an all-ones base matrix representing an (l, r)-
regular LDPC protograph, and let {Bτ}Tτ=0 be binary matrices
such that B =

∑T
τ=0Bτ (in this paper, we consider only

binary B matrices). Coupling a limitless number of copies of
B amounts to diagonally placing copies of

(
B0;B1; · · · ;BT

)
(’;’ represents vertical concatenation) as in Figure 1(b). By
truncating the infinite matrix in Figure 1(b) at some width, and
removing all-zero rows, a spatially coupled LDPC protograph
is constructed. This truncation results in a small number of
terminating CNs (of low degree), which effectuates a decrease
in design rate and an increase in the decoding threshold, com-
pared to the code ensemble corresponding to the base matrix
B. However, as the length of the coupled chain increases, the
design rate of the coupled protograph converges to the design
rate of the underlying code ensemble, while its BP threshold
exhibits a phenomenon known as threshold saturation [1],
whereby it converges to the maximum a-posteriori (MAP)
threshold of the underlying code ensemble.

Throughout most of this paper, we consider (l, r)-regular
SC-LDPC protographs with memory T = 1 (Sections III–
IV). The results are then extended to higher-memory codes in
Section VI.

Example 1. Figure 1(a) illustrates a spatially coupled (3, 6)
protograph with 18 VNs. The protograph is generated by B0 =
(1 1 0 0 0 0 ; 1 1 1 1 0 0 ; 1 1 1 1 1 1) , and B1 = 13×6 −B0.
The design rate of the coupled protograph is R = 0.389, and
the BP threshold is 0.512. Figure 1 will serve as a basis for
a running example in the paper.

III. SUB-BLOCKED SC-LDPC CODES

Consider a coupled protograph G = (V ∪ C, E) (in the rest
of the paper, this notation will refer to the coupled protograph).
To obtain a sub-blocked SC-LDPC code (as done in [10]
without spatial coupling), we divide V into M > 1 disjoint
sets {Vm}Mm=1, and refer to V as the code block and to the M
subsets {Vm}Mm=1 as sub-blocks (SBs). In what follows, let
H = HG be a bi-adjacency matrix representing the coupled
protograph G, and let m ∈ {1, 2, . . . ,M} be a SB index. When
decoding SB m locally, all of the VNs outside the sub-block
are treated as erasures; hence only CNs connected inside sub-
block m are relevant to local decoding. We call these CNs
local checks (LCs). CNs that are not LCs are called coupling
checks (CCs).

Definition 1.
1) If VN j ∈ V belongs to SB m, we write j ∈ Vm.
2) CN i ∈ C is said to be an LC in SB m if and only if
{j : Hi,j = 1} ⊆ Vm, and we write i ∈ Cm.
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Fig. 1: (a) The (3, 6)-regular SC-LDPC protograph from
Example 1. (b) The infinite matrix representing the protograph
coupling operation.
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Fig. 2: The local protographs from Example 2.

3) The local protograph of SB m is the sub-graph Gm =
(Vm ∪ Cm, Em), where Em is the set of edges in E that
connect between VNs in Vm and CNs in Cm.

4) The global and local BP decoding thresholds are given
by ε∗G , ε∗ (G) and ε∗m , ε∗ (Gm) , respectively.

Example 2. Let G be the coupled protograph from Ex-
ample 1 (see Figure 1(a)). If we divide V into M = 3
equally sized SBs, then V1 = {v1, v2, v3, v4, v5, v6}, V2 =
{v7, v8, v9, v10, v11, v12}, V3 = {v13, v14, v15, v16, v17, v18},
and C1 = {c1, c2, c3}, C2 = {c6}, C3 = {c9, c10, c11}. The
local protographs G1,G2 and G3 are illustrated in Figure 2.
The local decoding thresholds in this case are all zero, i.e.,
ε∗1 = ε∗2 = ε∗3 = 0. As we will see later, zero local thresholds
are a general phenomenon in SC-LDPC codes, unless proper
design measures are taken.
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Fig. 3: The protograph represented by (c | A) in Lemma 2
in the full-ones case.

A. Zero Local Threshold

In this subsection, we state results concerning thresholds
of sub-block protographs induced by the coupling process.
Giving an explicit analytical expression is, in general, not
an easy task since many densities should be tracked. Instead,
bounds on the threshold are derived. We show that these results
imply that the local thresholds in SC-LDPC protographs are
zero, unless some specific design measures (which we address
later) are taken.

Lemma 1. Let H be a bi-adjacency matrix representing a
protograph G = (V ∪ C, E). Let J ⊆ {1, 2, . . . ,

∣∣V∣∣} and I ⊆
{1, 2, . . . ,

∣∣C∣∣} be sets of column and row indices, respectively,
and let HJ (resp. H(I)) be the sub-matrix consisting of the
columns (resp. rows) of H indexed by J (resp. I). Then,

ε∗
(
H(I)

)
≤ ε∗ (H) ≤ ε∗ (HJ ) . (4)

Proof. See Appendix A.

The scope of the next lemma is a protograph that has poor
BP performance. This protograph appears as a sub-graph in
many SC-LDPC protographs, and its properties strongly affect
local decoding.

Lemma 2. For p ≥ 1, let A be a p×p lower triangular matrix
with a full-ones diagonal, i.e.,

A =


1 0 · · · 0 0
a2,1 1 · · · 0 0

...
...

. . .
...

...
ap−1,1 ap−1,2 · · · 1 0
ap,1 ap,2 · · · ap,p−1 1

 ,

where ai,j ∈ N for i > j. Let c ∈ Np be a column vector. Then,
the threshold of (c | A) is zero, where the symbol | represents
horizontal concatenation.

Proof. We first prove the case where ai,j = 1 for every i > j,
and c = 1, i.e., a full-ones column vector. In this case, the
protograph represented by (c | A) is illustrated in Figure 3,
where the lower and upper edge connections correspond to c
and A, respectively, and labels are given inside nodes (VN
p+ 1 corresponds to the first column in (c | A)).

Let ε ∈ (0, 1], and for every ` ≥ 1, i ∈ {1, . . . , l} and
j ∈ {1, . . . , p + 1}, let x`(i, j, ε) (resp. u`(i, j, ε)) denote the

erasure rate of a VN j → CN i (resp. CN i→ VN j) message
in iteration `. In view of (1a)–(1b), since VN p is of degree 1,
then x`(p, p, ε) = ε for every `. Thus, u`(p, j, ε) > ε for every
iteration ` and VN j 6= p. Consequently, x`(p−1, p−1, ε) > ε2

and u`(p− 1, j, ε) > ε2 for every ` and j 6= p− 1. Similarly,
we get by induction that for every iteration `

x`(j, j, ε) > ε
∏p
i=j+1 ε

2p−i

= ε2
p−j , ∀1 ≤ j ≤ p. (5)

This implies that for every iteration ` and CN i ∈ {1, . . . , p},
u`(i, p+ 1, ε) > ε2

p−i

, so for every iteration, the erasure rate
of VN p+ 1 is bounded below by

P`(p+ 1, ε) > ε
∏p
i=1 ε

2p−i

= ε2
p

> 0 .

(6)

Since this holds for every ε ∈ (0, 1], then the threshold is zero.
We now relax the assumptions that ai,j = 1 for every i > j

and that c = (c1, . . . , cp) = 1, and consider the general case.
For every VN j ∈ {1, 2, . . . , p − 1} (lower part in Figure 3),
let sj =

∑p
i=j+1 ai,j2

p−i. The same arguments above hold
with modification in (5) and (6) given by

x`(j, j) > ε
∏p
i=j+1 ε

ai,j2
p−i

= ε1+sj
, ∀1 ≤ j ≤ p. (7)

and

P`(p+ 1, ε) > ε
∏p
i=1 ε

ci(1+si)

> 0 ,
(8)

respectively.

Theorem 3. Let H be a binary bi-adjacency matrix repre-
senting an (l, r)-regular SC-LDPC protograph G = (V ∪C, E)
constructed by truncating the infinite matrix in Figure 1(b),
and suppose V is divided into M > 1 SBs. If there are no two
rows in (B0;B1) that are all ones, then

ε∗m = 0, 2 ≤ m ≤M − 1.

If in addition, the partitioning is done via the cutting-vector
method [25], then ε∗1 = ε∗M = 0.

Theorem 3 states a negative result on sub-block locality
in existing SC-LDPC codes, and motivates a construction of
multi-sub-block SC-LDPC codes which we address later.

Remark 1. Recall that the matrix B is an l-by-r all-ones
matrix. The “no two full rows” property of the matrices
{Bτ}1τ=0 in Theorem 3 holds in many SC-LDPC protographs
in the literature, since it induces high global thresholds. In
fact, the family of protographs covered by Theorem 3 is larger
than it may seem in a first look. For example, the (l, r) SC-
LDPC ensemble from [2, Definition 3] with l = gcd(l, r), is
included in Theorem 3.

Proof of Theorem 3. Consider first non-termination sub-
blocks, i.e., m ∈ {2, 3, . . . ,M − 1}. Since the base matrix
B is an all-ones matrix, then any row in (B0;B1) that is
not full ones has ones outside of the SB boundaries, i.e., the
corresponding check node is connected to an erasure; thus,
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the local decoder cannot use this check-node. Consequently,
the local code has at most one local check node. This leads
to a zero threshold.

Now, consider sub-block m = 1 whose (local) protograph
is represented by B0. Assume cutting-vector partitioning, and
let ξ = (ξ1, ξ2, . . . , ξl−1, ξl) be the cutting vector, such that
for every i ∈ {1, 2, . . . , l − 1, l}, ξi ∈ {1, 2, . . . , r} and 1 ≤
ξ1 < ξ2 < · · · < ξl−1 < ξl ≤ r. In addition, let ξ0 = 0 and
ξl+1 = r + 1. Since l ≤ r − 1 (else the rate is zero), then
there exists i ∈ {1, . . . , l + 1} such that ξi − ξi−1 ≥ 2. Let
I = max{1 ≤ i ≤ l + 1: ξi − ξi−1 ≥ 2}. If I = l + 1, then
ξl ≤ ξl+1 − 2 = r − 1, and the rightmost column of B0 is
a zero column, which leads to a zero threshold. Else, let B̃0

be the sub-matrix consisting of columns ξI − 1 upto r of B.
Note that B̃0 is in the form of(

0
c | A

)
,

where 0 is a zero matrix, and (c | A) is in the form of
Lemma 2. Thus, ε∗(B̃0) = 0, which combined with Lemma 1
implies that ε∗(B0) = 0, i.e., the threshold of sub-block m = 1
is zero. The proof that ε∗(B1) = 0 follows in a similar way,
so the threshold of sub-block M is also zero.

Corollary 4. If l = 2, then no (l, r)-regular SC-LDPC
protograph can have a non-zero local decoding threshold.

Proof. If B = 12×r, for some r ≥ 3, then any decomposition
of B into 2 non-zero matrices results in the “no two full rows”
condition in Theorem 3.

B. A SC-LDPCL construction

Motivated by Theorem 3, we introduce a construction of
(l, r)-regular SC-LDPC protographs having sub-block locality.
The inputs to the construction are: the degrees (l, r) (in view
of Corollary 4, we assume that l ≥ 3), the number of SBs
M , and a new coupling parameter t ∈ {1, 2, . . . , l − 2}; the
resulting protograph is an (l, r, t) spatially coupled protograph
with M SBs, each consisting of r variable nodes. As we will
see, t serves as a design tool to control the trade-off between
local and global decoding thresholds.

Construction 1 (SC-LDPCL). Let A1 be a t×r matrix given
by

1 0

1 1 0

1 1 1 0
...

...
...

. . .
...

1 1 1 · · · 1 0




0

A1 = ,

where 1 and 0 are length-
⌊

r
t+1

⌋
all-one row vector and length-(

r − t
⌊

r
t+1

⌋)
all-zero row vector, respectively. Let A2 be an

all-ones (l− t)× r matrix. We build the (l, r, t) protograph as
in Figure 1(b) with memory T = 1, and M copies of

(
B0;B1

)
on the diagonal, where B0 =

(
A1;A2

)
and B1 = 1l×r −B0.

coupling checks

(a)

B0 =

1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1



B1 =

0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0



(b)

Fig. 4: (a) The (3, 6, 1) SC-LDPCL protograph with M = 3
SBs; (b) the partition according to Construction 1 with l =
3, r = 6, t = 1.

The resulting coupled protograph G has rM VNs and lM+t
CNs, so the design rate is RG = 1 − l

r −
t
rM . For every

m ∈ {2, . . . ,M − 1}, the local graph Gm is represented by
A2 which is (l − t, r)-regular, and for m = 1 and m = M ,
the local graph Gm is represented by

(
A1;A2

)
and

(
A2; Ā1

)
,

respectively, where Ā1 is the complement of A1. Thus, for
every m ∈ {2, . . . ,M − 1}, ε∗m = ε∗(l − t, r) > 0, and
Lemma 1 implies that for m ∈ {1,M}, ε∗m ≥ ε∗(l− t, r) > 0,
where ε∗(l− t, r) is the BP threshold of the (l− t, r)-regular
LDPC code ensemble (i.e., uncoupled). In general, due to
termination check nodes, SBs 1 and M have better local
thresholds than the SBs {2, . . . ,M − 1}.

Remark 2. The codes constructed by Construction 1 have
memory T = 1. In Section VI we give a generalized construc-
tion for T ≥ 1.

Example 3. Figure 4 illustrates the (3, 6, 1) SC-LDPCL
protograph with M = 3 SBs. In this case, we have A1 =(
1 1 1 0 0 0

)
, the design rate is R = 0.4444, and

the thresholds are: ε∗G = 0.4772, ε∗1 = ε∗3 = 0.4298, and
ε∗2 = 0.2 (ε∗2 corresponds to the (2, 6)-regular ensemble). Note
that the global-threshold loss compared to the ordinary (3, 6)
SC-LDPC protograph from Example 1, which does not enable
sub-block decoding, is 6.97%, while the design rate increases
by 12.46% (these differences diminish as the number of sub-
blocks increases).

The coupling parameter t serves as a design tool that
controls the trade-off between the local and global thresholds.
More precisely, t designates the number of CCs connecting
adjacent sub-blocks: when t is small, more CNs are LCs,
and the local threshold is higher on the expense of a lower
global threshold; when t is large, the situation is reversed:
global threshold is higher and local threshold is reduced. If
one takes t = 0, there are no CCs and the resulting protograph
consists of M uncoupled (l, r)-regular protographs, and if one
takes t = l − 1, the protograph is strongly coupled and there
is only one LC (i.e., no locality). In view of the triviality
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of these extreme values, we restrict t ∈ {1, 2, . . . , l − 2} in
Construction 1.

The matrices A1 and A2 in Construction 1 specify the t
coupling and l − t local checks’ connections, respectively.
Together, they describe the partition and coupling of a reg-
ular (l, r) protograph as described in Section II-B. When
we construct sub-block locality SC-LDPC codes from local
protographs, A2 has to be the matrix 1(l−t)×r, else the
corresponding rows are no longer local checks (because a zero
in A2 implies a one in B1 that connects the check to the sub-
block on the left).

Remark 3. The specific choice of A1 in Construction 1 is
known as the “cutting vector” approach [25]. Like in ordinary
SC-LDPC codes (i.e., without sub-block locality), one can
optimize the performance by choosing different A1; this will
affect neither the locality nor the regularity of the coupled
code. In addition, one can choose other local codes (A2) by
moving to irregular SC-LDPC codes, which, for the benefits
of regular codes, we leave out of the scope of this paper.
These choices can be designed to optimize the finite-length
performance, i.e., reducing the number of short cycles and
other harmful graph configurations, for mitigating the error
floor, as done in [26] for SC codes without locality. However,
when optimizing A1, one has to take into account the local
code since it adds certain short cycles to the global code. In
[27], such an efficient finite-block optimization is proposed to
complement the threshold optimization.

Example 4. Table I details the design rates and thresholds of
the (4, 16, t) SC-LDPCL protographs for t ∈ {0, 1, 2, 3}, with
M = 12 SBs. The table exemplifies the role of t in trading
off local and global performance (note that the table includes
the extreme values of t = 0, 3). Further, sub-blocks 1 and 12
show better local thresholds than sub-blocks 2, . . . , 11, and
this difference is more prominent with higher t values. This
phenomenon is due to t terminating check nodes in the first and
last sub-blocks, which increase the local threshold compared
to the inner sub-blocks. The parameter t also affects the code
design rate, as expressed by the right-most column.

TABLE I: Thresholds and design rates for (4, 16, t) SC-
LDPCL protographs.

t ε∗1 ε∗2, . . . , ε
∗
11 ε∗12 ε∗G R

0 0.1931 0.1931 0.1931 0.1931 0.75
1 0.2036 0.1568 0.2036 0.2119 0.7438
2 0.1995 0.0667 0.2142 0.2313 0.7375
3 0 0 0 0.2455 0.7313

Example 5. Figures 5 and 6 show BEC performance of global
and local decoding, respectively, of three SC-LDPCL codes
constructed by Construction 1 with degrees l = 4, r = 8,
number of sub-blocks M = 3, lifting parameter L = 625 and
t = 1, 2, 3 (SB and full-block lengths are 5, 000 and 15, 000,
respectively); local decoding is done on SB 2 which is a (4−
t, 8)-regular code for t = 1, 2, 3. When t = 3 we get the
ordinary SC-LDPC (4, 8) code (i.e., no locality); indeed the
top curve in Figure 6 (dashed-blue-triangles) shows that this
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Fig. 5: BEC global-decoding simulations of three (4, 8, t)
SC-LDPCL codes: t = 1 (solid-green-circles), t = 2 (dotted-
red-squares), and t = 3 (dashed-blue-triangles). All codes are
of total length n = 15000 with M = 3 sub-blocks.
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Fig. 6: BEC local-decoding simulations of three (4, 8, t) SC-
LDPCL codes: t = 1 (solid-green-circles), t = 2 (dotted-red-
squares), and t = 3 (dashed-blue-triangles), that are (3, 8)-
regular, (2, 8)-regular and (1, 8)-regular, respectively. All sub-
blocks are of length n = 5000.

code has poor local-decoding performance (the output BER
is approximately the channel parameter ε). The other options
t = 1 (solid-green-circles) and t = 2 (dotted-red-squares)
have much better local-decoding performance, where t = 1
is superior to t = 2, but less attractive in global decoding
plotted in Figure 5.

Example 6. Figures 7 and 8 show AWGN performance –
global and local, respectively – of codes generated from the
(4, 8, t) protographs with t = 1, 2, 3. The code has M = 9
sub-blocks, and the lifting parameter is L = 208 (SB and
full-block lengths are 1, 664 and 14, 976, respectively); local
decoding is done on SB 2 which is a (4 − t, 8)-regular code
for t = 1, 2, 3. As in the BEC plots, the AWGN plots exemplify
the global-vs.-local trade-off introduced by the t parameter
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Fig. 7: AWGN global-decoding simulations of three (4, 8, t)
SC-LDPCL codes (t = 1, 2, 3) with lifting factor L = 208,
full-block length 14976, and M = 9 sub-blocks.
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Fig. 8: AWGN local-decoding simulations of the codes from
Figure 7; sub-blocks are of length 1664. t = 1, 2, and 3 corre-
spond to (3, 8), (2, 8), and (1, 8)-regular codes, respectively.

in Construction 1. Moreover, due to rate loss, the strongly
coupled code (t = 3) has worse local performance than the
uncoded scheme. Note that we used Construction 1 without
further optimization for the AWGN channel. While there is
room for optimizing the protograph for any specific channel,
we simulate AWGN without further optimization to show the
general behavior of different parameters, in particular, that
the local performance is extremely bad if no design measures
are taken.

m m+ 1 m+ 2m− 1m− 2 . . .step 1 . . .

m m+ 1 m+ 2m− 1m− 2 . . .step 2 . . .

helper
phase

m m+ 1 m+ 2m− 1m− 2 . . .step 3 . . .
target
phase

Fig. 9: Example of SG decoding with target SB m ∈ [1 : M ],
and d = 4; the steps are shown from top to bottom. The gray
SBs are those that are decoded in a given step, and the arrows
represent information passed between sub-blocks.

IV. SEMI-GLOBAL DECODING

In this section, we suggest a decoding strategy called semi-
global (SG) decoding, in which the decoder decodes a target
SB m ∈ {1, 2, . . . ,M} with the help of additional d neighbor
SBs. d is a parameter that bounds the number of additional
SBs read for decoding one SB; hence, the smaller d is, the
faster access the code offers for single SBs. As exemplified
later, the SG mode has a substantial complexity advantage over
the global mode with a very small cost in threshold.

Consider a SC-LDPCL protograph with M > 1 SBs;
assume that the user is interested in SB m ∈ {1, . . . ,M}.
We call SB m the target. In SG decoding, the decoder
uses d helper SBs to decode the target in two phases: the
helper phase, and the target phase. In the former, helper
SBs are decoded locally, incorporating information from other
previously decoded helper SBs. In the latter, the target SB is
decoded while incorporating information from its neighboring
helper SBs.

Example 7. Figure 9 exemplifies SG decoding with d = 4
helper SBs. The helper phase consists of decoding helpers
m − 2 and m + 2 locally, and decoding helpers m − 1 and
m + 1 using the information from helpers m − 2 and m +
2, respectively. In the target phase, SB m is decoded using
information from both SB m− 1 and m+ 1.

Note that semi-global decoding resembles window decoding
of SC-LDPC codes (see [6], [7], [8]) but differs in: 1) for
a given target, there is no overlap between two window
positions, which decreases latency and complexity, and 2)
decoding can start close to the target SB (i.e., not necessarily
at the first or last SBs), allowing low-latency access to sub-
blocks anywhere in the block. The SC-LDPCL protographs we
propose for SG decoding are constructed with built-in structure
to enable these distinctions.

The complexity reduction of SG decoding, compared to
global decoding, comes from both specifying d < M , and
from the fact that messages between sub-blocks are exchanged
in one direction only. To see this, consider the (3, 6, 1) SC-
LDPCL protograph in Figure 4(a), and assume SG-decoding
of target SB 2 with helpers SBs 1 and 3 (i.e., d = 2). In
the helper phase, we decode SB 1 and 3 locally – possibly
in parallel – so the coupling checks are erased, and the
decoder ignores all edges connected to them. In the target
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phase, the coupling checks are no longer erased, but they send
information towards the target SB only. As a result, the six
protograph edges connecting the coupling checks to SBs 1
and 3 do not participate in SG decoding.

Semi-global decoding is highly motivated by the locality
property of sub-blocks in SC-LDPCL codes (SBs can be
decoded locally), the spatial coupling of SBs (SBs can help
their neighbor SBs), and by practical channels in storage
devices, i.e., channels with variability [12], [13]. Later, in
Section V-C, we study the performance of SG decoding over
such a channel.

A. SG Density-Evolution Analysis

We now perform an exact density-evolution analysis for
target and helper SBs during SG erasure decoding. Due to
the protograph’s edge-regular structure, the general density-
evolution equations in (1a)–(1c) can be reduced, yielding a
simpler method to evaluate their performance. We denote the
messages on edges incoming to (resp. outgoing from) a helper
SB by δI (resp. δO). Note that for termination helpers, i.e., the
endpoint sub-blocks, we have δI = 0. The incoming messages
to the target SB from the left-side and right-side helper SBs
are denoted by δL and δR, respectively. Note that δO of some
helper is either δI of the next helper, or one of the incoming
messages to the target, δL or δR (see Figure 10 below). With
a slight abuse of notation, we also use δI δO, δL, δR to mark
the erasure probabilities carried on these edges. Since in the
SG mode we decode SBs sequentially, then incoming erasure
probabilities δL, δR, δI remain fixed during each decoding
step.

Decoding of sub-graphs with incoming and outgoing erasure
rates was considered in a recent parallel work [15, Section
3.D], for the purpose of inter-connecting sub-chains of SC-
LDPC codes. In this work, smaller units (sub-blocks) are inter-
connected, and for the purpose of enabling efficient decoding
of a single target sub-block. Toward that, we derive compact
density-evolution (DE) equations and perform threshold anal-
ysis for decoding the target.

Consider a helper SB. From the structure of the (l, r, t) SC-
LDPCL protographs in Construction 1, there are t incoming
messages δI = (δI,1, . . . , δI,t), and t outgoing messages
δO = (δO,1, . . . , δO,t). For every i ∈ {1, . . . , t}, the coupling
check (CC) receiving δI,i (resp. sending δO,i) is denoted by
cI,i (resp. cO,i); see Figure 10. When the decoder tries to
decode a helper SB, the CCs {cO,i}ti=1 cannot help, and
the decoder ignores the edges connected to them; the edges
that participate in the iterative-decoding procedure are edges
connected to local checks (LCs) and edges connected to CCs
{cI,i}ti=1 only. When the decoder finishes decoding the helper,
it calculates δO via the edges connected to {cO,i}ti=1. In view
of Construction 1, for every i ∈ {1, . . . , t}, cI,i (resp. cO,i) is
connected to r− i

⌊
r
t+1

⌋
(resp. i

⌊
r
t+1

⌋
) VNs in a helper SB.

Despite the multiplicity of edges connected to cI,i and cO,i,
the one-directionality of the decoding algorithm allows us to
consider a single (combined) constant input message δI,i and
a single (combined) constant output message δO,i .

In the target SB, only few adjustments of the above are
needed. First, we have two active incoming messages δL
and δR, and we now mark the coupling check connected
to δL,i, δR,i by cL,i, cR,i, respectively. In view of these
observations, we formally define the semi-global graph GSG
as follows.

Definition 2 (Semi-global graph: target). Let G be a (l, r, t)-
SC-LDPCL protograph constructed by Construction 1. The
semi-global graph corresponding to G, GSG = (V ∪ C, E),
is a bipartite graph equipped with a VN labeling func-
tion LV : V → {1, 2, . . . , t + 1}, an edge labeling func-
tion LE : E →

{
1, 2, . . . , (t+ 1)2

}
, and 2t incoming edges

{δR,1, . . . , δR,t}, and {δL,1, . . . , δL,t} such that:
1) V = {v1, v2, . . . , vr} is a set of r VNs.
2) C is a set of l + t CNs: l − t of them are local checks

(LCs), t of them are right coupling checks (RCCs), and
another t are left coupling checks (LCCs).

3) We mark the 2t coupling checks as cR,1, . . . , cR,t, and
cL,1, . . . , cL,t. For every i ∈ {1, 2, . . . , t}, cR,i (resp.
cL,i) is connected to an incoming edge δR,i (resp. δL,i).

4) The edges in E are determined by Construction 1.
There is one edge between every LC and every VN.
For every i ∈ {1, 2, . . . , t}, cR,i is connected to
r − i

⌊
r
t+1

⌋
VNs: one edge to each VN vj , where

j ∈
{

1 + i
⌊

r
t+1

⌋
, . . . , r − 1, r

}
, and for every i ∈

{1, 2, . . . , t}, cL,i is connected to i
⌊

r
t+1

⌋
VNs: one edge

to each VN vj , where j ∈
{

1, 2, . . . , i
⌊

r
t+1

⌋}
.

5) For every k ∈ {1, 2, . . . , t + 1} and every VN v ∈ V ,
LV(v) = k if v is connected to k − 1 RCCs.

6) For every edge e = {v, c} ∈ E , if LV(v) = k then,

LE(e) =

 k , c is a LC ,
sk,t + i , c = cR,i ,
vk,t + i , c = cL,i ,

where sk,t , t + 1 + (k−1)(k−2)
2 , and vk,t , 2t + 1 +

t(t−1)
2 + (k−1)(2t−k)

2 .

Remark 4. Definition 2 refers to the target SB. The helper
graph is similar with the only difference that t of the incoming
edges (in right helpers {δL,1, . . . , δL,t} and in left helpers
{δR,1, . . . , δR,t}) turn into outgoing edges {δO,1, . . . , δO,t},
and the checks connected to them do not participate during
the SB’s decoding, except in sending the final message to the
neighbor SB at the end of the SB decoding. This yields t2+3t+2

2
edge labels (in contrast to (t+1)2 edge labels in Definition 2).

Example 8. Figure 10 illustrates the semi-global graph corre-
sponding to the (l = 3, r = 6, t = 1) SC-LDPCL protograph,
with the target on the right and the helper on the left. Node
labels are drawn inside nodes, and edge labels are drawn
on edges; there are t + 1 = 2 VN labels in both graphs,
(t + 1)2 = 4 edge labels in the target SB, and t2+3t+2

2 = 3
edge labels in the helper SB. In the helper SB, the outgoing
coupling check cO is connected with dotted edges emphasizing
the fact that it does not participate in the iterative decoding
algorithm.



9

LC

LC

cI δI

cOδO

2 3

2

2

2

3

2 2

2

3

2

2

1
1

1

1

11

1

1

1

(helper)

LC

LC

cR δR

cLδL

2 3

2

2

2

3

2 2

2

3

2

2

1

4

1

1

1

4

11

14

1

1

(target)

Fig. 10: The (3, 6, 1) semi-global graph GSG (with node and
edge labels) as described in Definition 2; dotted edges do not
participate during SB decoding, except in sending messages
to cO at the end.
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/
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(st,t + i)

w
/
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tw/
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/
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w
/
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Fig. 11: The node and edge labels of an SG graph (target)
GSG corresponding to an (l, r, t) SC-LDPCL protograph: k ∈
{1, . . . , t+ 1} is a VN label and i ∈ {1, . . . , t} is a CC index,
sk,t , t+1+ (k−1)(k−2)

2 , vk,t , 2t+1+ t(t−1)
2 + (k−1)(2t−k)

2

and w ,
⌊

r
t+1

⌋
. Node labels are drawn inside nodes, and edge

labels appear in parenthesis.

Since edges with the same labels are connected to VNs and
CNs of the same degree, then in terms of density evolution, in
any iteration, the erasure fraction of edges e1, e2 ∈ E coincide
if LE(e1) = LE(e2). This structure is the key observation for
simplifying the DE equations in (1a)–(1c) for the semi-global
graph. Figure 11 illustrates the node and edge labels in a SG
target graph, and shows the edge-label indexing of the DE
equations that we derive in the following.

Recall the indices sk,t and vk,t from Definition 2, and define
w ,

⌊
r
t+1

⌋
. sk,t and vk,t are indices used below to capture

the inter-sub-block coupling connectivity of Construction 1.
Let x(LE(e))` and u

(LE(e))
` be the VN to CN and CN to VN

erasure-message fractions, respectively, over an edge e ∈ E .
We start with x

(j)
0 = 1 for all j ∈ {1, 2, . . . , (t + 1)2} just

before the first iteration. In view of Definition 2 (see also
Figure 11), for every iteration ` ≥ 1, and every node label
k ∈ {1, . . . , t+1}, the fractions of erasure messages emanating

from a VN labeled by k are given by

x
(k)
` = ε·

(
u
(k)
`

)l−t−1 k−1∏
j=1

u
(sk,t+j)
`

t∏
j=k

u
(vk,t+j)
` ,

x
(sk,t+i)
` = ε·

(
u
(k)
`

)l−t k−1∏
j=1
j 6=i

u
(sk,t+j)
`

t∏
j=k

u
(vk,t+j)
` , ∀i ∈ {1, . . . , k−1} ,

x
(vk,t+i)
` = ε·

(
u
(k)
`

)l−t k−1∏
j=1

u
(sk,t+j)
`

t∏
j=k
j 6=i

u
(vk,t+j)
` , ∀i ∈ {k, . . . , t} ,

(9)

where the product over an empty set is defined to be 1, and
for every k ∈ {1, 2, . . . , t}, the fractions of erasure messages
from any LC are

u
(k)
` = 1−

(
1− x(k)`−1

)w−1 (
1− x(t+1)

`−1

)r−tw t∏
j=1
j 6=k

(
1− x(j)`−1

)w
,

u
(t+1)
` = 1−

(
1− x(t+1)

`−1

)r−tw−1 t∏
j=1

(
1− x(j)`−1

)w
.

(10)

Further, for every i ∈ {1, 2, . . . , t} and k ∈ {i + 1, . . . , t},
the erasure-message fractions from cR,i are given by

u
(sk,t+i)
` = 1− (1− δR,i)

(
1− x(sk,t+i)

`−1

)w−1 (
1− x(st+1,t+i)

`−1

)r−tw
·

t∏
j=i+1
j 6=k

(
1− x(sj,t+i)`−1

)w
,

u
(st+1,t+i)
` = 1− (1− δR,i)

(
1− x(st+1,t+i)

`−1

)r−tw−1
·

t∏
j=i+1

(
1− x(sj,t+i)`−1

)w
,

(11)

and for every k ∈ {1, 2, . . . , i}, the erasure-message fractions
from cL,i are given by

u
(vk,t+i)
` = 1− (1− δL,i)

(
1− x(vk,t+i)

`−1

)w−1
·

i∏
j=1
j 6=k

(
1− x(vj,t+i)`−1

)w
.

(12)

Consider now a helper SB. The differences from the target-
SB DE analysis are that 1) half of the incoming messages are
disabled (i.e. are erasures), and 2) we need to calculate the
outgoing erasure fraction. Assume a helper SB to the right
of the target, corresponding to substituting δL = 1 in (12);
the other option of a left helper is symmetric with δR = 1.
Substituting in (12),

u
(vk,t+i)
` = 1, ∀` ≥ 0, ∀k ∈ {1, . . . , t}, ∀i ∈ {k, . . . , t},
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so the first two equations in (9) change to

x
(k)
` = ε·

(
u
(k)
`

)l−t−1 k−1∏
j=1

u
(sk,t+j)
` ,

x
(sk,t+i)
` = ε·

(
u
(k)
`

)l−t k−1∏
j=1
j 6=i

u
(sk,t+j)
` , ∀i ∈ {1, . . . , k − 1} .

(13)

For better clarity the reader may skip to subsection IV-B where
equations (9)–(13) are given for the special case t = 1.

Lemma 5. For every semi-global graph and every edge label
j ∈ {1, 2, . . . , (t+1)2}, the sequences x(j)` , u

(j)
` defined in (9)–

(13) are monotonically non-increasing in ` and are bounded
in [0, 1].

Proof. Follows by a mathematical induction on `; details are
left to the reader.

In view of Lemma 5, for every edge label j ∈ {1, 2, . . . , (t+
1)2}, we define the limits x(j) = lim

`→∞
x
(j)
` , u(j) = lim

`→∞
u
(j)
` .

When the decoder finishes decoding a helper SB (success-
fully or not), it sends messages to the next SB. The t
erasure fractions of these messages are encapsulated in δO =
(δO,1, . . . , δO,t) (see Figure 10). Similarly to (13), the third
equation in (9) becomes

x(vk,t+i) = ε ·
(
u(k)

)l−t k−1∏
i=1

u(sk,t+i) .

Moreover, for every i ∈ {1, 2, . . . , t} , cO,i is connected to
VNs labeled by k ∈ {1, 2, . . . , i} with w edges, thus the
outgoing erasure fraction from cO,i to the next SB is given
by

δO,i = 1−
i∏

k=1

(
1− x(vk,t+i)

)w
. (14)

Theorem 6 (Semi-global density evolution). Let GSG be a
semi-global graph corresponding to a SB in an (l, r, t) SC-
LDPCL protograph, let ε be the channel erasure probability in
this SB, and let δL, δR be the incoming erasure fractions from
neighbor SBs. For every edge label j ∈

{
1, 2, . . . , (t+ 1)2

}
,

let x(j)` be the fraction of VN-to-CN erasure messages over
any edge e ∈ E labeled with LE(e) = j, at iteration ` of the
BP decoding algorithm over a lifted random Tanner graph, as
the lifting parameter tends to infinity. Then, for a target SB,
x
(j)
` is given by equations (9)–(12), and for a helper SB it is

given by equations (10), (11), and (13). Furthermore, for a
helper SB, for every i ∈ {1, 2, . . . , t} δO,i is given by (14).

B. The t = 1 Case

In view of Definition 2, if t = 1, then there are (t+1)2 = 4
different edge types in the target semi-global graph (see Fig-
ure 10). However, as shown below, it is sufficient to track only
2 edge types. This simplification renders a two-dimensional
graphical representation of the density-evolution equations.

Substituting t = 1 into (9)–(12) yields 4 density-evolution
equations, namely (note the scalar δL, δR)

x
(1)
` = ε·

[
1−

(
1− x(1)`−1

)w−1 (
1− x(2)`−1

)r−w]l−2
·
[
1−

(
1− x(4)`−1

)w−1
(1− δL)

]
,

x
(2)
` = ε·

[
1−

(
1− x(1)`−1

)w (
1− x(2)`−1

)r−w−1]l−2
·
[
1−

(
1− x(3)`−1

)r−w−1
(1− δR)

]
,

x
(3)
` = ε·

[
1−

(
1− x(1)`−1

)w (
1− x(2)`−1

)r−w−1]l−1
,

x
(4)
` = ε·

[
1−

(
1− x(1)`−1

)w−1 (
1− x(2)`−1

)r−w]l−1
,

(15)

where w =
⌊
r
2

⌋
. Since x(3) and x(4) both depend solely on

x(1) and x(2), then we can substitute the last two equations
into the first two equations, and get that for a fixed erasure
probability ε and fixed incoming erasure messages δL, δR, the
quantities x(1)` and x

(2)
` are functions of x(1)`−1, x

(1)
`−2, x

(2)
`−1 ,

and x(2)`−2, written as

x
(1)
` = f̃

(
ε, δL, x

(1)
`−1, x

(1)
`−2, x

(2)
`−1, x

(2)
`−2

)
, ` ≥ 2

x
(2)
` = g̃

(
ε, δR, x

(1)
`−1, x

(1)
`−2, x

(2)
`−1, x

(2)
`−2

)
, ` ≥ 2

x
(1)
1 = x

(2)
1 = ε,

x
(1)
0 = x

(2)
0 = 1.

(16)

The functions f̃ and g̃ are both continuous and monotonically
non-decreasing, so by taking the limit ` → ∞ in (16) and
marking x(k) = lim

`→∞
x
(k)
` , k ∈ {1, 2}, we get a two-

dimensional fixed-point characterization:

x(1) = f̃
(
ε, δL, x

(1), x(1), x(2), x(2)
)
, f

(
ε, δL, x

(1), x(2)
)
,

x(2) = g̃
(
ε, δR, x

(1), x(1), x(2), x(2)
)
, g

(
ε, δR, x

(1), x(2)
)
.

(17)

In [10], a 2-D fixed-point characterization for ordinary (i.e.
non spatially coupled) LDPC codes was derived. In contrast
to the derivations above that consider SG decoding, in [10] the
analyzed decoding mode is global decoding, and consequently
neither δR nor δL appear in the analysis.

Remark 5. Equation (17) refers to the target SB. If one
considers a helper SB, one should set δL (or δR) to 1. In
this case, from (15) we get

(
x(4)/ε

)l−2
=
(
x(1)/ε

)l−1
, which

together with (14) implies that the outgoing erasure fraction
is given by

δO = 1−
(

1− x(4)
)b r2c

= 1−

(
1− ε

(
x(1)

ε

) l−1
l−2
)b r2c

.

Example 9. Figure 12 exemplifies equation (16) and (17)
(solid black and dashed colored, respectively) for the (3, 6, 1)
SC-LDPCL protograph (see Figure 10(target)). In both plots,
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Fig. 12: A graphical representation of the SG density-
evolution equations in (15). We used the (l = 3, r = 6, t = 1)
SC-LDPCL protograph and an erasure probability of ε = 0.5.
The incoming erasure messages for the left figure are δL =
0.3, δR = 0.3, where the density-evolution curve converges
to the origin, indicating a decoding success. On the right-hand
figure we have δL = 0.3, δR = 0.5, which leads to a halt in
the BP process at (x(1), x(2)) = (0.318, 0.348).

ε = 0.5 and δL = 0.3, while in the left one δR = 0.3 and in
the right δR = 0.5. As seen in the plots, if the f -curve (dotted
blue) intersects the g-curve (dashed red), then the iterative
process halts and fails. If the two curves do not intersect then
the erasure fractions x(1)` and x(2)` approach zero as iterations
proceed, and decoding succeeds.

V. SEMI-GLOBAL PERFORMANCE ANALYSIS

In this section, we analyze the SG decoding performance of
SC-LDPCL codes over the BEC. First, we wish to compare the
global and SG modes in terms of thresholds and complexity.
Evidently, the threshold and complexity induced by the SG
mode depend on the number of helpers d; the larger d is,
the higher the threshold and complexity are. Note that unlike
global decoding, each SG decoding instance aims to recover
one target sub-block requested to be read from the entire
codeword. This difference enables the complexity reduction
of SG decoding compared to global decoding.

Remark 6. For simplicity, we assume for the rest of this
section that t+ 1 divides r, i.e.,

w ,
⌊

r
t+1

⌋
= r

t+1 . (18)

This assumption means that the SG graph GSG from Def-
inition 2 is symmetric in the sense that the degrees and
connectivity of coupling checks {cR,1, . . . , cR,t} are identical
to those of {cL,1, . . . , cL,t} (see Section III-B).

A. SG Decoding Complexity

We assume a fixed lifting parameter for the code, and a fixed
number of BP iterations in any step of SG decoding performed
over a subgraph of G; hence, to evaluate complexity we

count the number of edges participating in the entire decoding
process. We assume an (l, r, t) SC-LDPCL protograph with M
SBs, each consisting of r VNs (i.e., a total count of Mr VNs
in the protograph). In what follows, we mark by χG and χSG
the complexity of global and SG decoding, respectively.

In view of Construction 1, there are Mlr edges in the
SC-LDPCL protograph, so the global-decoding complexity is
given by χG = Mlr. In view of Definition 2 (see also Fig-
ure 10), in every helper SB the number of edges participating
in decoding is (l− t)r+

∑t
i=1(r− iw), and in the target SB

that number is (l− t)r+ 2
∑t
i=1(r− iw). Since w = r

t+1 , for
SG decoding with d helper SBs we get

χSG = d

(
lr − wt(t+ 1)

2

)
+ (l + t)r − wt(t+ 1)

= d

(
lr − rt

2

)
+ lr,

and the complexity reduction is given by (see next sub-section
for a numerical example)

1− χSG
χG

= 1−
d(l − t

2 ) + l

Ml
. (19)

Remark 7. The complexity values χSG,χG both count the
total number of decoding operations, while the decoders differ
in the size of the decoder output (one sub-block in the case
of semi-global and the full block in the case of global). That
means the comparison is interesting primarily for the mode
where a single sub-block is requested by the user, which is the
primary mode motivating this work. That said, even if multiple
sub-blocks are requested, including a number that is close
to M , the SG decoder has lower complexity than the global
decoder, thanks to its uni-directional use of many edges (see
next sub-section for a numerical example).

B. SG Decoding Thresholds

Motivated by (19), we now study the thresholds of SG de-
coding. We define ε∗SG(m, d) as the maximum over ε ∈ [0, 1]
such that SG decoding successfully decodes a target SB m ∈
{1, . . . ,M} using d neighbor helper SBs (see Figure 9 for
d = 4). Using the SG density-evolution equations in (9)–(14),
we can easily calculate this threshold. Figure 13 illustrates
SG thresholds ε∗SG(m = 6, d) of the (5, 12, t ∈ {1, 2, 3})
SC-LDPCL protographs with M = 11 SBs and a classical
SC-LDPC protograph with the same length and degrees but
without locality (i.e., t = l − 1 = 4) as a function of d. For
every t ∈ {1, 2, 3}, the curve starts (d = 0) from the local
threshold of that code ε∗6 (see Definition 1), steeply increases
due to adjacent helpers (d = 2), and ends (d = 10) close to
the global threshold of that code ε∗G due to terminating SBs
(d = M−1 = 10). For the no-locality code, the local threshold
(d = 0) is zero, as Theorem 3 predicts, and the SG thresholds
for d > 0 are significantly lower than those of the locality-
enabled constructions (t ∈ {1, 2, 3}). Moreover, in contrast to
the locality-enabled constructions, starting from termination in
the no-locality code does not increase the threshold.

In view of Figure 13, it appears that the main advantage
in SG decoding of SC-LDPCL codes is due to immediate
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Fig. 13: ε∗SG(m = 6, d) for (5, 12, t ∈ {1, 2, 3}) protographs
with M = 11 SBs.

adjacent helpers where d = 2, and due to the end-point helpers.
While this is true for the fixed-erasure-probability channel
assumed here, in the next sub-section we show that under
channels with variability, it is beneficial to use intermediate
values of d as well.

Note that the global threshold of the (5, 12, t = 3) proto-
graph with M = 11 is ε∗G = 0.375 while ε∗SG(5, 10) = 0.361.
Thus the threshold reduction is only 3.7%. On the other hand,
(19) implies that for t = 3 the complexity reduction for
d = 10 equals 1 − 1

55

(
10
(
5− 3

2

)
+ 5
)

= 27%; hence we
see a substantial decrease in complexity with only a small
loss in threshold.

Example 10. Figure 14 shows simulation results for semi-
global decoding over the BEC. The plots compare (5, 12, t)
SC-LDPCL codes (t ∈ {1, 2, 3}) with five decoding modes:
local, semi-global with d = 2, 8, 10, and global decoding. As
seen in the plots, SG decoding with d = 10 helpers performs
very close to global decoding. Further, for low values of d, the
t = 1 code is superior while for high values of d, the t = 3 is
superior, as predicted by our threshold calculations. Finally,
the main advantage in SG decoding comes from the adjacent
helpers (i.e., most significant improvement when switching
from local decoding to SG with d = 2), and from termination
sub-blocks (d = 10 helpers).

Remark 8. SC-LDPC codes with sub-block locality offer
important advantages over other codes with sub-block locality,
thanks to their coupled-protograph structure. For example,
the previously proposed (block) LDPC codes with sub-block
locality [10] have inferior threshold for the same local thresh-
old. If we take the (3, 6, 1) SC-LDPC protograph, then a
comparable block LDPC code is the code with local regular
(2, 6) codes, and a global (3, 6) code. The local thresholds
of the SC-LDPC and the block LDPC codes coincide (the
local codes are identical), but the global threshold of the
SC code is in general superior: for M = 8 it equals
0.4733 compared to 0.4294 for the block code. In addition,
unlike SC-LDPC codes, block LDPC codes cannot be decoded
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Fig. 14: BEC SG-decoding performance of three (5, 12, t)
SC-LDPCL codes (dotted, dashed and solid for t = 1, 2 and
3, respectively) with M = 11 sub-blocks corresponding to
Figure 13; the target is sub-block number six. The plots refer
to five decoding modes: local (orange), SG with d = 2 helpers
(yellow), SG with d = 8 (purple), SG with d = 10 (green),
and global decoding (blue).

via semi-global decoding. These advantages make SC-LDPC
codes more attractive candidates for implementation in storage
devices.

C. Analysis Over the Sub-Block Varying BEC

We now consider a channel model originally proposed in
[21], in which the channel parameter varies between sub-
blocks. This channel fits many data-storage systems, where
bits of the same sub-block (e.g., on the same physical memory
page) suffer from a certain noise level, but across sub-blocks
the noise levels may vary considerably due to differences
in operating or manufacturing conditions such as cell wear,
temperature, etc. [12], [13]. Let M ∈ N be the number of
SBs in the code, let E1, E2, . . . , EM be i.i.d. random variables
taking values in [0, 1], and let F be the cumulative distribution
function (CDF) of Em, i.e., for every m ∈ {1, 2, . . . ,M} and
x ∈ [0, 1], F (x) = Pr (Em ≤ x). In the channel introduced
in [21], all of the bits of SB m are transmitted over the same
channel, which in our case is the BEC(Em); in other words,
first Em is realized, and then the bits of SB m pass through the
BEC(Em). The standard BEC, where the erasure probability
ε is constant, is a special case of the sub-block varying BEC
where F (x) is the step function at x = ε.

Semi-global decoding is highly motivated by this channel,
since even if the target SB suffers a high erasure rate, and
local decoding fails, potentially the helpers have low erasure
rates. Subsequently, the decoded helpers can send sufficient



13

information toward the target SB in order to successfully
decode it at the target phase. Note that the decoder has no
information about the channel state, i.e., the instantaneous
channel parameters are not known during decoding. In case
that this side information is available at the decoder, then
other semi-global scheduling schemes (i.e., other than the
symmetric scheme described in Section IV) could result in
better performance.

Sliding-window decoders and multi-dimensional spatially
coupled (MD-SC) codes were suggested for channels with
memory (e.g. bursty and Gilbert-Elliott channels) and parallel
channels (see [6], [20], [19]). Our work differs from these
previous works since 1) semi-global decoding differs from
window decoding (as explained above), 2) in contrast to
MD-SC codes where entire SC chains are connected, SC-
LDPCL codes connect short locally decodable sub-blocks,
and 3) the channel model we consider differs from those
previously considered and better fits the setup where sub-
blocks are mapped to distinct physical storage units. All of
these distinctions lead to a new analysis which we perform in
the following.

Definition 3. For every even j and δ1, δ2 ∈ [0, 1]t, we define
pj (δ1, δ2) as the asymptotic (as the lifting parameter tends to
infinity) SG-decoding success-probability to decode a target
SB m with d = j helpers: j

2 helper SBs to the right (i.e.
larger indices than the target) and j

2 helpers to the left, where
δ1 and δ2 are the t erasure probabilities incoming from the
SB left to SB m − j

2 and from the SB right to SB m + j
2 ,

respectively.

In general, pj(δ1, δ2) is a function of both the protograph
and the channel-parameter’s CDF F (·). Regardless of the pro-
tograph or channel, we expect pj(δ1, δ2) to be monotonically
non-decreasing with j. In the following analysis, we assume
that the protograph is large enough, such that no helper SB is
among the first or last SBs (i.e., no termination). Given an even
number of helper SBs d, our goal is to evaluate pd (1, 1), and
the intermediate values of pj (δ1, δ2), with j ∈ {0, 2, . . . , d}
and δ1, δ2 ∈ [0, 1], will help us track probabilities along the
SG process.

Definition 4. Let δ1, δ2 ∈ [0, 1]t, and for every k ∈ N+ let
εk1 = (ε1, . . . , εj) ∈ [0, 1]k. We define:

1) ε∗ (δ1, δ2) as the target’s threshold given that the in-
coming erasure probabilities are δL = δ1, and δR = δ2
(see Figure 10(target))

2) ∆: [0, 1] × [0, 1]t → [0, 1]t as the helper function
that calculates the outgoing erasure probabilities δO
given a SB erasure probability ε and incoming erasure
probabilities δI (see Figure 10(helper)), i.e.,

(δO,1, . . . , δO,t) = ∆ (ε, δI,1, . . . , δI,t) .

3) ∆k : [0, 1]k × [0, 1]t → [0, 1]t as the recursive function:

∆1

(
ε11, δI

)
= ∆

(
εk1 , δI

)
(20a)

∆k

(
εk1 , δI

)
= ∆k−1

(
εk−11 ,∆ (εk, δI)

)
, k ≥ 2. (20b)

Remark 9. The functions ε∗(·, ·), and ∆(·, ·) from Definition 4
are deterministic functions that depend on the semi-global
graph GSG, although this dependence is not written explicitly.

Remark 10. If we remove the assumption in (18), then we
will have to replace ∆ in items 2)+3) of Definition 4 with
two functions: right-to-left and left-to-right. Since we assume
symmetry, then these two functions coincide and we refer to
them both as ∆(·, ·).

Theorem 7. For every varying-erasure channel, and every
even j ≥ 0,

p0(δ1, δ2) = Pr (E < ε∗(δ1, δ2)) ,

pj (δ1, δ2) = E [pj−2 (∆ (E1, δ1) ,∆ (E2, δ2))] , j ≥ 2.
(21)

where E,E1, E2 are i.i.d. random variables representing the
channel parameter, and E[·] is the expectation of its argument
over the choices of E1, E2.

Proof. See Appendix B.

Theorem 7 provides an exact recursive expression for
pj (δ1, δ2). However, this calculation depends on the stochastic
argument Ei of ∆ (Ei, ·), and in some cases, such as if the
channel parameter is a continuous random variable, it is hard
to evaluate the expectation in (21). To go around this difficulty,
we derive a provable lower bound on pj (δ1, δ2) by quantizing
the erasure-rate domain.

Theorem 8. Let F (·) be the CDF of a varying BEC channel,
let δ1, δ2 ∈ [0, 1]t and K ∈ N, and let 0 = e0 < e1 < e2 <
. . . < eK = 1 be a partition of [0, 1]. For every j even indices
i =

(
i−j/2, . . . , i−1, i1, . . . , ij/2

)
∈ {1, . . . ,K}j , let

η
1

(δ1) , ∆j/2

(
ei−1 , . . . , ei−j/2

, δ1
)
,

η
2

(δ2) , ∆j/2

(
ei1 , . . . , eij/2, δ2

)
,

yi (δ1, δ2) , ε∗
(
η
1

(δ1) , η
2

(δ2)
)
.

(22)

Then,

pj(δ1, δ2) ≥
∑

i∈{1,...,K}j
F
(
yi(δ1, δ2)

) j/2∏
k=−j/2

k 6=0

[F (eik)− F (eik−1)] .

(23)

Proof. See Appendix C.

Note that unlike (21), evaluating the right-hand side of (23)
only uses deterministic arguments in closed-form (F ) and
recursive (yi) functions.

Remark 11. For any given d, increasing the parameter K
tightens the bound in (23). On the other hand, increasing
K increases the calculation complexity (finer quantization).
Through the parameter K, one can control this tightness-vs.-
complexity trade-off.

Remark 12. Although the bound in Theorem 8 holds for every
choice of K and {ei}K−1i=1 , it is preferable to have at least εL ,
ε∗(1, 1) and εS , ε∗(1, 0) as points of calculation since they
capture success in the extreme case where previously decoded
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helpers completely fail (εL: helpers from both sides fail, εS:
helpers from one side fail). For example, one may set

e = (0, εL, εL + ξL, . . . , εS , εS + ξS , . . . , 1) , (24)

where ξL = bK2 c(εS − εL) and ξS =
⌊
K
2

⌋
(1− εS).

In order to further reduce calculation complexity, we state
the next lower bound. Similar to the definition of pj(δ1, δ2),
we denote by p̂j(δ) the SG success probability when all j
helper SBs are at one side of the target, either all left or all
right of it, given that the farthest helper from the target has
input erasure-probability vector δ.

Proposition 9. For every even j ≥ 2,

pj(1, 1) ≥ P 2
Lpj−2 (0, 0) + 2PL(1− PL)pj−2 (1, 0)

+ (1− PL)
2
pj−2 (1, 1) , (25)

pj(δ1, δ2) ≥ PL
(

1− p̂ j
2−1

(δ1)
)(

1− p̂ j
2−1

(δ2)
)

+ PS

(
p̂ j

2−1
(δ2)

(
1− p̂ j

2−1
(δ1)

)
+ p̂ j

2−1
(δ1)

(
1− p̂ j

2−1
(δ2)

))
+ PDp̂ j

2−1
(δ1)p̂ j

2−1
(δ2)

(26)

where

PL , Pr (E < ε∗(1, 1)) ,

PS , Pr (E < ε∗(1, 0)) ,

PD , Pr (E < ε∗(0, 0)) .

(27)

Proof. See Appendix D.

In view of (21) and (27), we have for j = 0,

p0(1, 1) = PL, p0(1, 0) = p0(0, 1) = PS , p0(0, 0) = PD.
(28)

Proposition 9 leads to a simple way to lower bound pj(1, 1):
first calculate the exact values for j = 0 in (28), and then use
the recursive bounds in (25)–(26) to lower bound pj(1, 1). For
example for j = 2 we get from (26)

p2(1, 1) ≥ P 2
Lp0 (0, 0)

+ 2PL(1− PL)p0 (1, 0)

+ (1− PL)
2
p0 (1, 1)

= P 2
LPD + 2PL(1− PL)PS + (1− PL)

2
PL .

Lower bounds on p̂j(·) can be derived similarly to the
bound in Proposition 9; we omit the details here. To show
an application of the bounds in Theorem 8 and Proposition 9,
we next use them to evaluate the balanced semi-global strategy
proposed in Section IV (evaluated by pj(1, 1)) in comparison
to the one-sided semi-global strategy (evaluated by p̂j(1)).

Example 11. Figure 15 compares between the success prob-
ability of SG-decoding when applying the balanced strategy
(pj(1, 1)) and when applying the one-sided strategy (p̂j(1)).
The plots refer to (l = 5, r = 12, t ∈ {1, 2, 3}) SC-LDPCL
protographs over the varying erasure channel BEC(E), E ∼
Unif[0, 0.4] (the uniform distribution is given as a concrete
example for computing the bounds; our results in Theorem 8
and Proposition 9 are derived for any distribution). As seen in
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Fig. 15: Lower bounds on pj(1, 1) and p̂j(1) for the (5, 12, t ∈
{1, 2, 3}) SC-LDPCL protographs over the BEC(E), E ∼
Unif[0, 0.4].

Figure 15, the balanced strategy (solid-blue curves) performs
better than the one-sided strategy (dotted-black curves) for
every value of t = 1, 2, 3 and every d ∈ {2, 4, 6, 8, 10}. The
bounds are computed according to Theorem 8 and Proposi-
tion 9. We used Theorem 8 to get a lower bound for d = 2,
with K = 40 and the partition in (24); for the higher values of
d we used Proposition 9. Also shown are the empirical results
for two-sided SG decoding: channel parameters are sampled
for each sub-block independently and uniformly between 0 and
0.4, and for the drawn values the functions ∆(·, ·) and ε∗(·, ·)
from Definition 4 are used to determine if decoding succeeds.
We can see that for d = 2 and every t the lower bounds from
Theorem 8 are tight. In addition, the bounds are tight for t = 1
and every d.

Figure 15 also exemplifies the trade-off between locality and
coupling in SC-LDPCL protographs (as seen in Figure 13 for
the standard erasure channel). If j = 0 (local decoding), it
is preferable to use the t = 1 protograph which is highly
localized. However, if j ≥ 6, the t = 3 protograph, which
is strongly coupled, is superior. In the range j ∈ {2, 4}, the
t = 2 protograph is superior.

VI. GENERALIZED CONSTRUCTIONS

The family of SC-LDPCL protographs introduced in Sec-
tion III and analyzed in Section IV share a common property
in which sub-blocks are connected only to their adjacent
neighbors. This follows from Construction 1, which uses
memory T = 1, i.e., the base matrix B is decomposed into two
matrices: B0 and B1. In general, T can be greater than 1. In
this section, we present a generalization of Construction 1 to
T ≥ 1. This generalization enriches the family of SC-LDPCL
codes and enables additional SG-decoding strategies.



15

In addition to generalizing the construction to larger mem-
ory parameters, we extend in this section SC-LDPCL codes
beyond the 1-dimensional chain of the classical SC-LDPC
codes. The structure of the resulting codes is similar to existing
multi-dimensional SC-LDPC codes [16], [17], [15], [18], [19],
[20], but as in the 1-dimensional case, our codes enable the
extra feature of decoding a requested target sub-block by
accessing only a small number of sub-blocks around it in the
array.

A. Generalized Construction

Construction 2. Let 3 ≤ l < r and T ≥ 1 be integers, and
let t ∈ {1, 2, . . . , l − 2}. Let P ∈ {0, . . . , T}l×r such that

P (i, j) = 0, ∀ t < i ≤ l, 1 ≤ j ≤ r . (29)

Set l × r matrices B0, . . . , BT such that for every τ ∈
{0, . . . , T}, Bτ (i, j) = 1 if P (i, j) = τ , and Bτ (i, j) = 0
otherwise. Construct a coupled protograph H by diagonally
placing B0, . . . , BT in H as in Figure 1(b).

P (i, j) is an index matrix used to specify the graph cou-
pling. All-zero rows in P correspond to local checks (LCs)
in the constructed protograph, and mixed rows correspond
to coupling checks (CCs). Note that (29) assures sub-block
access: the local graph is an (l − t, r)-regular graph, with
l− t ≥ 2. We next show some examples of protograph classes
constructed by Construction 2; the classes differ in their inter-
sub-block connections.

Example 12. Let 4 ≤ l, T ∈ {2, . . . , l − 2}, t = T , and
w =

⌊
r
t+1

⌋
. Set

P (i, j) =

 0 , t < i ≤ l ,
0 , 1 ≤ i ≤ t, 1 ≤ j ≤ iw ,
i , 1 ≤ i ≤ t, iw < j ≤ r .

For example, for l = 4, r = 8, t = T = 2 we have

P =


0 0 1 1 1 1 1 1
0 0 0 0 2 2 2 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 . (30)

In the above example, every coupling check (CC) connects
two sub-blocks: the current sub-block, represented by 0 entries
in CC rows, and the τ -th sub-block away, represented by the
entries τ > 0.

We can consider another partition, in which coupling checks
connect more than two sub-blocks. As we show later, this
choice can lead to better global decoding thresholds.

Example 13. For l, r, T and t as in Construction 2, let w =⌊
r
t+1

⌋
and qi =

⌊
r−iw
T

⌋
, 1 ≤ i ≤ t. Set

P (i, j) =

 0 , t < i ≤ l ,
0 , 1 ≤ i ≤ t, 1 ≤ j ≤ iw ,
τ , 1 ≤ i ≤ t, iw + (τ − 1)qi < j ≤ iw + τqi ,

,

TABLE II: Global thresholds of design rates for (4, 8, 2) SC-
LDPCL protographs.

(A) (B) (C) (D)
R 0.49 0.485 0.48 0.47
εG 0.4657 0.4715 0.4864 0.4602

where τ > 0. For example, for l = 4, r = 8, t = T = 2 we
get

P =


0 0 1 1 1 2 2 2
0 0 0 0 1 1 2 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 . (31)

In (31), rows 1 and 2 in P specify CCs that connect three
sub-blocks (i.e., m, m+ 1,m+ 2).

Further, we present a partition that generates a two-
dimensional SC-LDPCL protograph, in which each sub-block
is connected to 4 adjacent sub-blocks: to the right, left, up
and down. This structure can be valuable for two-dimensional
storage topologies. The construction is based on a partition
matrix P that has two CCs: one containing zeros and ones
(i.e., connecting SBs horizontally), and the other containing
zeros and T ’s (vertical connection).

Example 14. Let l ≥ 4, let r = 4K for some integer K ≥ l
4 ,

and let T > 2 = t. Set

P (i, j) =


0 , t < i ≤ l ,
0 , i = 1,

(
1 ≤ j ≤ 1

4r OR 3
4r < j ≤ r

)
,

0 , i = 2, 1
2r < j ≤ r ,

1 , i = 1, 1
4r < j ≤ 3

4r ,
T , i = 2, 1 ≤ j ≤ 1

2r .

,

For example, consider l = 4, r = 8, T = 5, t = 2,. Then,

P =


0 0 1 1 1 1 0 0
0 0 0 0 5 5 5 5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 . (32)

Consider four (l = 4, r = 8, t = 2)-regular SC-LDPCL pro-
tographs: (A) a protograph constructed by Construction 1; (B),
(C) protographs constructed from (30) and (31), respectively;
(D) a two-dimensional protograph constructed according to
(32). Assume that all protographs have M = 25 sub-blocks.
The local graphs are (2, 8)-regular (except for terminating
sub-blocks), so the local thresholds of protographs (A)–(D)
coincide and equal εL = 0.1429. Table II details the design
rate and global threshold for each of these protographs. The
best rate-threshold trade-off (i.e., smallest gap 1− εG −R) is
achieved by protograph (C).

B. Semi-Global Decoding

Generalized constructions with T ≥ 2 can also use the semi-
global decoding strategy described in Section IV, with added
flexibility in the scheduling of helper decoding. Since in the
general case the protograph’s structure is not a simple chain,
the semi-global decoder needs to specify which d helper sub-
blocks are decoded, and at what order. Further, SG-decoding
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analysis should be revised since the information flows differ-
ently. In view of these observations, we define the inter-sub-
block graph. This graph captures the connections between sub-
blocks in the coupled protograph while suppressing the intra-
sub-block connections (local checks and edges), and the exact
node degrees.

Definition 5 (inter-sub-block graph). Let G be an SC-LDPCL
protograph with M sub-blocks. The inter-sub-block graph
GISB = (V, E) corresponding to G consists of |V| = M
nodes, each describing a sub-block in G. An (undirected) edge
e ∈ E connects sub-blocks {mi} ⊂ V if there exists a coupling
check in G that is connected to variable nodes belonging to
sub-blocks {mi}.

Remark 13. To simplify the presentation, and since for SG
decoding we are interested in the inter-sub-block connection,
Definition 5 absorbs local checks into their sub-block node,
and coupling checks into edges connecting sub-block nodes.

Remark 14. It is possible that a coupling check in the
protograph connects more than two sub-blocks, as in (31).
In this case, GISB is a hyper-graph, i.e., edges connect sets
of nodes. These kind of edges are drawn as split lines in the
following graph illustrations.

Example 15. Figure 16 illustrates the inter-sub-block graphs
for the (A), (B), (C), and (D) protographs listed in Table II.
(A) is a simple chain; (B) introduces more memory and
connectivity between sub-blocks; (C) is a hyper-graph in which
some edges (CCs) connect three nodes; (D) is a grid graph.

Consider the inter-sub-block graph in Figure 16(D), and
assume the target SB is located in the grid’s center. There are
many SG helper schedules to decode the target, each exhibiting
a different threshold and complexity (see Section V-B for the
definition of SG thresholds and complexities). For example,
we can choose to decode helpers along the vertical line
crossing the target SB (this will be better than the horizontal
line since the vertical line ends in termination), similarly to
the one-dimensional chain in Section IV; we call this the
vertical schedule. Alternatively, one can access helpers on
both the vertical and horizontal lines crossing the target; we
call this the cross schedule. Another schedule is the diamond
schedule, in which helper SBs sharing the same (Manhattan)
distance from the target SB are decoded in parallel, and in
order of decreasing distances from the target. There are many
more possible schedules for two-dimensional protographs like
protograph D (in contrast to the simple chain in protograph
A, where we have only one direction). We compare the
three schedules presented above: vertical, cross, and diamond,
illustrated in Figures 17(a), (b), and (c), respectively.

Using the density-evolution equations derived in Sec-
tion IV-A, the thresholds of all schedules are calculated and
listed in Table III for the two-dimensional (4, 8, 2) protograph
with M = 49 sub-blocks (i.e, a 7 × 7 grid). In addition,
Table III lists the number of helpers decoded, as a measure of
decoding complexity.

Remark 15. The diamond and cross schedules offer more
parallelism compared to the vertical schedule, and hence

(D)

(C)

. . .

(B)

. . .

(A)

. . .

Fig. 16: Inter-sub-block graphs for the (4, 8, 2) protographs
(A), (B), (C), and (D) from Example 15

(a) (b) (c)

Fig. 17: Three SG schedules over the D protograph from
Figure 16. SBs with same color are decoded in parallel (white
SBs are not decoded at all, the gray SB is the target): (a)
vertical; (b) cross; (c) diamond.

reduce latency. For example, if d = 4, then the vertical
schedule requires three decoding steps (two helper steps,
and one target step), while the cross and diamond schedules
require only two steps.
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TABLE III: A comparison between three SG schedules over
the (l = 4, r = 8, t = 2) 7× 7 grid protograph graph.

Steps Vertical Cross Diamond
Helpers Thresh. Helpers Thresh. Helpers Thresh.

1 2 0.2639 4 0.3084 4 0.3084
2 4 0.2791 8 0.3163 12 0.3421
3 6 0.3108 12 0.3175 24 0.3496
4 36 0.3734
5 44 0.3740
6 48 0.3760

and Adir Kobovich for implementations and simulations for
Figures 5–8 and Figure 14.

APPENDIX A
PROOF OF LEMMA 1

We start with a generalization of (1a)–(1c) that is useful
for the forthcoming analysis. Consider the case where each
VN v ∈ V is transmitted through an erasure channel with
a different erasure probability εv . In this case, we say that
ε =

(
ε1, ε2, . . . , ε |V|

)
is an erasure constellation, and (1a)

and (2) are replaced with

x` (evi , εv) = εv ·
∏

1≤i′≤dv
i′ 6=t

u` (evi′) ,

P`(v, εv) = εv
∏

1≤i≤dv

u` (evi ) .

(33)

Lemma 10. Let G = (V ∪ C, E) be a protograph, and let
ε1 =

(
ε1,1, ε1,1, . . . , ε1,|V|

)
and ε2 =

(
ε2,1, ε2,1, . . . , ε2,|V|

)
be

erasure constellations such that ε1 � ε2, i.e., for every v ∈ V ,
ε1,v ≤ ε2,v . Then,

P`(v, ε1,v) ≤ P`(v, ε2,v), ∀v ∈ V, ∀` ≥ 0 .

Proof. The proof follows by induction on ` and by the mono-
tonicity (in the second argument) of x` (evi , εv) and P`(v, εv)
in (33). Details are left to the reader.

Corollary 11. If ε1 � ε2 and for every v ∈ V ,
lim
`→∞

P`(v, ε2,v) = 0, then for every v ∈ V , lim
`→∞

P`(v, ε1,v) =

0.

Let ε > ε∗ (HJ ). In view of (3), there exists a set of VNs
J ′ ⊆ J such that

lim
`→∞

P`(v, ε) > 0, ∀v ∈ J ′. (34)

We now continue to the proof of Lemma 1. Assume w.l.o.g
that J = {1, 2, . . . ,

∣∣ J ∣∣ } (else, permute the columns in
H). Consider erasure constellations given by

ε1 = (ε, . . . , ε︸ ︷︷ ︸∣∣ J ∣∣
, 0, . . . , 0︸ ︷︷ ︸∣∣ V ∣∣ − ∣∣ J ∣∣

), (35a)

ε2 = (ε, ε, . . . . . . . . . , ε︸ ︷︷ ︸∣∣ V ∣∣
). (35b)

In what follows, we prove that ε ≥ ε∗ (H). Assume to the
contrary that ε < ε∗ (H). Since ε1 � ε2, Corollary 11 implies
that

lim
`→∞

P`(v, ε1,v) = 0, ∀v ∈ V. (36)

In addition, applying the DE equations in (1b) and (33) on the
protograph corresponding to H with the erasure constellation
ε1 is equivalent to applying the DE equations in (1a) and (1b)
on the protograph corresponding HJ over the BEC(ε), thus
(36) implies that for every v ∈ J , lim`→∞ P`(v, ε) = 0 in
contradiction to (34). Hence, ε ≥ ε∗ (H). Since this is true for
all ε > ε∗ (HJ ), we deduce that ε∗ (H) ≤ ε∗ (HJ ).

Similarly, let ε > ε∗ (H), and let v ∈ V be a VN in the
protograph corresponding to H such that

lim
`→∞

P`(v, ε) > 0. (37)

Since u`(evt ) in (2) is less than 1 for every t ∈ {1, 2, . . . , dv}
and every iteration `, then

P
(I)
` (v, ε) ≥ P`(v, ε), ∀` ≥ 0, (38)

where P
(I)
` is the probability that v is erased after ` BP

iterations over the protograph corresponding to H(I). Com-
bining (37) and (38) implies that lim`→∞ P

(I)
` (v, ε) > 0, thus

ε > ε∗
(
H(I)). Since this is true for every ε > ε∗ (H), then

ε∗
(
H(I)) ≤ ε∗ (H).

APPENDIX B
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The j = 0 case follows from the definition of ε∗(δ1, δ2).
For j ≥ 2, assume the target SB is indexed by m. Let Xj,δ1,δ2
be an indicator random variable that equals 1 if and only if SG
decoding with j SBs succeeds given that the incoming erasure
rates to SB m+ j (resp. m− j) are δ1 (resp. δ2), i.e.,

pj (δ1, δ2) = E
[
Xj,δ1,δ2

]
. (39)

By the tower rule for expectations,

E
[
Xj,δ1,δ2

]
= E

[
E
[
Xj,δ1,δ2

∣∣ E−j , E+j

]]
, (40)

where E−j and E+j are the random variables corresponding
to the erasure probability of SBs m−j and m+j, respectively.
In view of the assumption in (18), given E−j = ε1, E+j = ε2
we have that the outgoing erasure rates from SB m+ j (resp.
m− j) towards SB m+ j− 1 (resp. m− j+ 1) are ∆ (ε1, δ1)
(resp. ∆ (ε2, δ2)). Hence

E
[
Xj,δ1,δ2

∣∣ E−j , E+j

]
= pj−2 (∆ (E−j , δ1) ,∆ (E+j , δ2)) .

(41)

Combining (39)–(41) completes the proof.

APPENDIX C
PROOF OF THEOREM 8

We prove by induction on (even) j. For j = 0 we get from
(21),

p0(δ1, δ2) = F (ε∗(δ1, δ2)) . (42)
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In addition, (20a) implies that yi(δ1, δ2) = ε∗(δ1, δ2), which
combined with (42) yields p0(δ1, δ2) = F

(
ε∗(yi(δ1, δ2)

)
.

This proves the j = 0 case. Consider j > 0, let j′ = j − 2,
and assume that (23) holds for j′. In view of (21) and the
induction assumption we have

pj(δ1, δ2) =E
[
pj′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

]
≥E

∑
i′∈{1,2,...,K}j′

F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)
j′/2∏

k=−j′/2
k 6=0

[F (eik)− F (eik−1)]

=
∑

i′∈{1,2,...,K}j′
E
[
F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)]
j′/2∏

k=−j′/2
k 6=0

[F (eik)− F (eik−1)] .

(43)

Let XA be an indicator random variable that equals
1 if and only if the event A occur. Since for ev-
ery δ, ∆(ε, δ) is monotonically non-decreasing in ε, then
F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)
is monotonically non-

increasing in E−j/2 and E+j/2. Thus, for every i′ ∈
{1, 2, . . . ,K}j′ ,

E
[
F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)]
=

E
K∑

i−j/2=1

K∑
ij/2=1

XE−j/2∈(ei−j/2−1,ei−j/2
]XE+j/2∈(eij/2−1,eij/2 ]

· F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)
≥

K∑
i−j/2=1

K∑
ij/2=1

E
[
XE−j/2∈(ei−j/2−1,ei−j/2

]XE+j/2∈(eij/2−1,eij/2 ]

]
· F
(
yi′(∆

(
ei−j/2

, δ1
)
,∆(eij/2 , δ2)

)
=

K∑
i−j/2=1

K∑
ij/2=1

[
(F
(
ei−j/2

)
− F

(
ei−j/2−1

)]
·
[
(F
(
eij/2

)
− F

(
eij/2−1

)]
· F
(
yi′(∆

(
ei−j/2

, δ1
)
,∆(eij/2 , δ2)

)
.

(44)

In view of (20b) and (22),

yi′
(
∆
(
ei−j/2

, δ1
)
,∆(eij/2 , δ2)

)
= yi (δ1, δ2)) . (45)

Combining (43)–(45) completes the proof.

APPENDIX D
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Let j′ = j
2 , and let E+j′ and E−j′ be the erasure-probability

random variables of sub-blocks m+j′ and m−j′, respectively.

In view of (21), since ∆(·, ·) ≤ 1,

pj(1, 1) = E [pj−2 (∆(E−j′ , 1)) , (∆(E+j′ , 1))]

≥ Pr(E−j′ < εL, E+j′ < εL)pj−2 (0, 0)

+ Pr(E−j′ ≥ εL, E+j′ < εL)pj−2 (1, 0)

+ Pr(E−j′ < εL, E+j′ ≥ εL)pj−2 (0, 1)

+ Pr(E−j′ ≥ εL, E+j′ ≥ εL)pj−2 (1, 1)

= P 2
L · pj−2 (0, 0) + 2PL(1− PL)pj−2 (1, 0)

+ (1− PL)
2
pj−2 (1, 1) ,

where the last equality is due to the symmetry assumption in
(18).

Next, let D−j′,+j′ be the event of successful SG decoding
of a target sub-block m with d = 2j′ helper sub-blocks. For
every k ∈ {0, 1, . . . , j′} (resp. k ∈ {−j′, . . . ,−1, 0}), let δ(k)R

(resp. δ(k)L ) be the input erasure rate to sub-block m+ k from
the right (resp. left) during SG decoding. Then, according to
our definitions,

pj(δ1, δ2) ,Pr
(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
= Pr

(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R = 0

)
· Pr

(
δ
(0)
L = 0, δ

(0)
R = 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
+ Pr

(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R = 0

)
· Pr

(
δ
(0)
L 6= 0, δ

(0)
R = 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
Pr
(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R 6= 0

)
· Pr

(
δ
(0)
L = 0, δ

(0)
R 6= 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
Pr
(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R 6= 0

)
· Pr

(
δ
(0)
L 6= 0, δ

(0)
R 6= 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
.

(46)

In view of (27), we have

Pr
(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R = 0

)
= PD,

Pr
(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R = 0

)
≥ PS ,

Pr
(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R 6= 0

)
≥ PS ,

Pr
(
D−j′,+j′

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R 6= 0

)
≥ PL,

(47a)
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and since we assumed symmetry of sub-blocks in (18), then

Pr
(
δ
(0)
L = 0, δ

(0)
R = 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
=

p̂j−1(δ1)pj′−1(δ2)

Pr
(
δ
(0)
L 6= 0, δ

(0)
R = 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
=

(1− p̂j′−1(δ1)) p̂j′−1(δ2)

Pr
(
δ
(0)
L = 0, δ

(0)
R 6= 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
=

p̂j′−1(δ1) (1− p̂j′−1(δ2))

Pr
(
δ
(0)
L 6= 0, δ

(0)
R 6= 0

∣∣ δ(−j′)L = δ1, δ
(+j′)
R = δ2

)
=

(1− p̂j′−1(δ1)) (1− p̂j′−1(δ2)) .

(47b)

Combining equations (46) and (47a)–(47b) yields (26).
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