
1

Treeplication: An Erasure Code for Distributed Full
Recovery under the Random Multiset Channel

Michael Gandelman and Yuval Cassuto, Senior Member, IEEE

Abstract—This paper presents a new erasure code called
Treeplication designed for distributed recovery of the full in-
formation word, while most prior work in coding for distributed
storage only supports distributed repair of individual symbols.
A Treeplication code for k information symbols is defined on
a binary tree with 2k − 1 vertices, along with a distribution
for selecting code symbols from the tree layers. We analyze
and optimize the code under a random-multiset model, which
captures the system property that the nodes available for re-
covery are drawn randomly from the nodes storing the code
symbols. Treeplication codes are shown to have full-recovery
communication-cost comparable to replication, while offering
much better recoverability.

I. INTRODUCTION

To design a distributed storage system, one has to balance
the costs of storage and communications to reach a certain
degree of data availability. Traditional maximum distance
separable (MDS) codes, such as Reed Solomon codes [18]
and array codes [1], minimize the storage cost regardless of
the communication costs if symbols are distributed across
nodes in a network. To economize communication, a new
field of coding theory – coding for distributed storage – has
emerged, contributing many new codes with many advantages
in distributed settings. The principal problem addressed by
codes for distributed storage is the repair of lost symbols
with 1) little communication from nodes storing the other
symbols (regenerating codes [3], [5], [17], [23], [24]), or 2)
communication from few other nodes (locally repairable codes
(LRC) [8], [13], [15], [16], [19], [21], [22]). Going beyond
the repair problem, in this paper we consider distributed
recovery of the full information word, where each information
symbol is recovered by a different available node, with little
communication among the available nodes. This scenario,
which we call distributed full recovery for short, is useful
in distributed systems that cannot tolerate the high complex-
ity and latency of centralized decoding when accessing the
information symbols in parallel. An important use of such
systems is map-reduce distributed computing [2], where large
data units are processed in parallel by multiple machines, each
working on one fragment of the data unit. Both regenerating
codes and LRC codes assume centralized full recovery, where
the former expresses this as the “data collector” function,
and in the latter the code minimum distance specifies the
centralized full-recovery capabilities. We henceforth use the
term data unit to replace the term information word, in which

Michael Gandelman and Yuval Cassuto are with the Viterbi Department of
Electrical Engineering, Technion – Israel Institute of Technology, Haifa Israel
(emails: michaelgandelman@gmail.com, ycassuto@ee.technion.ac.il).

Part of the results in the paper were presented at the IEEE Information
Theory Workshop, November 2018.

every symbol is called a data fragment. Each symbol in the
codeword representing the data unit is called a code fragment.

When using replication, one gets distributed full recovery
trivially, because every node storing a data fragment can access
it locally without any communication. However, replication
fails full recovery if even one data fragment is missing from
the set of available nodes; hence for adequate full-recovery
availability many replicas need to be deployed in many nodes,
entailing steep equipment costs. Using an erasure code instead
of replication will attain the same full-recovery availability
with fewer deployed fragments (some of which are parity
fragments), while requiring some nodes to communicate in
order to recover a data fragment from the parity fragment
they store. The objective of this paper is to develop such an
erasure code, in which the full-recovery communication costs
are comparable to replication, but with a much better full-
recovery availability.

Throughout the paper, a data unit is divided to k data frag-
ments, and encoded by an erasure code to m code fragments,
each stored in a distinct node. Some of the code fragments
are systematic data fragments and others are parity fragments.
As discussed above, we define the decoding operation to be
distributed full recovery, namely, k nodes out of a set of n
available nodes each recovers a different one of the k data
fragments. The set of n available nodes is drawn randomly
from the set of m nodes storing the data unit’s code fragments,
and we assume that the difference m − n can be large, that
is, the available node set has a highly punctured version of
the length-m codeword. We defer the formal definition of the
random drawing model to Section I-A. Note that replication is
a special case of this setup, in which distributed full recovery
succeeds if and only if each of the k data fragments is present
(at least once) in the n available nodes. That said, replication
has especially poor full-recovery probability in randomized
settings, due to the coupon collector problem [12] requiring
to draw many fragments (Θ(k log k)) to succeed with high
probability. One should think about the parameter k as the
degree of parallelization (number of nodes) needed to process
a data unit, and thus code design is needed for specified k
values and not in the limit of large k. Note that a constant k
does not limit the scaling of the system, because the number
of data units and the number of nodes storing their fragments
can grow without bound even when k is fixed.

The erasure code we propose for communication-efficient
distributed full recovery is called Treeplication, owing to its
code fragments being generated from a binary-tree structure.
A Treeplication code is defined over a perfect binary tree
with k leaf vertices and 2k − 1 vertices in total. Each leaf
vertex represents a data fragment, and each non-leaf vertex
represents the bitwise exclusive-or (XOR) of its two children.



2

The tree structure allows on the one hand localized erasure
correction that improves the communication efficiency of the
code compared to existing erasure codes, and on the other hand
spans large-degree parity symbols that improve decodability
compared to replication. Once the code structure is set, the
main contributions of this paper are showing how to select
fragments from the tree to maximize the code performance un-
der randomized node availability, and providing exact analytic
evaluations of the code’s decodability and communication-cost
performance. After formal definition of the drawing model
and of the Treeplication code, our results can be divided into
three parts. The first part (Sections III, IV) focuses on the
full-recovery decodability of Treeplication, where we provide
analytic expressions for the decodability probability and an
efficient algorithm to find the optimal fragment selection dis-
tribution given the size n of the available set. At the end of this
part we show the advantage of Treeplication over replication in
terms of full-recoverability, in particular, replication requires
60% more available fragments than Treeplication in order to
achieve the same probability of full-recovery decodability. In
the second part (Section V), we study the communication cost
of Treeplication, defined as the total number of fragments
communicated in a full recovery of a decodable fragment
subset. The main results in this section are 1) an algorithm that
finds the recovery schedule with minimal total communication
cost, and 2) an analytic expression for the full distribution of
the total communication cost under any fragment selection
distribution. In Treeplication coding full recovery has the
attractive properties that (like in replication) only k nodes (out
of the n available nodes) participate in recovery, and each
participating node has to send its fragment to at most one
other node. Using the derived communication-cost distribution
we show that the average communication cost of the optimal
Treeplication codes from Section IV is lower than MDS codes
by more than an order of magnitude. Finally, in the third part
of the paper (Sections VI, VII) we move to study Treeplication
in dynamic settings where the available fragments of data
units change in time. To that end, in Section VI we propose
a measure we call tree health that provides a tractable way
to evaluate and compare the robustness of Treeplication-
coded data units to future events of fragment loss. Then in
Section VII we discuss methods to augment a Treeplication
data unit with additional fragments, while having access to
only a small subset of the nodes storing the data unit.

At a high level, the Treeplication scheme goes the opposite
direction to most recent works on distributed-storage erasure
coding: instead of taking an erasure code and making it
more “access friendly”, we take the replication scheme and
gracefully make it more “storage-cost friendly”. That said,
it is possible that known regenerating and/or LRC codes (or
improvements thereof) can be used toward efficient distributed
full recovery. In addition to typically requiring large fragment
sizes, the challenges in using current regenerating codes are
that high repair efficiencies require more nodes to perform
recovery, and that multiple simultaneous repairs (as needed for
full recovery) require nodes to send their fragments to many
other nodes, demanding high upload bandwidths. The main
challenge of using LRC codes (and their relative availability

codes [14]) is to obtain multiple simultaneous repair sets in
heavily punctured recovery instances.

The structure of Treeplication is inspired by the similar
structure of the fountain code proposed in [4], but, among
several key differences, our codes are designed for optimal
performance in fixed values of k, while the results in the prior
work are asymptotic.

A. The random-multiset model

In classical distributed-storage erasure coding, one generates
a codeword of m code fragments, out of which n fragments are
available for decoding while the other m− n are unavailable
(viewed as erasures). It has been universally assumed that the
m code fragments are all distinct, and thus the n available
fragments form a subset of the code fragments. In this paper
we lift this assumption, and generate m code fragments from
a set of M distinct code fragments (with possible repetition).
This makes the n available fragments a multiset of the M
distinct code fragments. By doing so, we can fix the M distinct
code fragments to have some desired structure, which in this
paper contributes to efficient distributed full recovery of data
units. An extreme case of this approach is standard replication,
where M = k, and the distinct code fragments are simply the
k data fragments. The M distinct code fragments of replication
enjoy the very convenient structure that decoding is a trivial
no-operation, but at the cost of many non-decodable multisets
even for fairly large n (the coupon collector’s problem). In
the Treeplication coding scheme we have M = 2k−1 distinct
code fragments in a tree structure that offers decoding effi-
ciency, but with much better decodability performance than in
replication. An important part of the Treeplication code design
is the fragment selection distribution, specifying how the m
code fragments are drawn from the M distinct code fragments.
In addition, for probabilistic analysis of multiset decodability
we need to define the erasure channel selecting a multiset of
n available fragments from the multiset of the m generated
ones. To obtain a simpler and cleaner analysis, we merge the
fragment selection distribution and the erasure channel into
one random-multiset model, specifying how the available n-
multiset is drawn from the M distinct code fragments, without
need to deal with an extra parameter m. In the paper, we use
two main random-multiset models: in the uniform model (used
in Section III) we draw with replacement n fragments from
the M = 2k − 1 tree vertices of Treeplication; in the non-
uniform model (used in Section IV) we draw with replacement
ni fragments from the vertices of layer i of the Treeplication
tree.

II. TREEPLICATION CODING

A distributed storage system stores data units across storage
nodes. Each data unit is broken to k data fragments, each
of size D. Throughout the paper we assume that k = 2s,
for some integer s. To encode the data unit in the storage
system, we use a binary tree of depth s. The tree has 2s leaf
vertices representing the data fragments, and a total of 2s+1−1
vertices. Note that including the root there are d , s+1 layers
in the tree. The layers are numbered from bottom to root, thus



3

for i ∈ {1, . . . , d}, layer i has 2d−i vertices. In the sequel,
we use Td to denote this tree, and T` refers to one of Td’s
subtrees with 2`−1 vertices in layers {1, . . . , `}; both Td and
its T` subtrees are complete binary trees. The interpretation
of the tree is that each vertex represents a code fragment:
starting from level i = 2 each code fragment is the bit-wise
exclusive-or (XOR) of its two children, and the leaves at level
i = 1 are the “pure” data fragments also called systematic code
fragments. An example of this tree representation is given in
Fig. 1 for the case k = 8.

Fig. 1: Tree representation of Treeplication coding for k = 8
data fragments (s = 3,d = 4).

The following is a central definition for the analysis and
design of Treeplication codes.

Definition 1. A Treeplication subset for a tree T` is defined
as a subset of the vertices of T`.

A Treeplication subset represents the code fragments avail-
able in system nodes for useful operations such as data-
fragment recovery. In the sequel, we refer to a vertex and
its associated code fragment interchangeably. Moreover, when
there is no risk of confusion, we refer to a Treeplication subset
simply as a subset.

Definition 2. A Treeplication subset of T` is said to be
decodable if the corresponding code fragments are sufficient
to recover the k′ , 2`−1 data fragments.

Clearly, a decodable subset must have at least k′ vertices,
and also all subsets of size greater than 2k′−3 are decodable.
Between k′ and 2k′−3, decodability depends on the particular
subset available for decoding. (Viewed as an erasure code with
block length 2k′ − 1, T` can correct any single erasure, and
many combinations of between 2 and k′ − 1 erasures, but
not more than k′ − 1 erasures.) An example of a decodable
subset of T4 (k = 8) with exactly k vertices is illustrated in
Fig. 2. Similarly, Fig. 3 illustrates a decodable subset with
more than k vertices. From linearity of the code, a decodable
subset with more than k vertices is redundant, and k vertices
from the subset are always sufficient to decode the data unit.
For instance, in the example presented in Fig. 3 there are
10 > 8 vertices in the decodable subset, meaning that 2
elements of the subset may be discarded without affecting
decodability (e.g. those corresponding to f3 and f7 + f8,

or those corresponding to f1 + f2 + f3 + f4 and the root of
the tree). The following lemmas further characterize decodable
subsets.

Lemma 1. If a subset of T` is decodable, then at least one
immediate subtree: T`−1 (left) or T ′`−1 (right) is decodable
with only vertices from its subtree.

Proof: Since the subtrees T`−1,T ′`−1 are disjoint in their
XOR arguments, having both non-decodable internally would
mean that two additional code fragments are needed. This is
a contradiction because there is only the root as a potential
extra code fragment.

Fig. 2: Example of a decodable Treeplication subset with
exactly k = 8 vertices (the filled vertices).

Fig. 3: Example of a decodable Treeplication subset with more
than k = 8 vertices. Out of the 10 vertices in the subset, k = 8
are sufficient to decode the full data unit.

III. DECODABILITY WITH UNIFORM SELECTION

Treeplication is intended for use in a fully distributed
storage system where nodes decide in a decentralized way
which fragments to store. In the simplest model for de-
centralized fragment selection, n code fragments are each
chosen uniformly and independently (with replacement, so
repetitions are possible) from the 2k − 1 tree vertices. To
accommodate multiplicities in the drawing of vertices, we next
define Treeplication multisets.

Definition 3. A Treeplication multiset for T` is defined as a
multiset of vertices from T`.

Every Treeplication multiset can be mapped to a Treeplica-
tion subset by removing vertex multiplicities, and for the sake



4

of decodability, it is sufficient to look at this subset. We now
derive the probability of obtaining a decodable subset once
the above-mentioned selection is performed. We first quantify
the number of decodable subsets given k + j unique vertices
in the multiset, for j = 0, . . . , k − 1; subsequently, we count
n-multisets mapping to decodable k + j unique vertices.

For a tree with d layers, define Dd,j to be the number of
decodable subsets with 2d−1 + j (unique) vertices. Note that
Dd,j = 0 if j < 0 or j > 2d−1−1. We partition the decodable
subsets to Dd,j = td,j + rd,j , where td,j is the number of
subsets that include the root vertex and are non-decodable
without it, while rd,j is the number of all other decodable
subsets.

Lemma 2. For a tree with d layers and a Treeplication subset
with 2d−1+j (unique) vertices, the following recursive relation
applies to rd,j

rd,j =

j∑
l=0

Dd−1,lDd−1,j−l +

j∑
l=0

Dd−1,lDd−1,j−l−1. (1)

Proof: By the definition of rd,j , the counted decodable
subsets either do not have the root vertex or they are decodable
without it. In either case the immediate subtrees of the root
must both be decodable themselves. The first and second terms
in (1), respectively, quantify these decodable subsets without
and with the root vertex in them.

The more interesting is the term td,j , which we quantify
next.

Lemma 3. For a tree with d layers and a Treeplication subset
with 2d−1 + j unique vertices, the following recursive relation
applies to td,j

td,j = 2

j∑
l=0

Dd−1,ltd−1,j−l, d > 1, j ≥ 0; t1,0 = 1. (2)

Proof: When d = 1 the tree is just the root vertex, and the
root forms a decodable subset that is non-decodable without
it (trivially); hence t1,0 = 1. By Lemma 1, one immediate
subtree of Td must be decodable internally, and by definition
of td,j the other subtree must not be decodable internally.
The former gives the term Dd−1,l in (2) and the latter gives
td−1,j−l. To understand why the latter is correct, observe that
every decodable subset of Td−1 that contains its root can be
mapped to a decodable subset of Td by replacing the root of
Td−1 by the root of Td, assuming that the other subtree T ′d−1
is decodable internally. Also, with this root swap it is clear
that Td−1 is non-decodable without its root if and only if Td
is non-decodable without its root. Finally, the factor 2 in (2)
quantifies the two options to choose the internally-decodable
subtree among the left and right subtrees.

Once we have an efficient way to quantify decodable
subsets, it is simple to derive the probability to get a decodable
subset under independent uniform selection of each of the n
code fragments.

Theorem 4. For a tree with d layers and a n-multiset, each of
whose elements is chosen uniformly and independently from

the 2d − 1 vertices of Td, the probability to get a decodable
Treeplication subset is

Pd =

n−2d−1∑
j=0

Dd,jS(n, 2d−1 + j)(2d−1 + j)!

(2d − 1)n
, (3)

where S(a, b) is the number of ways to partition a set of
a elements into b non-empty subsets1, known as the Stirling
number of the second kind [9].

Proof: Each decodable subset (with 2d−1 + j unique
vertices) from those quantified by a Dd,j can be obtained
in S(n, 2d−1 + j)(2d−1 + j)! different ways by the uniform
selection with replacement. The probability is obtained by
normalizing by the total number of choices, decodable or not.

We compare the Treeplication scheme under uniform inde-
pendent selection to standard (uncoded) replication with the
same selection policy. For the same input block size k, in
replication each choice is one of k data fragments, while
in Treeplication it is one of 2k − 1 code fragments. The
comparison results can be seen in the two middle columns of
Table I below. The results show the advantage of Treeplication:
to get to the same decoding-success2 probability of 0.9, repli-
cation needs between 15%-30% higher n than Treeplication,
which means a higher storage cost for the same availability
performance.

TABLE I: Replication vs. Treeplication (uniform and non-
uniform): minimum number of stored fragments n required
for decoding probability of 0.9.

k Replication Treeplication (uniform) Treeplication (non-uniform)
2 5 4 3
4 13 10 8
8 33 26 20

16 79 66 49
32 181 157 113

IV. NON-UNIFORM SELECTION

The uniform selection assumption considered above may not
render the optimal tree vertex selection, hence better results
may be obtained. With this in mind, in order to improve decod-
ability we now extend the analysis to non-uniform selection. In
the non-uniform setup, we have n =

∑d
i=1 ni, where ni code

fragments are chosen (with replacement) from layer i of the
tree. Within each layer the selection is as before: each of the ni
code fragments is chosen uniformly and independently from
the 2d−i vertices of layer i. In our analysis, we map each ni to
pi = 1−(1− 1

2d−i )ni , where pi is the probability that a certain
vertex in layer i is selected to the multiset at least once (same
for all vertices in the layer). Note that pi is monotonically
increasing with ni, and pi = 0 when ni = 0. It will be simpler
for us to assume that a vertex in layer i is included in the

1In (3), the elements are vertices chosen with replacement (with possible
repetition), and the subsets are the unique vertices that form the decodable
subset.

2In replication, decoding success is when every data fragment is selected
at least once.



5

multiset (at least once) with probability pi, independently of
the other vertices in the layer, although this assumption is not
consistent with the specified discrete parameters {ni}di=1. This
assumption is a reasonable approximation when ni is of the
same order as 2d−i, as required to get decodability with high
probability3. The following theorem gives an expression for
the decoding probability with non-uniform selection.

Theorem 5. For a tree Td whose vertices are chosen with
probability pi in layer i, the probability to get a decodable
Treeplication subset is

Qd = Q2
d−1 + 2d−1pd

d−1∏
i=1

[(1−pi)Qi], d > 1; Q1 = p1. (4)

Proof: When d = 1 the tree is just the root vertex, and the
subset is decodable if it contains the root vertex, happening
with probability p1. For i = 1, . . . , d − 1, denote by Bi

the probability that the subset elements in Ti can decode the
leaves of Ti if and only if its root vertex is provided to the
subset externally. Then Qd = Q2

d−1+2Qd−1pdBd−1, because,
similar to Lemmas 2,3, the subset is decodable if both its
subtrees are decodable, or if one subtree is decodable, the
root is present, and the other subtree is decodable if and only
if its root is provided externally. The “only if” is required to
not count in the second term probabilities already included
in the term Q2

d−1; the “if” part guarantees that the other
subtree is decodable when the parent root is present and the
other subtree is decodable. Bd−1 can be calculated with the
recursive expression Bi = 2(1− pi)Qi−1Bi−1, and the initial
value B1 = 1 − p1. Expanding this expression to Bd−1 and
substituting in the previous equation gives (4).

By calculating efficiently Qd for every selection distribution
{ni}di=1, Theorem 5 is a useful tool to design non-uniform
Treeplication allocations that, for any given n, maximize Qd

among all {ni}di=1 :
∑d

i=1 ni = n. To find the optimal Qd

efficiently, we first prove some properties of optimal selection
distributions that significantly reduce the search complexity.

Lemma 6. Every optimal selection distribution satisfies pi ≤
pi−1, ∀i ∈ [2, d].

Proof: Assume that p1, . . . , pi−2 are set, and by contra-
diction that pi > pi−1. From (4) we have

Qi = Q2
i−1 + 2i−1pi

i−1∏
j=1

[(1− pj)Qj ], (5)

Qi−1 = Q2
i−2 + 2i−2pi−1

i−2∏
j=1

[(1− pj)Qj ]. (6)

Denote a := Q2
i−2 and b := 2i−2

i−2∏
j=1

[(1 − pj)Qj ]. By

substituting (6) and a, b into (5), we get

Qi = (a+ bpi−1)(a+ bpi−1 + 2bpi − 2bpi−1pi). (7)

3For verification, we compared the i.i.d model with uniform distribution to
the true uniform results of Section III, and got almost the same results.

Since a, b are independent of pi and pi−1, we can see that
exchanging between pi and pi−1 in (7) results in an increase
in Qi because

(a+ bpi−1)(a+ bpi−1 + 2bpi − 2bpi−1pi)

< (a+ bpi)(a+ bpi + 2bpi−1 − 2bpi−1pi) (8)

for any 0 ≤ pi−1 < pi ≤ 1. This is a contradiction.
The monotonicity of pi in i implies the following lemma.

Lemma 7. Every optimal selection distribution satisfies
ni−1 ≥ 2ni, ∀i ∈ [2, d].

Proof: From Lemma 6 we have 1 − pi ≥ 1 − pi−1, and
from monotonicity of the log function log(1− pi) ≥ log(1−
pi−1). Thus substituting the definition of pi,pi−1 gives that

ni−1
ni
≥

log
(
1− 1

2d−i

)
log
(
1− 1

2d−i+1

) ≥ 2. (9)

With Lemma 7 we can prove the following useful property
of optimal selection distributions.

Proposition 8. Every optimal selection distribution satisfies
ni ≥

∑d
j=i+1 nj , ∀i ∈ [1, d− 1].

Proof: By induction starting from i = d − 1. True for
base case i = d − 1 because nd−1 ≥ 2nd ≥ nd =

∑d
j=d nj ,

where the first inequality is from Lemma 7. Assume true for
i, then showing for i− 1

ni−1 ≥ 2ni ≥ ni +

d∑
j=i+1

nj =

d∑
j=i

nj ,

where the first inequality is from Lemma 7 and the second
from the induction hypothesis.

Proposition 8 is the basis to Algorithm 1 that finds the
optimal selection distribution based on searching the small
subset of distributions that satisfy the above optimality con-
ditions. In the algorithm, we denote by {ni}`i=1 a selection
distribution n1, . . . , n`, 0, . . . , 0, where the last d− ` elements
of the distribution are 0. For any selection distribution S, we
denote by Qd(S) the result of (4) with pi corresponding to the
ni of S. In the algorithm, Q? holds the maximum decoding
probability among all selection distributions explored so far.

Thanks to the factor 1/2 in the for loop of Algorithm 1,
its running time is significantly reduced compared to trivial
search. While trivial search needs to explore all compositions
of n into up to d sets, only non-squashing partitions4 [20]
of n are explored by Algorithm 1. For example when d =
6,n = 128, trivial search requires 275584033 steps while
Algorithm 1 only 25509. Although the focus of this paper is
not asymptotic, it is instructive to examine the counts of non-
squashing partitions in comparison with general partitions, in
terms of their scaling with n. According to equation (1.3) in [6]
(citing results from [10], [11]), the count of non-squashing
partitions scales as exp

(
(lnn)2

2 ln 2

)
; note that this count does not

4A partition of an integer n = n1 +n2 + · · ·+n` with parts n1 ≥ n2 ≥
· · · ≥ n` ≥ 1 is called non-squashing if ni ≥ ni+1 + · · · + n` for every
1 ≤ i ≤ `− 1.



6

Algorithm 1 Find optimal non-uniform selection distribution

1: function SEARCH(n, d)
2: Q? := 0
3: Distribute(1, n, {})
4: return Q?

5: end function
6: function DISTRIBUTE(j, B, {ni}j−1i=1 )
7: if B == 0 or j > d then
8: if Qd({ni}j−1i=1 ) > Q? then
9: Q? := Qd({ni}j−1i=1 )

10: end if
11: return
12: end if
13: for b ∈ {0, 1, ..., bB/2c} do
14: nj := B − b
15: Distribute(j + 1, b, {ni}ji=1)
16: end for
17: end function

limit the number of non-zero parts to at most d, but because
d is logarithmic in n (when n is a constant factor times
k) and non-squashing forces exponential shrinkage of part
sizes, there are not many partitions counted in this expression
that have more than d parts (in any case this expression is
an upper bound on the count of interest). In comparison,
general partitions to up to d labeled parts count as

(
n+d−1
d−1

)
(elementary counting), and thus scale as nd, which for n of
order 2d gives scaling of nlnn/ ln 2 = exp

(
(lnn)2

ln 2

)
. The factor

2 in the exponent compared to non-squashing implies that the
search complexity in Algorithm 1 is roughly the square root
of the complexity of trivial search on general partitions.

It turns out that, optimal Treeplication codes greatly out-
perform both replication and uniform Treeplication. The right
column of Table I shows that compared to optimal Treeplica-
tion, the storage cost of replication is higher by 60% or more
for k ∈ {8, 16, 32}. This is close to quadruple the advantage
of uniform Treeplication. An attractive property of the optimal
Treeplication distributions is that they have a vast majority
of systematic data fragments, which means that the system
behaves very similarly to an uncoded replication system, only
with a much better full-recovery performance. For example,
in the third row of Table I, the optimal distribution for n = 20
is n1 = 16, n2 = 2, n3 = 1, n4 = 1, namely, 4/5 of the nodes
have data fragments.

Further results comparing the three schemes are given in
Fig. 4 where the decoding probability is plotted as a function
of n for k = 8, 16.

V. FRAGMENT RECOVERY AND COMMUNICATION COST

In the successful case of having a decodable subset of
Td, the distributed storage system needs to have the k data
fragments recovered by the nodes storing the decodable subset.
The recovery process is done in a distributed way, where
each data fragment is recovered by one node storing a code
fragment, using code fragments from other nodes if necessary.
For any subset size n ≥ k, k nodes are chosen to each recover

Fig. 4: Probability of obtaining a decodable subset as a
function of the multiset size n given in multiples of k, for
k = 8, 16. Three curves compare: optimal Treeplication,
uniform Treeplication, and replication.

a different data fragment, in a way that communication cost is
minimized. Data fragments that appear as leaves (systematic
code fragments) in the subset are trivially recovered locally
with no communication; the remaining data fragments are
recovered by non-leaf vertices that receive code fragments
(both systematic and not) of other vertices to recover the
assigned data fragment. The cost in terms of communications
required for this recovery is the total number of code frag-
ments communicated to recover all k data fragments, and it
should be minimal.

A. Minimal-communication recovery algorithm

This sub-section presents Algorithm 2, which finds the
minimal-communication recovery and counts the number of
fragment transmissions. At the start of the algorithm, we have
a decodable subset (with k or more fragments) mapped to
a tree. Each fragment (tree vertex) is stored by a node in
the system, and all nodes know the vertices in the subset.
Algorithm 2 is run by each of these nodes, to determine which
data fragment (leaf vertex) to recover (if any), and which
fragments (tree vertices) to request from the other nodes in the
subset. Before presenting the algorithm, we prove properties
regarding node selection for minimal-communication recovery.
In the sequel, a present resp. missing vertex is a vertex that is



7

in resp. not in the decodable subset. We define a missing-vertex
path as a path in the tree, in which all vertices are missing.

Lemma 9. If a Treeplication subset is decodable, then 1)
there is no missing-vertex path between a leaf and the root,
and 2) no vertex (present or missing) has missing-vertex paths
connecting its two children with two leaves.

Proof: The existence of a missing-vertex path from leaf
to root contradicts decodability because in that case no present
code fragment depends on that leaf. Two missing-vertex paths
ending at vertices with a common parent vertex x imply that
both subtrees directly under x are non-decodable (by condition
1 above), thus violating Lemma 1.

Proposition 10. Suppose present vertex x recovers leaf vertex
y if and only if there is a missing-vertex path between a child
of x and y. Then in a decodable Treeplication subset, each
missing leaf is recovered by a single unique vertex, and this
vertex is the lowest one (in terms of its layer index) capable
of recovering y.

Proof: From condition 1 of Lemma 9, each missing leaf
must have a path upward ending at a present vertex; from
condition 2 there cannot be another leaf that is in missing-
vertex path ending at a child of x. These prove that every leaf
will be recovered by a unique present vertex. x is the lowest
present vertex in the tree that can recover y, because it is at
the end of a missing-vertex path from y, making it the lowest
vertex whose code fragment has y as argument.

Building on Proposition 10, Algorithm 2 now finds the
vertices recovering the missing data fragments with minimal
communication (the present data fragments are recovered
locally with no communication, and are not handled by Algo-
rithm 2). Each of the vertices chosen for recovery is the lowest
possible in the tree able to recover the corresponding data
fragment, hence requires the least amount of communication.
A vertex evaluated to “false” in line 9 is not recovering any
data fragment, and can be discarded as redundant (this happens
when the decodable subset has more than k vertices). The
variable sum holds the aggregate number of code fragments
communicated to the nodes recovering the data fragments. The
explicit identities of the communicated code fragments can be
extracted from the identities of the vertices reached in line 6.
If Algorithm 2 terminates without recovering all missing data
fragments, from Proposition 10 we know that the subset is not
decodable.

Fig. 5 illustrates an example of a run of Algorithm 2. A red
label fj in vertex x shows the algorithm’s finding in line 9
that the node storing x is to recover the missing data fragment
fj . A solid red arrow from vertex z to vertex x represents the
algorithm’s finding in line 6 that the present code fragment z
is needed by the node storing x to recover its assigned data
fragment. The sum output of Algorithm 2 is the number of red
arrows in Fig. 5, which is the total communication cost to be
incurred on recovering all data fragments: 5 code fragments
(4 systematic and 1 not) are communicated to recover all 8
data fragments.

It is important to note that, our assumption that the input
to Algorithm 2 is a decodable subset is only for simplicity

Algorithm 2 Fragment recovery
1: sum := 0
2: for each present vertex x do
3: sumx := 0
4: for each path downwards from x do
5: traverse path until a present vertex or a missing

leaf reached
6: if a vertex that is present reached then sumx =

sumx + 1
7: end if
8: end for
9: if missing leaf was reached in a downward path then

sum = sum + sumx // x is recovering a leaf
10: end if
11: end for
12: return sum

Fig. 5: Run of Algorithm 2 on a decodable Treeplication subset
with 9 distinct code fragments.

of presentation. By a small change to the algorithm, we can
detect a non-decodable subset (and return sum = ∞) when
the condition in line 9 evaluates to “true” fewer times than the
number of missing leaves.

The following proposition gives the worst case communi-
cation cost of Treeplication.

Proposition 11. Recovering a data unit from a decodable
Treeplication subset requires communicating at most k − 1
code fragments in total.

Proof: We first prove that, we can assume without loss
of generality that the decodable subset has exactly k present
vertices. If not, we can remove the x vertices that evaluate
to “false” in line 9 of Algorithm 2, and remain with only
present leaves and vertices that each recovers a unique missing
leaf; these together sum up to k. Now we observe in lines 5,6
of Algorithm 2 that the communication count is incremented
only for the first present vertex reached in a path downward
from x. So looking upward from a present vertex, it needs
to be communicated to at most one vertex, which is the first
present vertex in its path to the root. This shows at most k
communicated fragments. To show upper bound of k− 1, we
observe that in any subset there is a present vertex that has no



8

present vertices above it in the tree (e.g. the root). This vertex
is (or, if plural, these vertices are) not communicated during
recovery, thus bounding the total communication at k − 1 or
less.

Note that the bound of k − 1 is worst-case tight, as the
subset in Fig. 2 in fact requires k − 1 = 7 fragments to be
communicated for recovery. The nice thing about the number
k − 1 is that it equals the number of code fragments a node
needs for centralized full recovery with MDS codes, meaning
that Treeplication supports distributed full recovery with no
extra cost. Moreover, in the following we see that on average
the communication cost is significantly lower than this worst
case.

To evaluate the average recovery communication cost of
Treeplication, we first show in Table II the empirical average
number of code fragments communicated per instance of
a decodable subset. Treeplication is implemented using the
optimal (non-uniform) selection parameters {ni}di=1 found by
Algorithm 1, and uniform sampling (with replacement) of ni
vertices in layer i. The minimal-communication recovery per
simulation instance is found using Algorithm 2. We compare
the communication cost to similar decentralized recovery using
systematic MDS codes with block length 2k − 1 (identical to
the vertex count of Treeplication) also simulated as a uniform
and independent selection (of n fragments from the 2k−1 code
symbols). For both schemes we used the same n = 3k, which
is a common replication factor in pure replication settings such
as the default in [7]. We can see that Treeplication is very
economical in communication, requiring very small numbers
of fragments per instance (in particular much smaller than the
worst-case k − 1). When using MDS codes, recovery of non-
systematic fragments requires a heavy load of k−1 fragments
per recovering node, which results in an order of magnitude
or more higher communication cost per instance.

TABLE II: Treeplication vs. MDS: communication cost
(n=3k).

k # fragments Treeplication # fragments MDS
4 0.35 1.82
8 1.18 10.64

16 2.88 49.62
32 6.552 213.10

Next, we derive analytic expressions for the expected com-
munication cost of Treeplication.

B. Derivation of the expected communication cost

Throughout the forthcoming analysis, we assume decoding
subsets are sampled according to the non-uniform selection of
Section IV, that is, a tree vertex in layer i is present in the
subset with probability pi, independently from other vertices.
We also use the notation Qi from Section IV to denote the
probability that a tree with i layers is decodable under this
sampling (recall the efficient calculation of Qi by Theorem 5).
The objective of this analysis is to calculate the expected total
communication cost to recover all fragments of a data unit, and
the expectation is over all decodable subsets (we exclude from

the analysis sampling instances that result in non-decodable
subsets; in fact, this necessary exclusion makes the analysis
more challenging.) The cost we analyze throughout is that
of Algorithm 2, which is the minimal for every instance.
Following the terminology of Section V-A, each data fragment
is recovered by a unique present vertex, and to each of
the k recovering vertices, zero or more code fragments are
communicated. Thanks to the symmetry of data fragments,
it is useful to define the expected cost to recover a single
data fragment, and obtain the expected total cost as k times
this number. We get the expectation of the communication
cost per data fragment by deriving the full distribution of the
communication cost, defined next.

Definition 4. Let Cd(N) be the probability that in a decodable
subset of Td a particular data fragment is recovered by
communicating N code fragments.

We have
∑

N≥0 Cd(N) = 1, and from symmetry Cd(N) is
the same for any data fragment. Since we are only interested
in analyzing the cost of decodable subsets (we assume that for
non-decodable subsets the algorithm will halt and not invoke
any communications), we define Cd(N) as a probability
conditioned on decodability. The next definition is similar to
Cd(N), only defining the joint probability.

Definition 5. Let Pi(N) be the probability that a subset of Ti
is decodable, and a particular data fragment is recovered by
communicating N code fragments.

We changed the tree index from d to i in Definition 5,
because we will make a recursive use of Pi(N). The following
is a similar definition, only specific to recovery by the root.

Definition 6. Let Ai(N) be the probability that a subset of
Ti is decodable, and a particular data fragment is recovered
with N communicated code fragments, given that the root is
present and that there is a missing-vertex path from one of its
children to the leaf of the recovered data fragment.

In the language of Proposition 10, Definition 6 enumerates
the communication cost in cases where the root is chosen
to recover the particular data fragment. One final defini-
tion is needed to carry out the recursive calculation of the
communication-cost distribution.

Definition 7. Let Fi(N) be the probability that a subset of
Ti is decodable, and has N present vertices with no present
ancestors.

Note that in particular N = 1 in subsets where the
root is present. Definition 7 is useful because it will help
capture the fragment count sumx, incremented in line 6 of
Algorithm 2 every time a present vertex is reached in the
traversal downward from x. We now give a series of lemmas
that together facilitate the recursive calculation of Pi(N), and
in turn of Cd(N).



9

Lemma 12. Pi(N) can be calculated by

Pi(N) = Qi−1Pi−1(N) +Ai(N)pi

i−1∏
l=1

(1− pl)

+ pi

i−1∏
l=1

(1− pl)
i−1∑
j=1

2j−1Pj(N)

i−1∏
`=1, 6̀=j

Q`

 , i > 1. (10)

P1(N) = 0, N > 0. (11)

P1(0) = p1. (12)

Proof: For (11), (12) in which i = 1, the decodability
probability is p1, and no communicated fragments are required
(N = 0). When i > 1, we divide to three mutually exclusive
cases, each corresponding to a summand in the right-hand side
of (10).

Case 1: Both subtrees of the root are independently de-
codable. In that case we distinguish between the subtree that
contains the leaf of the recovered data fragment (henceforth
called the ”recovered leaf”) and the other subtree. Then the
probability decomposes to a product of Pi−1(N) for the
recovery in the recovered leaf’s subtree, times the probability
Qi−1 that the other subtree is decodable. In the remaining
cases one of the root’s subtrees is not independently decodable,
which implies that the root recovers a leaf vertex, either the
recovered leaf (Case 2) or a different one (Case 3).

Case 2: The recovered leaf is recovered by the present
tree root. Recall from Proposition 10 that this case implies
a missing-vertex path between the recovered leaf and a child
of the root. The probability to have a present root and this
missing-vertex path is pi

∏i−1
l=1(1 − pl). The remaining term

Ai(N) in the second summand is, by definition, the probability
that N code fragments are communicated, given that recovery
is by the root.

Case 3: The recovered leaf is recovered by a vertex other
than the root, while the present root recovers a different leaf,
which we call “another leaf”. The former condition distin-
guishes from Case 2, and the latter distinguishes from Case 1
because it implies a root’s subtree that is not independently de-
codable. Given a decodable subset, every missing-vertex path
between a child of the root and another leaf defines a partition
of the remaining 2i−1 − 1− i tree vertices (vertices of Ti not
in this path and not the root) to subtrees. Each such partition
has one subtree of ` layers, for each ` ∈ {i− 1, i− 2, . . . , 1}.
According to Lemma 1, the root and each of the vertices of
the missing-vertex path, except the leaf, must have at least one
immediate subtree that is independently decodable. For each of
these vertices, the subtree in the direction of the missing-vertex
path is not independently decodable by Lemma 9 (part 1).
Thus the subtrees in such a partition must all be independently
decodable. From the set {i − 1, i − 2, . . . , 1} we take j to
be the number of layers of the special decodable subtree
containing the recovered leaf. Given j, there are 2j−1 different
missing-vertex paths ending in another leaf, each defining
a different such partition. The third summand of (10) sums
over all possible partitions the probability of recovering the

recovered leaf with N fragments, within those partitions. The
terms of this summand are: 1) pi the probability that the root is
present, 2)

∏i−1
l=1(1−pl) the probability that the path defining

the partition is a missing-vertex path (same probability for all
partitions), 3) sum over all partitions, using the size index j,
of the probability that the recovered leaf is recovered in its
subtree with N fragments (Pj(N)), and the other subtrees are
decodable

∏i−1
`=1, 6̀=j Q`.

Next, we calculate Ai(N) recursively from Ai−1(·) and
Fi−1(·).

Lemma 13. Ai(N) can be calculated by

Ai(N) =

2i−2∑
l=1

[Fi−1(l)Ai−1(N − l)] , i > 2 (13)

A2(1) = p1, (14)

Ai(N) = 0, otherwise. (15)

Proof: When i = 2, the recovered leaf is a child of
the root, hence both ends of the missing-vertex path are the
recovered leaf itself. Conditioned on the existence of this
missing-vertex path and the present root, the tree is decodable
if and only if the other child of the root is present, which
occurs with probability p1. In this case N = 1 fragment is
communicated.

For i > 2, we split the N communicated fragments to l
coming from the root’s subtree not including the recovered
leaf (which we call the former subtree), and N − l from the
subtree of the recovered leaf (which we call the latter subtree).
We know that the latter subtree is not independently decodable
(from the existence of the missing-vertex path), so from
Lemma 1 the former subtree must be independently decodable.
Having l fragments communicated from the former subtree
which is independently decodable occurs with probability
Fi−1(l) by definition. These l fragments together with the root
fragment can recover the root of the latter subtree; requiring
N − l fragments from this subtree occurs with probability
Ai−1(N − l) because the conditions in the definition of A`(·)
are satisfied for the latter subtree when its root is known.

Summing over all possible values of l, we get (13).

Finally, the next lemma shows how to calculate Fi(N)
recursively from Fi−1(·).

Lemma 14. Fi(N) can be calculated by

Fi(N) = (1− pi)
N−1∑
l=1

[Fi−1(l)Fi−1(N − l)] , N > 1 (16)

Fi(1) = pi

Q2
i−1 + 2i−1

i−1∏
j=1

[(1− pj)Qj ]

 . (17)

Proof: When the root is present, only one vertex (the root
itself) has no present ancestors. Hence N = 1, and the product
in (17) gives the probability that the root is present and the tree



10

is decodable (note that the right-hand side of (17) is similar
to (4), but not identical because here it is required that the
root is present). When N > 1, the root is not present, and the
number of present vertices with no present ancestors divides
to l in one subtree and N − l in the other. This gives the
product Fi−1(l)Fi−1(N − l) for the probability, and summing
over all l and multiplying by the probability 1 − pi that the
root is not present, we get (16).

With Lemmas 13, 14 and 12, we can efficiently calculate
Pi(N) for any i and N , and for any selection distribution
{pi}di=1. Then the expected communication cost for decodable
subsets of d-layer Treeplication is taken simply as

E , 2d−1
∑
N≥0

N · Cd(N) = 2d−1
∑

N≥0N · Pd(N)

Qd
, (18)

and the equality follows from the elementary probability-
theory relation P (X|Y ) = P (X,Y )/P (Y ) (where Y is the
event that the subset is decodable).

Evaluating E in (18) for d = {3, 4, 5, 6} (k = {4, 8, 16, 32})
using the optimal non-uniform distribution with n, we get the
results in Table II. For comparison, in each row we include
the empirical results from Section V-A, and observe their good
match.

TABLE III: Treeplication’s expected communication cost (n =
3k).

k # comm. fragments
4 0.357 (empirical: 0.350)
8 1.143 (empirical: 1.180)
16 2.830 (empirical: 2.880)
32 6.524 (empirical: 6.552)

VI. TREE HEALTH

So far in the paper, a Treeplication multiset was evaluated
with respect to its instantaneous properties: whether it is
decodable, and how efficiently it can recover the data unit.
However, in a real distributed storage system, multisets evolve
in time due to changes in node availability. Therefore, in
this and the next sections, we extend the scope to consider
forward-looking properties of the multiset, e.g., its robustness
to possible future events of nodes going unavailable. Within
that scope, one decodable multiset may be “better” than
another decodable multiset because it is more likely to remain
decodable after some fixed number of nodes go unavailable.
We refer to this quality of Treeplication multisets as their tree
health, and develop tools to evaluate and compare multisets
with respect to a concrete tree-health measure. Comparing
multisets’ health is useful in storage systems because it allows
to allocate resources efficiently to data units according to
health, thereby maximizing the overall system resilience. The
tree health is parametrized by an integer l, which quantifies
the number of nodes becoming unavailable; l captures the
degree of robustness expected from the multiset. Throughout
the discussion we assume that the nodes becoming unavailable
are drawn uniformly from the multiset.

The health of a Treeplication multiset depends on its specific
present vertices (and multiplicities), and therefore we seek an
efficient method to measure the health without exhaustively
enumerating all possible combinations of l node losses. To
that end, we next prove decodability conditions that facilitate
the formulation of a tractable tree-health measure. First, we
define a subset of the Treeplication tree we call a diagonal.

Definition 8. A set of vertices from Td is called a diagonal if
it forms a path downward starting at an arbitrary vertex and
ending in a leaf vertex.

A special case of Definition 8 is a diagonal consisting of a
single leaf vertex. A Treeplication tree decomposed to a union
of disjoint diagonals is called a diagonal cover. Next we prove
that every Treeplication tree has a (non unique) diagonal cover.

Proposition 15. A Treeplication tree Td can be decomposed
as a diagonal cover with k diagonals, where 1 diagonal is
of size d, and for each i ∈ {1, . . . , d − 1} there are 2d−i−1

diagonals of size i.

Fig. 6: A decomposition of T4 as a diagonal cover with 8
diagonals.

The proof of Proposition 15 is immediate, by successively
assigning diagonals where each diagonal is a path from the
top-most vertex not previously assigned to a diagonal, to any
leaf below it. Fig. 6 shows a tree of 4 layers decomposed
into a diagonal cover of k = 8 diagonals. As stated by
Proposition 15, one diagonal in the cover is of size 4, another
of size 3, two of size 2, and four of size 1.

Using the decomposition to diagonal covers, we can prove
the following (sufficient and necessary) decodability condition
for Treeplication subsets.

Theorem 16. A Treeplication subset for Td is decodable if
and only if it has at least one diagonal cover in which every
diagonal has at least one present vertex.

Proof: For sufficiency, we assume there is such a diagonal
cover and need to prove decodability. We prove by induction
on d. For d = 1, the diagonal cover consists of one leaf, and
decodability follows trivially if this leaf is present. For the
induction hypothesis, suppose the condition is sufficient for
every Ti with i ∈ {1, . . . , d− 1}. To prove the induction step,
we examine the single diagonal of Td with size d. Each vertex
of this diagonal has under it a subtree where the condition is
satisfied. Hence all these subtrees are independently decodable



11

by the induction hypothesis. Now we can show that any
present vertex in this diagonal, together with vertices in
the independently decodable subtrees, can recover the vertex
below it in the diagonal. Applying this iteratively, we can
recover the leaf of this diagonal, which is the only leaf not in
the independently decodable subtrees.

For necessity, we first construct diagonals by taking each
diagonal to include a leaf and all vertices in a path from it
upward until the lowest present vertex (if a leaf is present, the
diagonal only includes this leaf). If the subset is decodable,
then by Lemma 9 (part 2) no two leaves share the same
lowest present vertex in their paths upward. This implies that
the diagonals are disjoint, and from Lemma 9 (part 1) each
diagonal has one present vertex. To complete the diagonal
cover, we extend each existing diagonal upward until reaching
the top-most vertex not already in a diagonal. This extension
results in a diagonal cover, and can only add present vertices
to the diagonals, thus the condition is satisfied.

Theorem 16 provides a sufficient and necessary decodability
condition on the diagonals of Td’s diagonal covers. By that,
it reduces the decodability of the entire subset to the simpler
condition that individual diagonals in a cover are non-empty,
that is, have at least one present vertex each. One challenge
still remaining is that the diagonal covers are not disjoint,
and the union probability among all covers to meet this
condition cannot be simply calculated as a sum of probabilities
for the individual covers (in general the sum of individual
probabilities will only give an upper bound on the decodability
probability). This challenge motivates defining a tree-health
measure that picks one diagonal cover, with respect to which
the robustness of the Treeplication multiset is evaluated. The
special diagonal cover proposed for this health measure is
defined next.

Definition 9. Given a Treeplication multiset for Td, we call
a diagonal cover a l-principal diagonal cover if its diagonals
have maximum average probability of being non-empty after
the loss of l multiset elements.

The motivation to pick out principal diagonal covers from
all possible covers is that the principality condition of Defini-
tion 9 makes those covers more likely to fulfill the sufficient
condition of Theorem 16. In that sense, we replace the union
of covers considered in Theorem 16 by one strong candidate
that is the l-principal diagonal. Based on that motivation, we
choose the following tree health measure.

Definition 10. For a Treeplication multiset define the principal
l-health as the average probability, over the diagonals of a l-
principal diagonal cover, that the diagonal is non-empty after
the loss of l multiset elements.

Next we give more definitions that will be useful for finding
l-principal diagonal covers and calculating the principal l-
healths of multisets.

Definition 11. Given a Treeplication multiset for Td we denote
by vi,j the number of times the j-th vertex of the i-th layer of
Td appears in the multiset. We call vi,j the vertex weight of
the i, j vertex.

For the purpose of Definition 11 we number the tree vertices
from left to right in each layer. Additional weight definitions
are given next for multisets, diagonals and diagonal covers.

Definition 12. Given a Treeplication multiset for Td we define
the multiset weight as the sum over all vertices of Td of the
vertex weights.

Note that the multiset weight is simply the number of
elements in the multiset, also denoted n in Sections III,IV.

Definition 13. For a Treeplication multiset and a diagonal of
Td we define the diagonal weight as the total number of times
the vertices of this diagonal appear in the multiset.

Definition 14. For a Treeplication multiset and a diagonal
cover of Td we define the weight profile W , {wj |j ∈
{1, . . . , k}}, where wj is the weight of the j-th diagonal in
the cover.

Fig. 7: A diagonal cover of a sample Treeplication multiset
(k = 8). Each vertex is marked by its vertex weight, and each
diagonal is marked by its diagonal weight wj .

Note that for any diagonal cover, the sum
∑k

j=1 wj equals
the multiset weight. Fig. 7 shows for the diagonal cover of
Fig. 6 the vertex and diagonal weights of a sample multiset.

Fig. 8: Diagonal cover and Treeplication multiset from Fig. 7
after loss of l = 10 symbols, no weight zero diagonals.

Recall from Definition 10 that the principal l-health of the
multiset is defined with respect to loss of l uniformly chosen
elements. In the sequel, we assume that the choice of these
elements is done by drawing a sequence of l multiset elements
(without replacement). Figs. 8 and 9 illustrate two possible
outcomes for the diagonal cover in Fig. 7 after the loss of l =



12

Fig. 9: Diagonal cover and Treeplication multiset from Fig. 7
after loss of l = 10 symbols, one weight zero diagonal.

10 elements from the sample multiset. In Fig. 8 no diagonal
has weight zero, while in Fig. 9 w6 dropped to zero.

Toward finding l-principal diagonal covers, we next calcu-
late the average probability, under the uniform drawing model,
that a diagonal in the cover remains with non-zero weight.

Proposition 17. For a Treeplication multiset with weight
n and a diagonal cover of weight profile W = {wj |j ∈
{1, . . . , k}}, the average probability, over the diagonals of
the cover, that the diagonal will have non-zero weight after
the loss of l multiset elements, equals

1− k−1
k∑

j=1

(
n−wj

l−wj

)
l!

n!/(n− l)!
. (19)

Proof: The numerator is the number of drawing sequences
that leave the j-th diagonal with zero weight. The denominator
is the total number of possible drawing sequences. Averaging
over the k diagonals and taking the complement gives (19).

Fig. 10: One diagonal cover for a sample Treeplication mul-
tiset.

Figs. 10,11 show two different diagonal covers with respect
to the same Treeplication multiset. For l = 3, the probabil-
ity (19) equals 0.890 for Fig. 10 and 0.935 for Fig. 11. We
later see that the cover in Fig. 11 is a l-principal diagonal for
l = 3 (as well as for all other l values), which means that
0.935 is maximal for l = 3 among all possible covers.

We propose Algorithm 3 for constructing a diagonal cover
for a Treeplication multiset. Algorithm 3 can be explained in
words as growing the diagonals upward, where lower-weight

Fig. 11: Another diagonal cover for the Treeplication multiset
from Fig. 10 that has a higher average probability in (19).

diagonals are preferred when choosing to which diagonal to
add a vertex.

Algorithm 3 Obtain Principal Diagonal Cover

1: for j ∈ [1, k] do
2: gj := {(1, j)} // init each diagonal to contain a unique

leaf
3: end for
4: for i ∈ [2, d] do
5: for ` ∈ [1, 2d−i] do
6: y = j : (i− 1, 2`− 1) ∈ gj // diag. of left child
7: z = j : (i− 1, 2`) ∈ gj // diag. of right child
8: if wy < wz then // add vertex to lighter diagonal
9: gy = gy ∪ {(i, `)}

10: else
11: gz = gz ∪ {(i, `)}
12: end if
13: end for
14: end for
15: G := {gj | j ∈ [1, k]}
16: return G

Fig. 12: Sample run of Algorithm 3 after initialization (lines
1-3).

Algorithm 3 assigns each leaf to a different diagonal in
line 2 (diagonal initialization), as illustrated in Fig. 12 for
the Treeplication multiset in Figs. 10,11. Lines 4 and 5 loop
through all non-leaf vertices, where in each iteration a vertex is
added to one diagonal (line 9 or 11). The intermediate contents
of the diagonals (tracked by the sets g1, . . . , gk) are given in
Fig. 13 at iteration i = 2 and in Fig. 14 at iteration i = 3. Since
every tree vertex gets assigned to one diagonal, the output of



13

Fig. 13: Sample run of Algorithm 3 after iteration i = 2. The
diagonals chosen to extend upwards are the lower-weight ones
between the diagonals of two sibling vertices.

Fig. 14: Sample run of Algorithm 3 after iteration i = 3.

the algorithm is a diagonal cover. Next we show that the output
diagonal cover is in fact a principal diagonal cover.

Theorem 18. For any Treeplication-multiset input, Algo-
rithm 3 returns a diagonal cover that is an l-principal diagonal
cover for every l.

Proof: To prove that the algorithm outputs a principal
diagonal cover, we need to show that the probability in (19)
is maximized among all possible covers. Since k, l and n are
constants that do not depend on the cover, maximizing the
average probability of (19) is equivalent to minimizing

k∑
j=1

(
n− wj

l − wj

)
. (20)

Given a diagonal cover, for each non-leaf vertex we distin-
guish between its child that is assigned to the same diagonal
(mate child), and its child that is in a different diagonal
(non-mate child). In any cover every non-leaf vertex has one
mate and one non-mate child. Algorithm 3 guarantees the
property that for any non-leaf vertex, the sum of vertex weights
below it in its diagonal is less than or equal to the weight
of the diagonal of its non-mate child. Now we assume by
contradiction that a different algorithm outputs a cover with
lower sum (20) (and, hence, higher probability (19)). In that
output we have at least one vertex in which this property is not
met. For this vertex, denote by q1 the sum of vertex weights
below it in its diagonal, and by q2 the weight of the diagonal
of its non-mate child. By the contradiction assumption we
have q1 > q2. We now show that, moving this vertex (and
all vertices above it in its diagonal) to the diagonal of its non-
mate child will result in a lower sum (20). Denote by x the

total weight moved in that operation. To prove that, we need
to show that(

n− q2
l − q2

)
+

(
n− q1 − x
l − q1 − x

)
≥
(
n− q1
l − q1

)
+

(
n− q2 − x
l − q2 − x

)
, (21)

where the inequality is between terms of (20) in which the two
outputs differ (all other terms are equal and cancel out). To see
that (21) is true we use elementary combinatorial identities on
Pascal’s triangle as follows. Define πr(j) ,

(
r+j−1

r

)
, where

πr(j) is called the j-th element in the r-th diagonal of Pascal’s
triangle. A well-known identity for Pascal’s triangle is πr(j) =∑j

y=0 πr−1(y). With that notation, we can write(
n− q2
l − q2

)
−
(
n− q1
l − q1

)
=

l−q2+1∑
y=l−q1+2

πn−l−1(y), (22)

(
n− q2 − x
l − q2 − x

)
−
(
n− q1 − x
l − q1 − x

)
=

l−q2−x+1∑
y=l−q1−x+2

πn−l−1(y).

(23)
Another well known property of Pascal’s triangle is that
elements of its diagonals increase with the argument j. This
implies

l−q2+1∑
j=l−q1+2

πn−l−1(j) ≥
l−q2−x+1∑

j=l−q1−x+2

πn−l−1(j), (24)

because the two sums have the same number of summands and
the left-hand side is shifted to larger arguments. From (24)
and (22),(23) we conclude (21), which contradicts the exis-
tence of a higher-probability diagonal cover.

Since the diagonal cover in Fig. 11 is the output of Algo-
rithm 3, the principal 3-health of the multiset is now proved
to be 0.935.

A. Empirical tree-health distribution

To illustrate the tree-health measure proposed in this section,
we show the distribution of principal l-healths of 1000 multi-
sets drawn from the optimal non-uniform selection distribution
of Section IV. We take k = 32 and multiset size n = 3k = 96,
and plot the distribution of the principal l-health, for l = 32
(after running Algorithm 3 on each multiset). The results are
plotted in the histogram of Fig. 15. It can be seen that multisets
from the same selection distribution have significant health
variability. In practice, if each multiset represents a different
data unit stored in the system, we will seek to invest storage
resources in increasing the multiset sizes of the data units with
the lowest principal l-health. In the next section, we discuss
methods to improve the multiset health in a decentralized way.

VII. DISTRIBUTED CODE AUGMENTATION

When a data unit in the system has low tree health as defined
in the previous section, a natural corrective measure is to
augment it by adding more code fragments. In this section,
we address the problem of deciding which code fragments to



14

Fig. 15: Distribution of the principal 32-health across 1000
Treeplication multisets. k = 32, n = 3k.

add for this data unit. To fit within decentralized distributed
systems, we seek solutions that make those decisions without
knowing the full current state of the Treeplication multiset of
the data unit. Suppose N is the set of nodes storing code
fragments of a particular data unit. In the sequel, augmenting
is done by a node not previously in N that generates and
stores a code fragment while only having access to a subset
NA ⊂ N of nodes, which we call the accessible nodes.

Definition 15. Given a subset of accessible nodes of a data
unit, we define distributed augmentation as the operation of
adding a code fragment using information from accessible
nodes.

Note that the distributed augmentation operation is divided
into first deciding which code fragment to add, and then com-
municating code fragments from accessible nodes to generate
this code fragment. Restricting the set of accessible nodes to be
small improves the efficiency in a distributed system, because
fewer accessible nodes mean fewer resources used by the node
performing augmentation.

A simple example of distributed augmentation for uncoded
replication is augmenting by adding a data fragment chosen
from the data fragments in the accessible nodes. For Treepli-
cation, we next propose a scheme that uses the tree structure
of the code to augment data units using a small accessible
node set NA.

A. Augmenting Treeplication with small accessible node sets

We now specify a procedure for distributed augmentation
where the accessible nodes are those that hold fragments of
two sibling vertices and their parent.

Treeplication Augmentation 1.
1) Pick a node z in N
2) Identify the vertex σ stored in z
3) Take NA to be all nodes storing either σ, its parent ρ,

or its sibling σ′.
4) If only σ is present in NA, augment by replicating it.

Else:
5) Choose the vertex from σ,σ′ with lower weight and

augment by replicating it (if exists), or generating it
using ρ (if not).

Remarks: 1) In step 5, we always choose to augment one of
the two siblings σ,σ′, but need the parent ρ in cases where the
sibling σ′ has zero weight. 2) In case of equal-weight vertices
in step 5, we break ties arbitrarily.

In a real system, a reasonable way to choose z from N
in step 1 of Treeplication Augmentation 1 is uniformly. The
size of the accessible node set NA equals the number of
appearances of σ,ρ,σ′ in the multiset, which depends on the
chosen z. The intuition to augment the lower-weight (weaker)
sibling is that it is better than the stronger sibling in improving
the probability that the subtree remains decodable locally, and
better than the parent in improving the survival probability
when the fragment ρ can be recovered from elsewhere in the
full tree.

Later in the section, we compare Treeplication Augmenta-
tion 1 to the following simpler alternative.

Augmentation by replication.

1) Pick a node z in N
2) Identify the vertex σ stored in z
3) Replicate σ

In Augmentation by replication, we simply copy the code
fragment from the node we picked in line 1 to the new node
entering N . This procedure can apply to both Treeplication
and standard replication, where in the latter σ is always a data
fragment.

An example of Treeplication Augmentation 1 is presented
in Fig. 16 for a k = 2 tree and a sample Treeplication multiset.
Because in Fig. 16a the right leaf has lower weight than the left
leaf, the former is chosen to be augmented (Fig. 16b). Before
augmentation, the probability that the multiset remains decod-
able (survives) after loss of 9 nodes is 0.64, and increasing to
0.91 after augmenting by one code fragment. If we chose the
other (stronger) leaf for augmentation, the survival probability
would only go up to 0.86.

(a) Before augmentation. (b) After augmentation.

Fig. 16: Treeplication Augmentation 1 for a k = 2 tree and a
sample Treeplication multiset.

We propose Treeplication Augmentation 1 mainly as an
example how with a small accessible set NA we can improve
survivability over Augmentation by replication. There are
many possible generalizations and enhancements of Treepli-
cation Augmentation 1 that can further improve performance.
For example, it is possible to consider bigger subtrees in
the augmentation choice, and solve interesting optimization
problems to maximize global survival probability given local
subtree information.



15

B. Empirical study: augmentation in node birth-death pro-
cesses

To study and compare augmentation schemes in distributed
systems, we next define a dynamic system setup where
augmentation affects the long term survival of data units.
To that end, we use a discrete-time birth-death process to
model the dynamics of the data-unit’s node set. At each time
instant, an event of either birth (addition of a node) or death
(removal of a node) occurs in the data unit. If birth is drawn,
adding a node invokes an augmentation operation. If death
is drawn, a randomly selected node is chosen to be removed
from N of that data unit. We restrict ourselves to balanced
processes, where birth and death occur each with probability
0.5. In general, birth-death processes may have time instants
where neither birth nor death occurs, but for the purpose of
comparing augmentation schemes these time instants are not
interesting. We use the term generation to define the state
of the data unit following the node removal in death instants
and augmentation in birth instants. We define the data loss
event for the data unit as the first generation where the data
unit becomes non-decodable. Since data-loss is irreversible,
the process terminates immediately after. In our results the
number of generations a data unit survives is the number of
process instants before the data-loss event.

Fig. 17: Augmentation in a birth-death process. From bottom
to top: replication with Augmentation by replication, Treepli-
cation with Augmentation by replication, and Treeplication
with Treeplication Augmentation 1. k = 32.

In Fig. 17, we compare the average number of generations
survived in three different setups: 1) replication with Augmen-
tation by replication, 2) Treeplication with Augmentation by
replication, and 3) Treeplication with Treeplication Augmen-
tation 1. For each setup we simulated the birth-death process,
and plotted the average number of generations survived across
3000 runs. In each run we randomly drew the 0-th generation
of the data unit: for Treeplication using the optimal non-
uniform distribution (from Section IV), and for replication
uniformly from the data fragments. Fig. 17 demonstrates
that Treeplication fares better than replication also in the
dynamic regime, and more interestingly, that Treeplication
Augmentation 1 improves significantly over Augmentation by
replication.

VIII. CONCLUSION

We have shown that Treeplication codes combine the
strength of erasure codes in recoverability with replication-like
access performance. The tree structure of Treeplication allows
deriving exact recursive expressions toward the analysis and
optimization of the code under random-multiset models. It is
an interesting open problem to generalize the code structure
beyond a binary tree while still maintaining the algorithmic
and analysis capabilities we demonstrated for Treeplication.

IX. ACKNOWLEDGEMENT

We thank the associate editor and the anonymous ref-
erees for comments that improved the presentation of this
paper. This work was supported in part by the Israel Science
Foundation, and in part by the US-Israel Binational Science
Foundation.

REFERENCES

[1] M. Blaum, P. Farrell, and H. van Tilborg, “Array Codes,” Handbook of
Coding Theory, V.S. Pless and W.C. Huffman, pp. 1855–1909, 1998.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[3] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K.
Ramchandran, “Network coding for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[4] J. Edmonds and M. Luby, “Erasure codes with a hierarchical bundle
structure,” IEEE Trans. on Information Theory, early access.

[5] M. Elyasi and S. Mohajer, “Determinant coding: A novel framework for
exact-repair regenerating codes,” IEEE Trans. on Information Theory,
vol. 62, no. 12, pp. 6683–6697, 2016.

[6] A. Folsom, Y. Homma, J. H. Ryu and B. Tong, “On a general class
of non-squashing partitions,” Discrete Mathematics, vol. 339, no. 5, pp.
1482–1506, 2016.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
Proceedings ACM Symposium on Operating Systems Principles (SOSP),
2003.

[8] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Trans. on Information Theory, vol. 58, no.
11, pp. 6925–6934, 2012.

[9] R. Graham, D. Knuth, and O. Patashnik, “Concrete Mathematics: A
Foundation for Computer Science,” (Second Edition). Reading, Mas-
sachusetts: Addison Wesley, pp. 257–266, 1994.

[10] M. Hirschhorn, “A different view of m-ary partitions,” Australian J. of
Combinatorics, vol. 30, pp. 193–196, 2004.

[11] K. Mahler, “On a special functional equation,” J. Lond. Math. Soc., vol.
15, pp. 115–123, 1940.

[12] M. Mitzenmacher and E. Upfal, “Probability and Computing,”. London,
Cambridge University Press, 2005.

[13] F. Oggier and A. Datta, “Self-repairing homomorphic codes for dis-
tributed storage systems,” Proceedings IEEE INFOCOM, 2011.

[14] L. Pamies-Juarez, H. D. L. Hollmann, and F. E. Oggier, “Locally
repairable codes with multiple repair alternatives,” Proceedings IEEE
International Symposium on Information Theory, 2013.

[15] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. on Information Theory, vol. 60, no. 10, pp. 5843–5855,
2014.

[16] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal
linear codes with a local-error-correction property,” Proceedings IEEE
International Symposium on Information Theory, 2012.

[17] K.V. Rashmi, N.B. Shah, and P.V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix Construction,” IEEE Trans. on Information Theory, vol. 57, no.8,
pp. 5227–5239, 2011.

[18] I.S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
SIAM J. Appl. Math, vol. 8, no. 2, pp. 300–304, 1960.

[19] N. Silberstein, A.S. Rawat, O.O. Koyluoglu, and S. Vishwanath, “Opti-
mal locally repairable codes via rank-metric codes,” Proceedings IEEE
International Symposium on Information Theory, 2013.

[20] N. J. A. Sloane, and J. A. Sellers, “On non-squashing partitions,”
Discrete Mathematics, vol. 294, no. 3, pp. 259–274, 2005.



16

[21] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. on Information Theory, vol. 60, no. 8, pp. 4661–4676, 2014.

[22] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” IEEE Trans. on
Information Theory, vol. 62, no. 12, pp. 6661–6671, 2016.

[23] C. Tian, B. Sasidharan, V. Aggarwal, V. A. Vaishampayan, and P. V.
Kumar, “Layered exact-repair regenerating codes via embedded error
correction and block designs,” IEEE Trans. on Information Theory, vol.
61, no. 4, pp. 1933–1947, 2015.

[24] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” IEEE Trans. on Information
Theory, vol. 63, no. 4, pp. 2001–2014, 2017.


