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Abstract
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codeword symbols, giving rise to a hierarchical erasure structure. In this paper

we develop a mathematical framework for hierarchical erasures over extension
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1. Introduction

For a prime power q, let Fq be the finite field with q elements. For a positive

integer α, let Fqα be its algebraic extension of degree α, that can be viewed as a

vector space of dimension α over Fq by fixing an ordered basis ω = (ω1, . . . , ωα)

of Fqα over Fq. For an integer n, a code C ⊆ Fnqα is called linear over Fqα (or5

linear, in short) if it is a linear subspace of Fnqα , in which case its dimension is

denoted by k.

Traditionally, the coding-theoretic literature discusses encoding and decod-

ing of linear codes under erasures, i.e., where codeword symbols are replaced

by some symbol ∗ outside the field, and errors, where codeword symbols are10

replaced by arbitrary field elements. The mathematical framework for erasures

and errors is very well understood, and bounds and matching constructions are

well known in most cases.

However, in some scenarios, the decoder receives each codeword symbol se-

quentially, i.e., each codeword symbol is received in some gradual manner, rather15

than instantaneously. When these scenarios involve codes over Fqα , codeword

symbols are viewed as vectors over Fq, and the decoder receives these vectors

one Fq element after another. In this paper we study bounds and code construc-

tions for this scenario. That is, codes that enable the decoder to complete the

decoding process once sufficiently many Fq symbols are obtained regardless of20

their source, and in particular, even if Fqα-symbols have not been obtained in

full. Practical applications which present this behavior, for which our techniques

are useful, are discussed in the sequel.

In the next section we lay the mathematical framework by which we study

the problem, discuss potential applications, and summarize our contributions.25

Several constructions of codes capable of correcting hierarchical erasures are

given in Section 3 while upper and lower bounds are discussed in Section 4.
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2. Preliminaries

2.1. Framework and Problem Definition

Let c = (ci)
n
i=1 ∈ Fnqα be a codeword in a linear code. By fixing a basis1 ω =30

(ω1, . . . , ωα) of Fqα over Fq, consider each ci as a vector in Fαq , and denote (by

abuse of notation) ci = (ci,1, . . . , ci,α) where ci =
∑α
j=1 ci,jωj .

For an integer m, an m-hierarchical erasure in c amounts to erasing at

most m left-justified entries of all ci’s. That is, for every m-hierarchical erasure

in c, there exists a tuple (t1, . . . , tn) of nonnegative integers whose sum is at

most m such that c1,1, . . . , c1,t1 , c2,1, . . . , c2,t2 , . . . , cn,1, . . . , cn,tn are replaced

by ∗. For example, for α = 3, n = 4, and m = 5, all of the following are

examples of m-hierarchical erasures in a codeword c ∈ F4
q3 :

((∗, c1,2, c1,3), (∗, ∗, c2,3), (∗, c3,2, c3,3), (∗, c4,2, c4,3))

((c1,1, c1,2, c1,3), (∗, ∗, ∗), (∗, c3,2, c3,3), (∗, c4,2, c4,3))

((∗, ∗, c1,3), (c2,1, c2,2, c2,3), (∗, ∗, c3,3), (∗, c4,2, c4,3)) . (1)

In contrast, the following is not a hierarchical erasure, since the erasures are

not left-justified:

((c1,1, ∗, c1,3), (∗, c2,2, c2,3), (∗, ∗, c3,3), (∗, c4,2, c4,3)) .

Given a basis ω of Fqα over Fq, a linear code C is called an m-correcting code

over ω if it is possible to correct any m-hierarchical erasure, where codeword

symbols are represented in the basis ω. The goal of this paper is, given the35

parameters n, m, and α, to find a basis ω and construct a linear m-correcting

code over ω, with maximum dimension k and minimum base-field size q.

For positive integers α, n, and m let

Nn
α,m ,

{
(t1, t2, . . . , tn)

∣∣∣∣∣ 0 6 ti 6 α for all i and

n∑
i=1

ti 6 m

}
.

1Typically, bases are considered as sets, not as vectors. In this paper however, we consider

bases of Fqα over Fq as (row) vectors of length α over Fqα , the entries of whom span Fqα

over Fq .
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In the special case where α = m we use the shorthand notation Nn
α . An el-

ement t ∈ Nn
α,m is called an erasure pattern, and it uniquely determines the

locations of the ∗ symbols in a hierarchical erasure. For instance, the erasure40

patterns which appear in (1) are (1, 2, 1, 1), (0, 3, 1, 1), and (2, 0, 2, 1), respec-

tively. For a set T ⊆ Nn
α,m, we say that C ⊆ Fnqα is T -correcting over ω if

all erasure patterns in T can be corrected. An Nn
α,m-correcting code is called

an m-correcting code.

We make repeated use of the following notations. For an integer ` let [`] ,

{1, 2, . . . , `}. For c ∈ F`qα and a basis ω of Fqα over Fq let

wω(c) ,
∑
i∈[`]

max{j ∈ [α] | ci,j 6= 0},

where the ci,j ’s are the coefficients of the entries c in the representation over ω,45

as explained above, and the subscript ω is omitted if clear from the context.

Finally, we note that to the best of our knowledge, this paper is the first to

study linear hierarchical erasure correcting codes. Yet, similar problems have

been studied in the past. The closest one is [2], in which exactly the same erasure

patterns have been studied, bounds formulated, and constructions provided.50

However, the codes there are linear after having each element from Fqα expanded

to its coordinate vector of length α over Fq in some basis ω. But when considered

as a code over Fqα , the code is closed under addition and multiplication only by

scalars from Fq, and not necessarily under multiplication by scalars from Fqα ,

namely, it is not necessarily linear. Such codes are sometimes referred to as55

vector-linear codes. This work was later generalized in [3], but still under the

vector-linear coding framework. In another recent work [4], the decoder does

not access the entire Fqα code symbol, but unlike our paper, it is allowed to

freely choose the function to extract from the symbol.

2.2. Potential Applications60

Linear codes have widespread applications in coding for distributed storage

systems [5]. Normally, a database x ∈ Fkqα is mapped to a codeword c ∈ Fnqα ,

and each codeword symbol is stored on a different storage server. Then, in
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cases where some servers might be unavailable due to hardware failures, the

reconstruction of the entire database x by communicating with the storage65

servers corresponds to (ordinary) erasure correction.

However, it has been demonstrated recently that modern distributed systems

are prone to the stragglers phenomenon [6], which are servers that respond much

slower than the average. Moreover, communicating a large amount of data from

a server does not occur instantaneously, but rather as an ordered sequence of70

bits or packets. Therefore, it is evident that our problem is directly applica-

ble to storage systems that employ linear codes, and suffer from the straggler

phenomenon. For applications of this sort, one might be more interested in the

regime α� n, since the number of storage servers in the systems is likely to be

much smaller than the content of each individual server.75

Additional applications can be found in flash storage devices that employ

low-density parity-check (LDPC) codes. A flash memory cell can store 2α dis-

tinct charge levels, each representing a stored binary vector of length α. Reading

the cell can be done by applying a series of 2α − 1 threshold tests, ordered in

a way that recovers the α bits one after another2. In the event that this series80

of threshold tests discontinues abruptly due to hardware failures, the missing

bits from the readout value correspond to a hierarchical erasure. A common

and effective approach to decoding LDPC codes consists of variable nodes, rep-

resenting the codeword symbols, and check nodes, which represent a linear com-

bination of variable nodes. Then, decoding is performed in an iterative manner,85

where variable nodes communicate with check nodes and vice versa [7].

Each check node represents an equation
∑n
i=1 hixi = 0, where each xi ∈ Fqα

2While a single cell may be tested using only α tests using a binary-search algorithm, in a

typical flash memory a threshold test is administered to a large array of cells at once. Thus,

typically, some cells in the array would test below the threshold and some above. To find

out the charge levels in all the cells we would typically need to test all 2α − 1 thresholds.

Nonetheless, the thresholds may be ordered to test at 1/2-range, 1/4-range, 3/4-range, and

so on, making the first test obtain the most-significant bit of each cell, the following two tests

to obtain the second-most-significant bit, and so on.
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is a variable node representing a value contained in a flash memory cell, and

the hi’s are pre-determined coefficients in Fqα . It is readily verified that if

the right kernel of the row vector h = (hi)
n
i=1 is an m-correcting code, one90

can resolve any m-hierarchical erasure in the code symbols (x1, . . . , xn). For

applications of this sort, one might be more interested in the regime n � α,

since the typical number of bits stored per cell is much smaller than a useful

codeword length n. Decoding of LDPC codes with m-correcting check nodes

was studied in [8, 9], which served as the main inspiration for the current paper.95

2.3. Universally Decodable Matrices

The problems in this paper are intimately connected to Universally Decod-

able Matrices (UDMs) [10, 11], which are a useful tool in error correction of

slow-fading channels [12].

Definition 1 ([10, Def. 1]). For m > α, matrices A1, . . . , An ∈ Fα×mq are called100

Universally Decodable Matrices (UDMs) if for every t = (t1, . . . , tn) ∈ Nn
α,m the

following condition is satisfied: the matrix composed of the first t1 rows of A1,

the first t2 rows of A2, ..., the first tn rows of An, has full rank.

In the following theorem let Iα×m be the first α rows of an m×m identity

matrix. Similarly, let Jα×m be the first α rows in the anti-identity matrix, i.e.,105

the matrix which contains 1’s in its anti-diagonal, and zero elsewhere.

Theorem 1 ([11, Prop. 14]). Let n,m, and α be positive integers, let q be a

prime power such that q > n− 1, and let γ be a primitive element in Fq. Then,

the following are α×m UDMs over Fq

A0 , Iα,m, A1 , Jα,m, A2, . . . , An−1 where

(Ai+1)a,b =

(
b

a

)
γ(i−1)(b−a) for (i, a, b) ∈ [n− 2]× [α]× [m].

UDMs will be used in Subsection 3.2 to define the parity check matrix of

the constructed codes. Further, in Appendix A it is shown that the important

special case α = m is tightly connected to the existence of UDMs with a certain

mutual eigenvector.110
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2.4. Main Lemma

Most of the results in this paper are based on the following lemma. It is

stated generally for T -correcting codes for any T ⊆ Nn
α,m, and specifies to m-

correcting code by choosing T = Nn
α,m. For an erasure pattern t ∈ Nn

α,m and a

basis ω, denote

Xt = Xt(ω) ,
〈
{(ωi, 0, . . . , 0)}i∈[t1]

〉
⊕〈

{(0, ωi, 0, . . . , 0)}i∈[t2]
〉
⊕

· · ·〈
{(0, . . . , 0, ωi)}i∈[tn]

〉
, (2)

where each vector in (2) is of length n, 〈·〉 denotes span over Fq, and ⊕ is

the sum of subspaces that intersect trivially. For example, for n = 3, m = 4,

and t = (2, 1, 1) ∈ N 3
2,4 we have Xt = 〈(ω1, 0, 0), (ω2, 0, 0), (0, ω1, 0), (0, 0, ω1)〉.

Note that the elements of Xt are precisely the ones that are indistinguishable115

from the zero vector under the erasure pattern t.

Lemma 1. For any T ⊆ Nn
α,m, a linear code C ⊆ Fnqα is T -correcting over ω

if and only if C ∩ Xt = {0} for every t ∈ T .

Proof. To prove one direction, assume that C is T -correcting. If C contains a

nonzero codeword which belongs to Xt for some t ∈ T , then this codeword is120

indistinguishable from the zero word under the erasure pattern t, which implies

that t is not correctable.

Conversely, assume that C ∩ Xt = {0} for every t ∈ T . If C is not T -

correcting, it follows that there exist two distinct words

c(1) =
(

(c
(1)
1,1, . . . , c

(1)
1,α), . . . , (c

(1)
n,1, . . . , c

(1)
n,α)

)
c(2) =

(
(c

(2)
1,1, . . . , c

(2)
1,α), . . . , (c

(2)
n,1, . . . , c

(2)
n,α)

)
that are indistinguishable after some erasure pattern t = (ti)

n
i=1 ∈ T . This

indistinguishability implies that c
(1)
i,j = c

(2)
i,j for every (i, j) ∈ [n] × ([α] \ [ti]);

and since the code is linear, it follows that d , c(1) − c(2) belongs to C as125
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well. However, it is readily verified that d is a nonzero codeword in C ∩ Xt, a

contradiction.

2.5. Our Contribution

We begin in Subsection 3.1 with a construction for the parameters (n, k,m) =

(2, 1, α). The well-known trace operator is used in Subsection 3.2 to construct130

m-correcting codes that are better suited for the regime n� α.

Since extending these two constructions to other parameters proved to be

difficult, in Subsection 3.3 we resort to restricted types of erasure patterns called

balanced and the important case k = n−1, which generalizes the prevalent parity

code. In Subsection 3.4 we discuss power erasure patterns, that generalize the135

balanced ones, and provide a code construction for k = n − 1 at the price of a

larger base field than for balanced patterns. We conclude the constructive part

of the paper in Subsection 3.5, by showing that Gabidulin codes can correct

yet another restricted type of erasure patterns. The parameters for all the

constructions in this paper are given in Table 1. Finally, several simple upper140

bounds and an existential lower bound are given in Section 4.

3. Constructions

3.1. α-correcting codes of length two

Theorem 2. For any prime power q and any even α ∈ N, the code

C ,
{
c ∈ F2

qα

∣∣ (1, b) · cᵀ = 0
}

is α-correcting, where b is a root of an irreducible quadratic polynomial over Fq.

To prove this theorem, the following lemmas are given. In what follows, for

an element b ∈ Fqα and an even α, a basis ω = (ω1, . . . , ωα) of Fqα over Fq is

called b-symmetric if ωα−i+1 = bωi for all i ∈ [α/2]; namely, if

ω = (ω1, ω2, . . . , ωα/2, bωα/2, . . . , bω2, bω1).
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Subsection Field Parameters Patterns Tool

3.1 Any

n = 2

k = 1

m = α even

N 2
α Irreducible polynomial

3.2 q > n− 1 k > n−m Nn
α,m Trace, dual bases

3.3
q > n− 1

α = 2β

k = n− 1

m = α
Nn
α|bal Subfield independence

3.4

q > α
2 n+ 1

α = 2β

α
2 |q − 1

k = n− 1

m = α
Nn
α|pow Determinant

3.5 Any
k = n− r

α > n > r
Nn
r,nr Gabidulin codes

Table 1: Summary of constructions.

Lemma 2. For any even α ∈ N and any prime power q, there exists a b-145

symmetric basis of Fqα over Fq, where b ∈ Fqα is a root of an irreducible

quadratic polynomial P (x) over Fq.

Proof. Denote α = 2t`, where ` is odd and t > 1. We prove this claim by

induction on t. For t = 1 let ω1, . . . , ω` be a basis of Fq` over Fq. Notice

that P (x) remains irreducible when seen as a polynomial over Fq` ; otherwise,150

we have that P (x) is a minimal polynomial of some element in Fq` , whose

degree does not divide `, a contradiction. Hence, we have that b /∈ Fq` , and

thus (ω1, . . . , ω`, bω`, . . . , bω1) is a b-symmetric basis of Fqα over Fq.

For t > 1, by the induction hypothesis there exists a b-symmetric basis

(ω1, . . . , ωα/2) of Fqα/2 over Fq. By choosing any γ ∈ Fqα \ Fqα/2 , it is readily

verified that

ω , (γω1, ω1, . . . , γωα/4, ωα/4, ωα/4+1, γωα/4+1, . . . , ωα/2, γωα/2)

= (γω1, ω1, . . . , γωα/4, ωα/4, bωα/4, bγωα/4, . . . , bω1, bγω1)

is a b-symmetric basis of Fqα over Fq, where the last equality follows from the
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induction hypothesis.155

Lemma 3. If ω = (ωi)i∈[α] is a b-symmetric basis, with b ∈ Fqα being a root of

an irreducible quadratic polynomial P (x) = x2 + a1x+ a0 over Fq, then

〈bω1, bω2, . . . , bωt〉 = 〈ωα, ωα−1 . . . , ωα−t+1〉

for every t ∈ [α].

Proof. If t 6 α/2, then the claim follows from the definition of a b-symmetric

basis. If t > α/2 + 1, we have that

〈bω1, . . . , bωt〉 =
〈
{bωi}α/2i=1

〉
+
〈
{bωi}ti=α/2+1

〉
=
〈
{ωi}αi=α/2+1

〉
+
〈
{b2ωα−i+1}ti=α/2+1

〉
=
〈
{ωi}αi=α/2+1

〉
+
〈
{(−a1b− a0)ωα−i+1}ti=α/2+1

〉
=
〈
{ωi}αi=α/2+1

〉
+
〈
{−a1ωi − a0ωα−i+1}ti=α/2+1

〉
=
〈
{ωi}αi=α/2+1

〉
+
〈
{ωi}α/2i=α−t+1

〉
= 〈ωα, ωα−1, . . . , ωα−t+1〉.

Lemma 2 and Lemma 3 imply Theorem 2 as follows.

Proof. (of Theorem 2) Let ω be a b-symmetric basis of Fqα over Fq, as guaran-

teed by Lemma 2. According to Lemma 1, it suffices to prove that C ∩Xt = {0}

for every t ∈ N 2
α. Assume to the contrary that there exists t ∈ N 2

α and a

nonzero codeword c = (c1, c2) ∈ C such that c ∈ Xt(ω). This readily implies

that

c1 ∈ 〈ω1, . . . , ωt1〉, (3)

c2 ∈ 〈ω1, . . . , ωt2〉, and (4)

c1 + bc2 = 0. (5)

Furthermore, Lemma 3 and Eq. (4) imply that bc2 is in 〈ωα, ωα−1, . . . , ωα−t2+1〉.

Since t1 + t2 < α + 1, it follows that t1 < α − t2 + 1, and hence (3) implies

that (5) is a sum of elements from trivially intersecting subspaces that results160
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in zero, and hence c1 and bc2 must both be zero. Since b is nonzero, this implies

that (c1, c2) = (0, 0), a contradiction.

Remark 1. An alternative proof for this construction can be obtained by viewing

it as a pair of UDMs with the added property that they share an eigenvector

whose entries span Fqα over Fq. More details on this view (for general n > 2)165

are given in Appendix A.

3.2. m-correcting codes from traces

In this section we make use of the trace operator Tr [13, Def. 2.22] and dual

bases [13, Def. 2.30]. These are well-studied notions in the theory of finite fields,

and are extensively used in coding techniques for distributed storage systems170

(e.g., [14, 15]).

The trace of an element c ∈ Fqα (with respect to Fq) is defined as

Tr(c) , c+ cq + cq
2

+ . . .+ cq
α−1

.

The trace function is linear over Fq, i.e., Tr(γa + δb) = γ Tr(a) + δTr(b) for

every γ, δ ∈ Fq and a, b ∈ Fqα . Two bases ω = (ωi)
α
i=1 and µ = (µi)

α
i=1 are

called dual if

Tr(ωi · µj) =

0 if i 6= j,

1 if i = j,

and for every basis there exists a unique dual basis [13, Def. 2.30].

Theorem 3. For positive integers m > α, let {Ai}i∈[n] be α×m UDMs over Fq,

and let µ be a basis of Fqα over Fq. Then, the code

C ,
{

(c1, . . . , cn) ∈ Fnqα
∣∣ (Aᵀ

1µ
ᵀ| · · · |Aᵀ

nµ
ᵀ) · (c1, . . . , cn)

ᵀ
= 0
}

is m-correcting over the dual ω of µ, and dim C > n−m.

Proof. Assume to the contrary that there exists t ∈ Nn
α,m and a nonzero code-

word c ∈ C such that c ∈ Xt(ω). Therefore, any codeword symbol ci can be

11



written as ci =
∑
j∈[ti] ci,jωj for some coefficients ci,j ∈ Fq, and hence

µᵀci =



∑
j∈[ti] ci,jωjµ1∑
j∈[ti] ci,jωjµ2

...∑
j∈[ti] ci,jωjµα

 .

Thus, for every ` ∈ [m], the `’th entry of the equation
∑
i∈[n]A

ᵀ
i µ

ᵀci = 0 equals∑
i∈[n]

∑
r∈[α]

A
(r,`)
i

∑
j∈[ti]

ci,jωj · µr = 0,

where A
(r,`)
i is the (r, `)’th entry of Ai. Applying the trace function on both

sides, and exploiting the linearity of the trace and the fact that ω and µ are

dual, yields ∑
i∈[n]

∑
r∈[ti]

A
(r,`)
i ci,r = 0 for every ` ∈ [m].

In turn, this implies that the vector (c1,1, . . . , c1,t1 , · · · , cn,1, . . . , cn,tn) is in the

left kernel of 
A

(1:t1)
1

A
(1:t2)
2

...

A
(1:tn)
n

 ,

where A
(1:ti)
i is a matrix which contains the top ti rows of Ai, which contradicts

the definition of UDMs. The bound dim C > n−m follows since C is the right175

kernel of an m× n matrix.

In light of the bound dim C > n −m that is given above, one might prefer

to employ this construction in the regime n � α. However, for the case of

even m = α = n, one can guarantee dim C > 0 by using techniques from

Subsection 3.1. The proof is given in Appendix B.180
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Corollary 1. For even m = α = n ∈ N, let {Ai}ni=1 be α × α UDMs such

that A1 is the identity matrix, and

A2 =



1

. .
.

1

−a0 −a1

. .
. . . .

−a0 −a1


,

where x2 + a1x + a0 is an irreducible quadratic polynomial over Fq with a root

b ∈ Fqα . In addition, let µ be a b-symmetric basis (see Lemma 2), and let ω be

its dual. Then, the code

C ,
{

(c1, . . . , cn) ∈ Fnqα
∣∣ (Aᵀ

1µ
ᵀ| · · · |Aᵀ

nµ
ᵀ) · (c1, . . . , cn)

ᵀ
= 0
}

is an α-correcting code over ω with dim C > 1.

3.3. Correcting balanced erasure patterns

The case k = n−1 and m = α is of particular importance, since it generalizes

the widely used parity code (for storage applications), and corresponds to hier-

archical erasure correction in check nodes of LDPC codes (see Subsection 2.2).185

This case is not handled well by previous subsections; in Subsection 3.1 it ne-

cessitates n = 2 (i.e., a short code), and in Subsection 3.2 one must have m = 1

(i.e., low erasure correction) to get k = n − 1. Hence, in this subsection we

focus on this case, and show a code construction which protects against erasure

patterns that we call balanced. This case is also addressed in Subsection 3.4190

which follows, where a stronger erasure correction is guaranteed at the price of

a larger base field, by using similar techniques.

Assume that α = 2β for some integer β. An erasure pattern t ∈ Nn
α is called

balanced if there exists an integer 0 6 i 6 min{β, log n} (where the logarithm
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is to base 2) and a set J ⊆ [n] with |J | 6 2i, such that for all j ∈ [n],tj 6
α
2i if j ∈ J ; and

tj = 0 otherwise.

For example, for n = 4 the erasure patterns

(α/2, 0, α/2, 0), and

(α/4, α/4, α/4, α/4)

are balanced, whereas (α/2, α/4, α/4, 0) is not. The set of all balanced erasure

patterns is denoted by Nn
α|bal.

We consider bases ω = (ω1, . . . , ωα) of Fqα over Fq that we call recursive,

i.e., bases such that
〈
ω1, . . . , ωα/2i

〉
= Fqα/2i for all 0 6 i 6 β. For a vector h =

(h1, . . . , hn) ∈ Fnqα we define a code

C = C(h) , ker(h) ,
{
c ∈ Fnqα

∣∣hcᵀ = 0
}
. (6)

The ability of the code C to protect against balanced erasure patterns reduces195

to linear independence of some subsets of the hi’s over certain subfields of Fqα ,

as we now show.

Lemma 4. The code C (6) is Nn
α|bal-correcting over a recursive basis ω if and

only if for every 1 6 i 6 min{β, log n}, every 2i-subset of {hj}j∈[n] is a linearly

independent set over Fqα/2i .200

Proof. Assume that every 2i-subset of {hj}nj=1 is linearly independent over

Fqα/2i for every 0 6 i 6 min{β, log n}. According to Lemma 1, if C is not Nn
α|bal-

correcting, then there exists a nonzero c = (c1, c2, . . . , cn) in C and an erasure

pattern t ∈ Nn
α|bal such that c ∈ C ∩ Xt. By the definition of Nn

α|bal, it fol-

lows that there exists an integer i and a set J ⊆ [n] of size at most 2i such

that tj 6 α/2i if j ∈ J , and tj = 0 otherwise. Hence, we have that

cj ∈
〈
ω1, . . . , ωα/2i

〉
= Fqα/2i for all j ∈ J,

14



which implies that
∑
j∈J hjcj = 0. However, this sum is a linear combination

of a 2i-subset of {hj}j∈[n] over Fqα/2i , a contradiction. The proof of the inverse

direction is similar.

In what follows we construct an [n, n−1]qα Nn
α|bal-correcting code, for any n

and any α over a base field Fq with q > n− 1. To this end, recall that α = 2β ,

and let {bi}i∈[β] ⊆ Fqα such that

Fqα/2i−1 = Fqα/2i (bi), (7)

for all i ∈ [β], i.e., we consider each subfield Fqα/2i−1 as a vector space of

dimension two over Fqα/2i by fixing the basis {1, bi}.205

For 0 6 i 6 β and a 2i × n matrix M over Fqα/2i , let

Hi(M) , UH(M) + biLH(M),

where UH and LH denote the upper half and lower half of M , respectively.

Further, for an integer 1 6 i 6 β and an α× n matrix M over Fq let

H(i)(M) , Hβ−i+1(· · · (Hβ−1(Hβ(M)))),

H(0)(M) ,M.

Throughout the remainder of this section we use a recursive basis induced

by the {bi}i∈[β] from (7). Namely, the basis is

ω ,Wβ , where W0 , (1), and Wi+1 ,Wi|(bβ−i ·Wi), (8)

and | denotes concatenation. Alternatively,

ω , (1, b1)⊗ (1, b2)⊗ · · · ⊗ (1, bβ),

where ⊗ denotes the Kronecker product.

Finally, recall that a Vandermonde matrix defined by ν = (ν1, . . . , νn) ∈ Fnq
is a matrix whose (i, j)’th entry equals νi−1j . We say that a matrix V is a

generalized Vandermonde (GV) matrix defined by ν if V = M · diag(d) for

some Vandermonde matrix M defined by ν and some vector d = (d1, . . . , dn)210
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with nonzero entries. Note that a GV matrix V ∈ Fr×sq for some integers s > r,

which is defined by s distinct field elements, is also an MDS matrix, i.e., all

its r × r submatrices are invertible.

Theorem 4. For an integer α = 2β and an integer n, let q be a prime power

such that q > n, and let V ∈ Fα×nq be a Vandermonde matrix defined by distinct215

n elements. Then, for h = (h1, h2, . . . , hn) , H(β)(V ), the code C , ker(h) is

a Nn
α|bal-correcting code over the basis ω of (8).

The proof of this theorem requires the following lemma.

Lemma 5. Let α = 2β and let V be an α × n GV matrix defined by ν =

(ν1, . . . , νn) ∈ Fnq . Then for all 0 6 i 6 β, the matrix H(i)(V ) is a GV matrix220

over Fq2i also defined by ν.

Proof. We prove this claim by induction, in which the base case i = 0 is clear.

For i > 1, assume that Vi , H(i)(V ) ∈ F(α/2i)×n
q2i

is a GV matrix, and let Ui

and Li be its upper and lower halves, respectively. Since Vi is a GV matrix,

there exists a Vandermonde matrix M ∈ F(α/2i)×n
q2i

defined by ν and a vector d ∈

(F∗
q2i

)n such that Vi = M diag(d). Hence, it follows that Ui = UH(M) diag(d)

and Li = LH(M) diag(d), and therefore

Vi+i = H(i+1)(V ) = Hβ−i(Vi)

= Ui + bβ−iLi

= UH(M) diag(d) + bβ−iLH(M) diag(d).

Now, since M is a Vandermonde matrix, it is readily verified that LH(M) =

UH(M) diag(x) for some x = (x1, . . . , xn) ∈ (F∗
q2i

)n, and thus

Vi+i = UH(M) diag(d) + bβ−iUH(M) diag(x) diag(d)

= UH(M) (diag(d) + bβ−i diag(x) diag(d))

= UH(M) diag((1 + bβ−ix)� diag(d)),

where � denotes the pointwise product of vectors (also called the Hadamard

product), and 1 is the all 1’s vector. Since UH(M) is a Vandermonde matrix
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defined by ν, to finish the proof it suffices to show that the entries of (1+bβ−ix)�

diag(d) are nonzero. Assuming otherwise, it follows that (1 + bβ−ixj)dj = 0225

for some j ∈ [n]; and since dj 6= 0 and xj 6= 0, we have that bβ−i = −x−1j .

However, −x−1j ∈ Fq2i and bβ−i /∈ F
q

α
2β−i

= Fq2i , a contradiction.

We are now ready to prove Theorem 4.

Proof. (of Theorem 4) According to Lemma 4, it suffices to show that for any 1 6

i 6 min{log n, β}, any 2i-subset of {hj}j∈[n] is linearly independent over Fqα/2i .230

For any such i, let J ⊆ [n] be a subset of size 2i, and let HJ ∈ F2i×2i

qα/2i
be the

matrix whose columns are the representations of all elements in {hj}j∈J over the

(ordered) basis Wi. Notice that {hj}j∈J is a linearly independent set over Fqα/2i

if and only if HJ is invertible. However, HJ is a 2i×2i submatrix ofH(β−i)(V ) ∈

F2i×n
qα/2i

, which is a GV matrix defined by distinct elements according to Lemma 5,235

and hence also an MDS matrix. Thus, HJ is invertible, and the claim follows.

Remark 2. According to Theorem 4 it follows that

hj =

β∏
i=1

(
1 + bia

α/2i

j

)
for all j ∈ [n],

where a1, . . . , an are the distinct Fq-elements in the underlying Vandermonde

matrix V .

Remark 3. The above construction is closely related to a classical coding theo-240

retic notion called alternant codes [16, Sec. 5.5]. An [n, k]q Generalized Reed-

Solomon (GRS) code is a linear code whose parity check matrix is an (n−k)×n

GV matrix over Fq. An alternant code Calt is defined as C ∩ Fn, where C is

an [n, k]q GRS code and F is a subfield of Fq. Let α < n, and for any 0 6 i 6 β

let Ci be the right kernel of H(i)(V ) over Fq2i . Notice that Lemma 5 shows that Ci245

is an [n, n − α/2i]q2i GRS code. Furthermore, it is readily verified that Cj is

an alternant code of Ci whenever j 6 i. Lemma 5 also implies that the codes

we construct here have the property that all the alternant codes in the hierarchy
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are of maximum distance, and in cases where q is prime, these are all possible

alternant codes.250

3.4. Correcting power erasure patterns

We generalize the results of the previous section by considering a larger fam-

ily of erasure patterns, Nn
α|pow, that includes balanced patterns, i.e., Nn

α|bal ⊆

Nn
α|pow. As before, let α = 2β for some positive integer β. An erasure pattern

t ∈ Nn
α is called a power erasure pattern if there exists J ⊆ [n] such that

tj =


α

2mj
j ∈ J,

0 otherwise,

where 0 6 mj 6 β is an integer for all j ∈ J , and
∑
j∈J 2−mj = 1. Thus, for

example, when n = 4, (α/2, α/4, α/4, 0) is a power erasure pattern but is not a

balanced erasure pattern.

Theorem 5. For an integer α = 2β, and an integer n, let q be a prime power255

such that α
2 |q − 1. Let ν1, . . . , νn ∈ Fq be arbitrary non-zero scalars such that

ν
α/2
j 6= ν

α/2
k for all j 6= k. Let V ∈ Fα×nq be a Vandermonde matrix defined by

(ν1, . . . , νn). Then, for h = (h1, h2, . . . , hn) , H(β)(V ), the code C , ker(h) is

an Nn
α|pow-correcting code over the basis ω of (8).

We shall require the following natural extension of Lemma 4.260

Lemma 6. The code C of (6) is Nn
α|pow-correcting over a recursive basis ω if

and only if for every power erasure pattern t ∈ Nn
α|pow (defined by the sets J

and {mj}j∈J) the equation ∑
j∈J

hjcj = 0,

has only the trivial solution when cj ∈ F
qα/2

mj for every j ∈ J .

Proof. If C is notNn
α|pow-correcting, then there exists a nonzero c = (c1, c2, . . . , cn)

in C and a power erasure pattern t ∈ Nn
α|pow such that c ∈ C ∩Xt. By the defi-

nition of Nn
α|pow, it follows that there exist corresponding sets J and {mj}j∈J .
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Hence, we have that

cj ∈
〈
ω1, . . . , ωα/2mj

〉
= F

qα/2
mj for all j ∈ J,

as well as
∑
j∈J hjcj = 0, thus proving one direction of the claim. The proof of

the inverse direction is similar.

We now give the proof of Theorem 5.

Proof. (of Theorem 5) Let t ∈ Nn
α|pow be a power erasure pattern, with corre-265

sponding sets J and {mj}j∈J . By applying Lemma 6 our goal is now to prove a

solution to
∑
j∈J hjcj = 0 with cj ∈ F

qα/2
mj must be a trivial all-zero solution.

Let us denote by vᵀ
j , j ∈ [n], the jth column of the Vandermonde matrix V .

Additionally, recall the recursive basis ω ,Wβ from (8). Thus, vᵀ
j contains the

coordinates (over Fq) of hj when using the basis ω.270

If we define vj , (1, νj , . . . , ν
α/2mj−1
j ) then

vᵀ
j =


vᵀ
j

ν
α/2mj

j vᵀ
j

...

ν
(2mj−1)α/2mj
j vᵀ

j

 .

Similarly, we define

ωj ,Wβ−mj = (1, bmj+1)⊗ (1, bmj+2)⊗ · · · ⊗ (1, bβ),

which is the α/2mj -prefix of ω. By the construction of the recursive basis ω we

have that ωj is a basis for F
qα/2

mj . We now notice that
ωj · vᵀ

j

ν
α/2mj

j ωj · vᵀ
j

...

ν
(2mj−1)α/2mj
j ωj · vᵀ

j

 ,

is the coordinate vector of hj when Fqα is viewed as a vector space over F
qα/2

mj

using the ordered basis

ω̂j , (1, b1)⊗ (1, b2)⊗ · · · ⊗ (1, bmj ).
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By rewriting cj =
∑α/2mj

i=1 cj,iωi, with cj,i ∈ Fq, our goal is equivalent to

proving the set
⋃
j∈J{hjω1, . . . , hjωα/2mj } is linearly independent over Fq. For

each j ∈ J , and for each i ∈ [α/2mj ], we may write a column vector of the

coordinates of hjωi in F
qα/2

mj using the basis ω̂ as
ωiωj · vᵀ

j

ν
α/2mj

j ωiωj · vᵀ
j

...

ν
(2mj−1)α/2mj
j ωiωj · vᵀ

j

 ,

where we note that both ωi and ωj ·vᵀ are in F
qα/2

mj , and νj ∈ Fq. Now, viewing

F
qα/2

mj as a vector space over Fq using the basis ωj , multiplication by ωi may

be represented as a multiplication of the coordinates by Cj,i, an α/2mj ×α/2mj

matrix over Fq (Ci,j can be made explicit using companion matrices, but this

is immaterial to the rest of the proof). Thus, the coordinates of hjωi over Fq
using the basis ω take on the simple form of

zᵀj,i ,


Cj,i

Cj,i
. . .

Cj,i

 · v
ᵀ
j =


Cj,iv

ᵀ
j

ν
α/2mj

j Cj,iv
ᵀ
j

...

ν
(2mj−1)α/2mj
j Cj,iv

ᵀ
j


If we define the matrix Z ∈ Fα×αq to have as its columns {zᵀj,i}, j ∈ J ,

i ∈ [α/2mj ], then it now suffices to prove det(Z) 6= 0. Our strategy now is, for

each j ∈ J , to take the α/2mj columns {zᵀj,i}i∈[α/2mj ] and replace them by using

invertible column operations. The overall resulting matrix Z ′ will be shown to

have det(Z ′) 6= 0, implying det(Z) 6= 0.275

Fix any j ∈ J . Obviously the set {hjωi}i∈[α/2mj ] is linearly independent over

Fq since {ωi}i∈[α/2mj ] is, and therefore also {zᵀj,i}i∈[α/2mj ]. We now contend

that this implies that the set {Cj,ivᵀ
j }i∈[α/2mj ] is linearly independent over Fq.

Assuming to the contrary it is not, there exist d1, . . . , dα/2mj ∈ Fq, not all zero,

such that
∑
i∈[α/2mj ] diCj,iv

ᵀ
j = 0, but then

∑
i∈[α/2mj ] diν

`/2mj

j Cj,iv
ᵀ
j = 0 for280

any integer `, implying
∑
i∈[α/2mj ] z

ᵀ
j,i = 0, a contradiction.
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Let ξj ∈ Fq be an element of multiplicative order o(ξj) = α/2mj , the exis-

tence of which is guaranteed by the requirement α
2 |q − 1. Since we established

that {Cj,ivᵀ
j }i∈[α/2mj ] is linearly independent over Fq, by invertible column op-

erations we may map

(
Cj,1v

ᵀ
j

∣∣Cj,2vᵀ
j

∣∣. . . ∣∣Cj,α/2mjvᵀ
j

)

7−−−→



1 1 . . . 1

νj ξjνj . . . ξ
α/2mj−1
j νj

ν2j (ξjνj)
2 . . . (ξ

α/2mj−1
j νj)

2

...
...

. . .
...

ν
α/2mj−1
j (ξjνj)

α/2mj−1 . . . (ξ
α/2mj−1
j νj)

α/2mj−1


,

i.e., the square Vandermonde matrix defined by (νj , ξjνj , ξ
2
j νj , . . . , ξ

α/2mj−1
j νj),

which we denote by Vj for convenience. Using the same column operations on

{zᵀj,i}i∈[α/2mj ] the mapping becomes

(
zᵀj,1

∣∣∣zᵀj,2 ∣∣∣. . . ∣∣∣zᵀj,α/2mj ) 7→


Vj

ν
α/2mj

j Vj
...

ν
(2mj−1)α/2mj
j Vj



=



1 1 . . . 1

νj ξjνj . . . ξ
α/2mj−1
j νj

ν2j (ξjνj)
2 . . . (ξ

α/2mj−1
j νj)

2

...
...

. . .
...

να−1j (ξjνj)
α−1 . . . (ξ

α/2mj−1
j νj)

α−1


,

which is an α× (α/2mj ) Vandermonde matrix.

We repeat the above process for each j ∈ J to obtain the matrix Z ′ which

satisfies det(Z ′) = ξ det(Z) for some ξ ∈ Fq, ξ 6= 0, since only invertible column

operations were used. Finally, we note that Z ′ is itself a Vandermonde matrix285

that is defined by (the multiset)
⋃
j∈J{ξ

i−1
j νj}i∈[α/2mj ] (in some order), and

since ν
α/2
j 6= ν

α/2
k for all j 6= k, we have det(Z ′) 6= 0, as desired.
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As a final note, we observe the field size requirements imposed by Theorem 5.

We need to choose n distinct non-zero values from Fq. However, each choice

precludes some other elements from being chosen. More specifically, let ξ ∈ Fq290

be an element with multiplicative order α
2 , and let 〈ξ〉 be the multiplicative

group spanned by it. Then we may choose at most one element from each of

the cosets in F∗q/〈ξ〉. Hence, q > α
2 n+ 1.

3.5. Correcting bounded erasure patterns

In this subsection it is shown that Gabidulin codes, a well-known family of295

rank-metric codes, are capable of protecting against a large family of erasure

patterns. In particular, for α > n and an integer r 6 n, the code Gab[n, n−r]qα ,

defined below, can protect against Tr , Nn
r,nr = {0, 1, . . . , r}n. Notice that Tr

does not include full erasures of codeword symbols (unless the code is trivial),

and yet Gabidulin codes can protect against erasures in the usual sense (see [17]).300

For the next theorem, recall that a linearized polynomial is a polynomial

over Fqα in which all nonzero coefficients correspond to monomials of the form

xq
i

for some nonnegative integer i. For a linearized polynomial f , let its q-

degree be degq(f) , logq(deg f). It is widely known that any function from Fqα

to itself, which is linear over Fq, corresponds to a linearized polynomial. The305

following theorem applies over any basis ω.

Theorem 6. For nonnegative integers r, n, and α such that n 6 α and r < n,

the code

Gab[n, n− r]qα ,
{

(f(ω1), . . . , f(ωn))
∣∣ f is linearized and degq(f) < n− r

}
is Tr-correcting.

Proof. We show that Gab[n, n−r]∩Xt = {0} for all t ∈ Tr. Assuming otherwise,

we have a pattern t ∈ Tr and a nonzero linearized polynomial f of q-degree less

than n− r such that

f(ωj) ∈
〈
ω1, . . . , ωtj

〉
, for all j ∈ [n]. (9)
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Since f is a linearized polynomial and since t ∈ Tr, Eq. (9) implies that

f(〈ω1, . . . , ωn〉) ⊆ 〈ω1, . . . , ωr〉, which in turn implies that dim ker(f) > n− r.

Thus, f has more roots than its degree, which is a contradiction.310

Note that n 6 α is necessary, since the evaluation points ω1, . . . , ωn must

be linearly independent over Fq. Finally, we emphasize that this construction

applies to any q.

4. Lower Bound

First, it is clear that any m-correcting code C ⊆ Fnqα can correct m′ , bm/αc315

erasures in the usual sense. Therefore, the well-known Singleton bound implies

that m′ 6 n − k. Moreover, in cases where m′ = n − k, namely, when C is

an MDS code, the MDS conjecture (e.g., see [18], and its resolution in certain

cases [19, 20]) implies qα > n − 1. In the remainder of this section a Gilbert-

Varshamov type argument is used to prove the following existence theorem.320

Theorem 7. For all positive integers n,m,α, and r such that m < α(r− 1), if

q >

(
(m+ 1)

(
m+ n− 2

n− 2

)) 1
α(r−1)−m

then there exists an [n, n− r]qα m-correcting code C.

Before proving the theorem, we prove an auxiliary claim, which applies for

any basis ω. We say that a matrix over Fqα is m-good (good, in short) if its

right kernel does not contain nonzero vectors x with w(x) 6 m. In the proof

of Theorem 7 we choose the columns of the parity-check matrix of the code one325

after another, while showing that there always exists an eligible column to add;

the question of column eligibility boils down to the following lemma.

Lemma 7. If H` , (gᵀ
1 , . . . ,g

ᵀ
` ) ∈ Fr×`qα is good and

gᵀ
`+1 /∈

{
γ ·
∑̀
i=1

xig
ᵀ
i

∣∣∣∣∣ γ ∈ Fqα and w(x1, . . . , x`) 6 m

}
, R` (10)

then H`+1 , (gᵀ
1 , . . . ,g

ᵀ
`+1) ∈ Fr×(`+1)

qα is good.
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Proof. Assume to the contrary that the right kernel of H`+1 contains a nonzero

vector x = (x1, . . . , x`+1) ∈ F`+1
qα such that w(x) 6 m, which implies that330

−x`+1g
ᵀ
`+1 =

∑`
i=1 xig

ᵀ
i and that w(x1, . . . , x`) 6 m. If x`+1 = 0, it follows that

the vector x′ , (x1, . . . , x`) satisfies H`x
′ = 0 and w(x′) 6 m, in contradiction

to H` being good. Otherwise, we have that gᵀ
`+1 = (−x−1`+1) ·

∑`
i=1 xig

ᵀ
i , and

hence gᵀ
`+1 ∈ R` in contradiction with (10).

The following two properties are easy to prove.335

Lemma 8. For the sets R` from (10),

1. |Rn−1| > |R`| for all ` 6 n− 1.

2. |Rn−1| 6 qα
∑m
i=0 q

i
(
i+n−2
n−2

)
6 (m+ 1)qα+m

(
m+n−2
n−2

)
.

Proof. The first property is due to simple monotonicity. For the second property

we upper bound the size of the set by assuming that all the linear combinations340

in the definition of the set are distinct. Then, we have qα ways of choosing γ.

Finally, the number of vectors x ∈ Fn−1qα with w(x) 6 m may be found using

a standard balls-into-bins argument to be
∑m
i=0 q

i
(
i+n−2
n−2

)
. Since qi

(
i+n−2
n−2

)
is

increasing in i we obtain the final inequality.

We are now in a position to prove Theorem 7.345

Proof. (of Theorem 7) We construct the parity check matrix of the code C

column by column, starting from an r × r identity matrix. Clearly, it suffices

to guarantee that all along this construction, the resulting matrices are good;

this would guarantee that C ∩ Xt = {0} for every t ∈ Nn
α,m, and thus that C is

m-correcting by Lemma 1.350

Assume that H` ∈ Fr×`qα is good for some ` > r (for ` = r the goodness is

satisfied since there are no nonzero vectors in the kernel). According to Lemma 7

and the above observations, it follows that if |Frqα |−|Rn−1| > 0, then there exists

a legitimate choice for the added column gᵀ
`+1. Hence, by the bound on |Rn−1|

from Lemma 8 we have

|Frqα | − |Rn−1| > qαr − (m+ 1)qα+m
(
m+ n− 2

n− 2

)
.
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If that is strictly larger than zero, the desired code exists. Thus, it suffices to

require

qαr−α−m > (m+ 1)

(
m+ n− 2

n− 2

)
q >

(
(m+ 1)

(
m+ n− 2

n− 2

)) 1
α(r−1)−m

.

In the remainder of this section the bound on q in Theorem 7 is analyzed

asymptotically in the two regimes of interest (see Subsection 2.2). In both

regimes we focus on the practically important case where the dimension k (and

hence r) is proportional to n, and the erasure correction capability m is pro-

portional to αn; this corresponds to erasure correction of a constant fraction of355

the information symbols.

In the case α � n the parameter n is seen as constant and the parame-

ter α tends to infinity. Say that m = c1α and α(r − 1) − m = c2α for some

constants c1, c2, and then the condition on q from Theorem 7 becomes

q >

(
(c1α+ 1)

(
c1α+ n− 2

n− 2

)) 1
c2α

= poly(α)
1

Θ(α)
α→∞−−−−→ 1.

In the case n � α we view α as constant and n as tending to infinity. Say

that m = c1n and α(r − 1) − m = c2n for some c1, c2. By the well known

approximation of the binomial coefficient (e.g., see [18, Lemma 7, p. 309]), the

condition on q from Theorem 7 becomes

q >

(
(c1n+ 1)

(
(1 + c1)n− 2

n− 2

)) 1
c2n

=

(
2
(1+c1)nH

(
1

1+c1

)
(1+o(1))

) 1
c2n n→∞−−−−→ 2

1+c1
c2

H
(

1
1+c1

)
,

where H(x) , −x log2(x)− (1− x) log2(1− x) is the binary entropy function.
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Appendix A. α-correcting codes from mutual eigenvector of UDMs

For the case m = α, there exists an intriguing connection between UDMs

and α-correcting codes.410
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Theorem 8. For h1, . . . , hn ∈ Fqα , a code C =
{
c ∈ Fnqα

∣∣ (h1, . . . , hn) · cᵀ = 0
}

is an α-correcting code over an ordered basis ω , (ω1, . . . , ωα) if and only if

there exists a set A1, . . . , An of UDMs over Fq such that for any i ∈ [n], the

element hi is an eigenvalue of Ai with a corresponding eigenvector ωᵀ.

Proof. Let A1, . . . , An ∈ Fα×αq be UDMs with eigenvalues h1, . . . , hn ∈ Fqα ,

respectively, all of which correspond to the eigenvector ω, i.e.,

Aiω
ᵀ = hiω

ᵀ for all i ∈ [n]. (A.1)

If C is not α-correcting, it follows that there exist t ∈ Nn
α and a nonzero code-

word c = (c1, c2, . . . , cn) ∈ C such that ci ∈ 〈ω1, . . . , ωti〉 for all i ∈ [n], and

therefore

hici ∈ 〈hiω1, . . . , hiωti〉
(A.1)
=

〈
A

(1)
i ω

ᵀ, . . . , A
(ti)
i ωᵀ

〉
,

where A
(j)
i denotes the j-th row of Ai. In turn, this implies that for all i ∈ [n]

there exists a nonzero vector vi ∈ Ftiq such that viA
(1:ti)
i ωᵀ = hici, where

for any positive integers r and s, the notation A
(s:r)
i stands for the submatrix

of Ai which consists of rows s through r. Thus, we have a nonzero vector v ,

(v1|v2| . . . |vn) ∈ Fαq that satisfies

v ·


A

(1:t1)
1

A
(1:t2)
2

...

A
(1:tn)
n

 · ω
ᵀ =

∑
i∈[n]

viA
(1:ti)
i ωᵀ =

∑
i∈[n]

hici = 0. (A.2)

Now, since the entries of ω are a basis, and since the Ai’s and the vi’s are over Fq,415

the expression (
∑
i∈[n] viA

(1:t1)
i )ωᵀ = 0 implies that the vector

∑
i∈[n] viA

(1:t1)
i

is the zero vector. However, this implies that there exists a nonzero vector v in

the left kernel of a matrix which consists of upper rows of UDMs, a contradiction.

Conversely, assume that C is α-correcting, and define matrices A1, . . . , An ∈

Fα×αq as follows. For every i ∈ [n], let Ai be the matrix such that A
(j)
i is the

expansion of hiωj over the basis ω, i.e., hiωj =
∑α
`=1(A

(j)
i )`ω`. Assuming to the
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contrary that A1, . . . , An are not UDMs, we have an element t = (t1, . . . , tn) ∈

Nn
α and a nonzero vector v ∈ Fαq such that

v ·


A

(1:t1)
1

A
(1:t2)
2

...

A
(1:tn)
n

 = 0.

Partition v to n consecutive parts v1,v2, . . . ,vn of sizes t1, . . . , tn, respectively,

let ci , vi · (ω1, . . . , ωti)
ᵀ for all i ∈ [n], and let c , (c1, . . . , cn). Notice

that c ∈ C, since:

(h1, . . . , hn)cᵀ =

n∑
i=1

hivi(ω1, . . . , ωti)
ᵀ =

n∑
i=1

vi(hiω1, . . . , hiωti)
ᵀ

=

n∑
i=1

vi

(
α∑
`=1

(A
(1)
i )`ω`, . . . ,

α∑
`=1

(A
(ti)
i )`ω`

)ᵀ

=

n∑
i=1

viA
(1:ti)
i ωᵀ

= v ·


A

(1:t1)
1

A
(1:t2)
2

...

A
(1:tn)
n

 · ω
ᵀ = 0.

Moreover, since c ∈ X by definition, it follows that c is a nonzero codeword

in C ∩ Xt, a contradiction to C being an α-correcting code.420

Finally, we note that Theorem 2 can alternatively be proved by a direct

application of Theorem 8, and the details are left to the curious reader.

Appendix B. An omitted proof

Proof. (of Corollary 1). First, we ought to show that such UDMs exist. Indeed,

according to [11, Lemma 4], it follows that for any UDMs {Bi}ni=1 and any

lower-triangular invertible matrices {Ci}ni=1, the matrices {Ai = CiBi}ni=1 are

UDMs as well. The existence of suitable UDMs for our proof is then proved by
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letting {Ai}ni=1 be, say, the UDMs from Theorem 1 for the parameters at hand,

letting Ci be an identity matrix for every i ∈ [n] \ {2}, and

C2 =



1

. . .

1

−a1 −a0

. .
. . . .

−a1 −a0


.

Now, observe that µᵀ is an eigenvector for the eigenvalue 1 of A1, and an

eigenvector for the eigenvalue b of A2 (see Appendix A for further implica-425

tions of such mutual eigenvectors). Therefore, the square parity check ma-

trix (Aᵀ
1µ

ᵀ| · · · |Aᵀ
nµ

ᵀ) has at least two dependent columns, which implies that

dim C > 1.
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