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Abstract—Magnetic random-access memory (MRAM) is a
promising memory technology due to its high density, non-
volatility, and high endurance. However, achieving high memory
fidelity incurs significant write-energy costs, which should be
reduced for the large-scale deployment of MRAMs. In this
paper, we formulate an optimization problem to maximize the
memory fidelity given energy constraints, and propose a biconvex
optimization approach to solve it. The basic idea is to allocate
non-uniform write pulses depending on the importance of each
bit position. We consider the mean squared error (MSE) as a
fidelity metric and propose an iterative water-filling algorithm
to minimize the MSE. Although the iterative algorithm does not
guarantee the global optimality, we can choose a proper starting
point that decreases the MSE exponentially and guarantees fast
convergence. For an 8-bit accessed word, the proposed algorithm
reduces the MSE by a factor of 21.

I. INTRODUCTION

Magnetic random access memory (MRAM) is a nonvolatile
memory technology that has a potential to combine the speed
of static RAM (SRAM) and the density of dynamic RAM
(DRAM). Furthermore, MRAM technology is attractive since
it provides high endurance and complementary metal-oxide-
semiconductor (CMOS) compatibility [1], [2].

In spite of its attractive features, one of the main challenges
is the high energy consumption to write information reliably in
the memory element [1]–[3]. In an MRAM device, a memory
state “1” or “0” is determined by the magnetic moment
orientation of the memory element [1]. Switching the magnetic
moment orientation requires high write current, which intro-
duces write errors when the energy budget is limited [2]. In
addition, high current injection through the tunneling barriers
incurs a severe stress and leads to breakdown, which degrades
the endurance of MRAM cells [3], [4]. Hence, one of the
key directions of MRAM research has been toward providing
reliable switching with limited energy cost. At the device level,
new materials [5], [6] or new switching mechanisms [7], [8]
have been explored. Several architectural techniques to reduce
write energy can be found in [3], [9], [10].

However, prior efforts have not considered the differential
importance of each bit position in error tolerant applications
such as signal processing and machine learning (ML) tasks.
In these applications, the impact of bit errors depends on bit
position, i.e., most significant bits (MSBs) are more important
than least significant bits (LSBs) [11], [12]. This differential
importance has been leveraged to effectively optimize energy
in major memory technologies such as SRAMs [13]–[16] and
DRAMs [17], [18].

In this paper, we provide a principled approach to improving
MRAM’s write fidelity. In error tolerant applications, the mean
squared error (MSE) is a more meaningful fidelity metric than
the write failure probability (or bit error rate). We formulate
a biconvex optimization problem to minimize the MSE for
a given write energy constraint. Since the write energy and
the MSE depend on the write current and the write pulse
duration, we attempt to optimize both parameters by solving
the biconvex problem.

A biconvex problem is an optimization problem where the
objective function and the constraint set are biconvex [19]. A
common algorithm for solving biconvex problems is alternate
convex search (ACS), which updates each variable by fixing
another and solving the corresponding convex problem in an
iterative manner [20]. We propose an iterative algorithm based
on ACS to optimize the write current and the write pulse
duration. In addition, we show that the proposed iterative
algorithm converges and the convergence speed can be very
fast by choosing a proper starting point.

In general, ACS cannot guarantee the global optimal solu-
tion since biconvex problems may have a large number of local
minima [19]. However, we prove that the proposed iterative
algorithm can reduce the MSE exponentially by choosing a
proper starting point. Furthermore, we show that this starting
point guarantees the fastest convergence. We derive analytic
expressions of the optimal solutions for each iteration. Since
each iteration of the algorithm corresponds to solving convex
problems, we rely on the Karush-Kuhn-Tucker (KKT) condi-
tions to derive the optimal solutions. We also provide water-
filling interpretations for each iteration.

Prior optimization studies on voltage swing of SRAMs [15],
[16] and refresh operations of DRAMs [18] are similar in
spirit, viz. minimizing the MSE for given resource constraints.
However, the MRAM write optimization of this work is non-
convex whereas the formulated problems in [15], [18] are
convex. Hence, we propose the iterative algorithm and analyze
convergence and improvement of the optimized MSE. To the
best of our knowledge, our work is the first principled ap-
proach to optimization of write pulse parameters of MRAMs.

The rest of this paper is organized as follows. Section II
explains the basics of MRAM and the challenges of high write
energy consumption. Section III introduces the optimization
metrics for MRAM write operations. Section IV formulates
optimization problems and provides the iterative algorithm
based on ACS. Section V provides theoretical analysis on
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Fig. 1. P state and AP state of MTJ MRAM devices.

convergence and MSE reduction. Section VI gives numerical
results and Section VII concludes.

II. BASIC PRINCIPLES OF MRAMS

MRAM cells store information by controlling bistable mag-
netization of ferromagnetic material and retrieve information
by sensing resistance of magnetic tunnel junctions (MTJs). An
MTJ device consists of two ferromagnetic layers of reference
layer (RL) and free layer (FL), separated by a very thin
tunneling barrier. Since RL has a very stable magnetization,
it maintains the magnetization throughout all operations. On
the other hand, FL can be switched between two stable
magnetization states by a moderate stimulus. The resistance
of an MTJ depends on the relative orientation of the FL
magnetization with respect to that of the RL (see Fig. 1). If
the magnetizations of FL and RL are in the same direction
(parallel- or P-state), then the corresponding resistance is low.
The opposite direction (antiparallel- or AP-state) results in
high resistance. The difference in tunneling currents between
a P-state (low resistance) and a AP-state (high resistance) is
utilized to encode binary data [1], [2].

Writing information into an MTJ is performed by driving
a sufficient current through it. Depending on the current’s
direction, one can flip the magnetization of the FL into P- or
AP-state. If a current flows from FL to RL (electrons from RL
to FL), electrons are spin-polarized along the magnetization of
RL while passing through the layer. The electrons transmitted
from the RL interact and exchange the magnetic moments
with ones in the FL. If the MTJ is in the AP-state and the
current is sufficiently high, then the magnetization orientation
is flipped to P-state. When the current is reversed, incoming
electrons are polarized along the magnetization of FL. Since
the RL’s magnetization is parallel to the FL, the majority
of the electrons tunnel the barrier while the minority that
have antiparallel magnetizations are reflected. Because of this
selective tunneling, the antiparallel spins are accumulated in
the FL. If the enriched antiparallel spin dominates the FL, it
flips the magnetization of the FL into the AP-state.

The magnetization switching between P state and AP state
is not deterministic. The write (switching) failure probability
depends on the magnitude and the duration of the write current
pulse as follows [4, Eq. (26)]:

p(i, t) = 1− exp

(
− ∆π2(i− 1)

4 {i exp(2(i− 1)t)− 1}

)
, (1)

where ∆ denotes the thermal stability factor. The normalized
current i is given by i = I

Ic
where I denotes the actual write

current and Ic is the critical current. The normalized duration
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Fig. 2. Comparison of the write failure probability (1) and its approximation
(2) (∆ = 60 as in [4, Fig. 13]).

is given by t = T
Tc

where T denotes the actual write duration
and Tc is the characteristic relaxation time. Note that ∆, Ic,
and Tc are fabrication parameters [4], [21].

To ensure a low write failure probability, we should control
the write current magnitude or the duration judiciously. A
longer write duration may lower the write failure probability
at the expense of longer write latency and higher energy
consumption. Instead of increasing the write duration, we can
adopt higher write current, which increases the write energy
and the risk of dielectric breakdown of the MTJ.

The MRAM cells are arranged in arrays and each of the
cells is selectively connected to the read/write circuits through
a selector to access the data. Because of the write current
requirement, most crossbar MRAM architectures allow only
one cell can be accessed at a time in each subarray. Multiple
subarrays are operated in parallel to match the required data
bandwidth. This MRAM architecture provides an opportunity
to write each bit in different conditions.

III. METRICS FOR MRAM WRITE OPERATIONS

The write failure probability expression of (1) is too com-
plicated to formulate an optimization problem. Fortunately, we
can use the following approximation instead of (1):

p(i, t) ≈ c exp (−2(i− 1)t) . (2)

where c = ∆π2

4 . This is a slightly modified approximation
of [4, Eq. (27)] so as to formulate a optimization problem.
Fig. 2 shows that the approximated write failure probability
(2) is very close to (1), especially for lower p. The write failure
probability can be controlled by the normalized current i and
the normalized write duration t. The fabrication parameters
such as ∆ does not affect the optimized i and t.

The normalized energy for writing a single bit is given by

E(i, t) = i2t. (3)

As shown in (2) and (3), the write current i and the write
duration t are key knobs to control the trade-off between write
failure probability and the write energy. If we allocate different
write currents and durations depending on the importance of
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each bit position, then the corresponding current and duration
assignments are given by

i = (i0, . . . , iB−1), t = (t0, . . . , tB−1) (4)

where i0 and t0 define the write pulse for least significant bit
(LSB) and iB−1 and tB−1 are the write pulse parameters for
most significant bit (MSB).

We define metrics for energy, latency, and fidelity for
writing a B-bit word.

Definition 1 (Normalized Energy): The normalized energy
of writing a B-bit word is E(i, t) =

∑B−1
b=0 i2btb.

Definition 2 (Normalized Latency): The normalized la-
tency of writing a B-bit word depends on the maximum
write duration among t = (t0, . . . , tB−1), i.e., L(t) =
max{t0, . . . , tB−1}.

Note that E(i, t) and L(t) are resource metrics. As a fidelity
metric, we consider mean squared error (MSE).

Definition 3: The MSE of B-bit words is given by

MSE(i, t) =

B−1∑
b=0

4bp(ib, tb) (5)

where p(ib, tb) is given in (2) and the weight 4b represents the
differential importance of each bit position. The derivation can
be found in [14], [15].

IV. OPTIMIZING PARAMETERS OF WRITE OPERATIONS

In this section, we investigate optimization of write opera-
tion parameters. First, the optimized current and duration for
a single bit will be discussed and then we provide biconvex
optimization problems for a B-bit word.

A. Optimized Parameters for Single Bit Write

First, we note that the normalized current should be greater
than 1 for a successful write in (2). It shows that the write
current should be greater than the critical current (i.e., I >
Ic) so as to switch the direction of magnetization [4], [21].
Then, we can formulate the following optimization problem
for single-bit (also multi-bit uniform) write:

minimize
i,t

p(i, t) = c exp (−2(i− 1)t)

subject to i2t ≤ E , i ≥ 1 + ε, t ≥ 0,
(6)

where E is a constant corresponding to the given write energy
budget. We introduce ε > 0 to guarantee i > 1. This
optimization problem is equivalent to

maximize
i,t

(i− 1)t

subject to i2t ≤ E , i ≥ 1 + ε, t ≥ 0.
(7)

Note that the objective function (i − 1)t is not concave.
However, we can obtain the optimal i∗ and t∗ as follows.

Lemma 4: The optimized current and duration for single bit
write are i∗ = 2 and t∗ = E

4 , respectively. The corresponding
write failure probability is given by

p(i∗, t∗) = c exp

(
−E

2

)
. (8)

Proof: The proof is given in [22].
Note that the write failure probability is an exponentially
decaying function of E .

B. Optimized Parameters for B-bit Word Writes

We formulate an optimization problem to determine the
currents and durations. For a given write energy constraint,
we seek to minimize MSE as follows.

minimize
i,t

B−1∑
b=0

4b exp(−2(ib − 1)tb)

subject to
B−1∑
b=0

i2btb ≤ E

ib ≥ 1 + ε, tb ≥ 0, b = 0, . . . , B − 1

(9)

We may include additional constraints such as L(t) ≤ δ
to guarantee a required write speed performance. Note that
L(t) ≤ δ is a convex constraint.

Although the optimization problem (9) is not convex, we
show that (9) is a biconvex optimization problem. Hence, we
can find suboptimal solutions via effective algorithms such as
alternate convex search (ACS) [19].

Definition 5 (Biconvex Set [19]): Let S ⊆ X × Y where
X ⊆ Rn and Y ⊆ Rm denote two non-empty and convex
sets. The set S is defined as a biconvex set on X × Y , if for
every fixed x ∈ X , Sx , {y ∈ Y | (x,y) ∈ S} is a convex set
in Y and for every fixed y ∈ Y , Sy , {x ∈ X | (x,y) ∈ S}
is a convex set in X .

Definition 6 (Biconvex Function [19]): A function f : S →
R is defined as a biconvex function on S, if for every fixed
x ∈ X , fx(·) = f(x, ·) : Sx → R is a convex function on
Sx, and for every fixed y ∈ Y , fy(·) = f(·,y) : Sy → R is a
convex function on Sy.

Definition 7 (Biconvex Problem [19]): An optimization
problem of the following form:

minimize {f(x,y) | (x,y) ∈ S} (10)

is defined as a biconvex problem, if the feasible set S is
biconvex on X × Y and the objective function f is biconvex
on S.

Theorem 8: The optimization problem (9) is biconvex.
Proof: First, we show that

∑B−1
b=0 i2btb ≤ E is a biconvex

set. Note that i2btb is a convex function of ib for every fixed
tb ≥ 0. In addition, i2btb is a convex function for every fixed
ib ≥ 1 + ε. Hence,

∑B−1
b=0 i2btb ≤ E is a biconvex set.

It is clear that exp(−2(ib − 1)tb) is a biconvex function of
ib and tb. Since the positive weight 4b preserves convexity, the
objective function is biconvex.

Since (9) is a biconvex problem, ACS can effectively
find a suboptimal solution [19], [20]. It alternatively updates
variables by fixing one of them and solving the corresponding
convex optimization problem. We propose Algorithm 1 to
optimize the write current i and the write duration t of the
biconvex optimization problem (9) by using ACS.
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Algorithm 1 ACS algorithm to solve (9)

1: Choose a starting point i(0) from the feasible set S and
set k = 0.

2: For fixed i(k), find t(k+1) by solving the following convex
problem:

minimize
t

B−1∑
b=0

4b exp
(
−2
(
i
(k)
b − 1

)
tb

)
subject to

B−1∑
b=0

(i
(k)
b )2tb ≤ E

tb ≥ 0, b = 0, . . . , B − 1

(11)

3: For fixed t(k+1), find i(k+1) by solving the following
convex problem.

minimize
i

B−1∑
b=0

4b exp
(
−2(ib − 1)t

(k+1)
b

)
subject to

B−1∑
b=0

i2bt
(k+1)
b ≤ E

ib ≥ 1 + ε, b = 0, . . . , B − 1

(12)

4: If the point (i(k+1), t(k+1)) satisfies a stopping criterion,
then stop. Otherwise, k := k + 1 and go back to line 2.

Remark 9 (Starting Point): Since biconvex optimization
problems may have a large number of local minima [19], a
starting point i(0) can affect the final solution. We can choose
i(0) = (2, . . . , 2) as a starting point, which minimizes the
uniform write failure probability (see Lemma 4). In Corol-
lary 16, we show that this starting point guarantees the fastest
convergence.

Remark 10 (Stopping Criterion [19]): There are several
ways to define the stopping criterion in Algorithm 1. For
example, we can consider the absolute values of the differences
between (i(k), t(k)) and (i(k+1), t(k+1)) or the difference be-
tween MSE(i(k), t(k)) and MSE(i(k+1), t(k+1)). Alternatively,
we can set a maximum number of iterations.

V. ANALYSIS OF ALTERNATE CONVEX SEARCH FOR
MRAM WRITE PARAMETERS

A. Optimal Solutions for Each Iteration

In this subsection, we present the optimal solutions for
(11) and (12). Since these problems are convex, we exploit
the structure of the problems to derive the optimal solutions
analytically using the KKT conditions.

Theorem 11: For fixed i(k) = i, the optimal t(k+1) = t∗ of
(11) is given by

t∗b =


0, if ν ≥ 2·4b(ib−1)

i2b
;

log

(
1
ν ·

2·4b(ib−1)
i2
b

)
2(ib−1) , otherwise

(13)

where ν is a dual variable of corresponding KKT conditions.
Note that ν depends on the energy budget E .

Proof: The proof is given in [22].
Theorem 12: For fixed t(k+1) = t, the optimal i(k+1) = i∗

of (12) is given by

i∗b =

{
1 + ε, if ν′ ≥ 4b

1+εe
−2tbε;

1
2tb
W
(

2·4btbe2tb
ν′

)
, otherwise

(14)

where ν′ is a dual variable. Also, W (·) denotes the Lambert
W function (i.e., the inverse function of f(x) = xex) [23].

Proof: The proof is given in [22].
Remark 13: The solutions of (13) and (14) can be interpreted

as water-filling (see [22]). Each bit position can be regarded
as an individual channel among B parallel channels as in
[15], [16]. The ground levels depend on the importance of bit
positions; hence, larger current or longer duration are assigned
to more significant bit positions.

B. Convergence of MSE
We show that Algorithm 1 guarantees convergence to a

locally optimal MSE. The converged MSE depends on a
starting point.

Lemma 14: The sequence
{
MSE(i(k), t(k))

}
k∈N ob-

tained by Algorithm 1 is monotonically decreasing, i.e.,
MSE(i(k+1), t(k+1)) ≤ MSE(i(k), t(k)) for all k ∈ N.

Proof: Note that MSE(i(k), t(k+1)) ≤ MSE(i(k), t(k))
and MSE(i(k+1), t(k+1)) ≤ MSE(i(k), t(k+1)) because of
(11) and (12), respectively. Hence, MSE(i(k+1), t(k+1)) ≤
MSE(i(k), t(k)).

Theorem 15: The sequence
{
MSE(i(k), t(k))

}
k∈N obtained

by Algorithm 1 converges monotonically.
Proof: It is clear that MSE(i(k), t(k)) ≥ 0 for all k ∈ N by

(2) and (5). Then,
{
MSE(i(k), t(k))

}
k∈N is monotonically de-

creasing and bounded below,
{
MSE(i(k), t(k))

}
k∈N converges

because of monotone convergence theorem.
Corollary 16: By setting i(0) = (2, . . . , 2), we obtain

lim
k→∞

(
i(k), t(k)

)
=
(
i(0), t(1)

)
, (15)

if t(1)
b 6= 0 for all b ∈ [0, B − 1].

Proof: The proof is given in [22].
Corollary 16 means that the starting point i(0) = (2, . . . , 2)
guarantees the fastest convergence.

C. Starting Point of i(0) = (2, . . . , 2)

In this subsection, we show that i(0) = (2, . . . , 2) is a
good starting point, in the sense that it reduces the MSE
exponentially with B.

Suppose that the starting point is i(0) = (2, . . . , 2). By
Theorem 11 and Corollary 16, Algorithm 1 provides the
following optimized write durations t(1) = t̃ = (t̃0, . . . , t̃B−1)
where

t̃b =

{
0, if ν ≥ 4b

2 ;
1
2 log

(
1
ν ·

4b

2

)
, otherwise.

(16)

Lemma 17: If E > 2B(B − 1) log 2, then t̃b > 0 for all
b ∈ [0, B − 1] and

t̃b =
E

4B
+

(
b− B − 1

2

)
· log 2. (17)

795



1 2 3 4 5 6 7 8

Normalized Current i

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

W
ri
te

 F
a
ilu

re
 P

ro
b
a
b
ili

ty
 p

E = 25

E = 30

E = 35

E = 40

E = 45

E = 50

Fig. 3. Normalized write current to minimize the write failure probability
(see Lemma 4) for several energy constraints.

Proof: The proof is given in [22].
Theorem 18: If E > 2B(B − 1) log 2, then the MSE

reduction ratio by Algorithm 1 is given by

γ =
MSE

(
i(0), t̃

)
MSE

(
i(0), t(0)

) =
3B

2
· 2B

4B − 1
≈ 3B

2
· 2−B (18)

where MSE(i(0), t̃) (i.e., the optimized MSE by Algorithm 1)
is given by MSE

(
i(0), t̃

)
= c · B2 · 2B exp

(
− E2B

)
where

the optimized t̃ is given by (16). In addition, MSE(i(0), t(0))
(i.e., the MSE by uniform energy allocation) is given by
MSE

(
i(0), t(0)

)
= c · 4B−1

3 exp
(
− E2B

)
where t(0) is the

uniform value to satisfy the energy constraint (i.e., t(0) =
E

4B · (1, . . . , 1)).
Proof: The proof is given in [22].

MSE
(
i(0), t(0)

)
is the MSE corresponding to the parameters

minimizing the write failure probability (see Lemma 4).
Remark 19: By setting i(0) = (2, . . . , 2), Algorithm 1

reduces the MSE exponentially with B, compared to the
parameters optimized for write failure probability. Although
we cannot guarantee that (i(0), t(1) = t̃) is globally optimal,
(i(0), t(1)) decreases the MSE exponentially by solving (11)
once (see Corollary 16). Furthermore, the solution of (11) can
be efficiently computed by Lemma 17.

VI. NUMERICAL RESULTS

We evaluate the solutions to optimize the write failure
probability for single bits as well as the MSE for B-bit words.
The critical current Ic and the characteristic relaxation time
Tc do not affect the numerical results because the normalized
values i = I

Ic
and t = T

Tc
are considered. As in [4], we set

∆ = 60 for the thermal stability factor.
Fig. 3 shows that i∗ = 2 and t∗ = E

4 minimize the write
failure probability as proved in Lemma 4. The corresponding
minimal write failure probability decreases exponentially with
the write energy as shown in (8).

Fig. 4 shows numerical results by solving (9). Fig. 4
compares the MSEs of the uniform write energy allocation
and the optimized energy allocation by Algorithm 1. We set a
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Fig. 4. Comparison of the conventional uniform energy allocation and the
optimized energy allocation by Algorithm 1 (B = 8).
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Fig. 5. The MSE reduction ratio γ by Theorem 18.

starting point i(0) = (2, . . . , 2). As shown in Theorem 18, the
MSE reduction ratio is γ ≈ 3B

2 · 2
−B = 0.0469 for B = 8.

Fig. 5 shows that the MSE reduction ration improves
exponentially with B (as derived in Theorem 18). Although
we cannot guarantee the optimality, the proposed Algorithm 1
is very effective to reduce the MSE. Note that γ = 3.66×10−4

for B = 16 and γ = 1.12× 10−8 for B = 32.

VII. CONCLUSION

We proposed a principled approach to improving MRAM’s
write energy efficiency. After formulating the biconvex opti-
mization problem, we proposed the iterative algorithm to solve
the biconvex problem, which attempts to minimize the MSE
under a write energy budget. Also, we proved that the proposed
algorithm converges and it can reduce the MSE exponentially.
The proposed optimization scheme can be extended in future
work to coded information representations, where redundancy
is added to the written values to further improve the fidelity.
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