Optimizing the Write Fidelity of MRAMs

Yongjune Kim∗, Yoocharn Jeon∗, Cyril Guyot∗, and Yuval Cassuto∗†
∗Western Digital Research, Milpitas, CA, USA
Email: {yongjune.kim, yoocharn.jeon, cyril.guyot}@wdc.com
†Viterbi Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
Email: ycassuto@ee.technion.ac.il

Abstract—Magnetic random-access memory (MRAM) is a promising memory technology due to its high density, non-
volatility, and high endurance. However, achieving high memory
fidelity incurs significant write-energy costs, which should be
reduced for the large-scale deployment of MRAMs. In this
paper, we formulate an optimization problem to maximize the
memory fidelity given energy constraints, and propose a biconvex
optimization approach to solve it. The basic idea is to allocate
non-uniform write pulses depending on the importance of each
bit position. We consider the mean squared error (MSE) as a
fidelity metric and propose an iterative water-filling algorithm
to minimize the MSE. Although the iterative algorithm does not
guarantee the global optimality, we can choose a proper starting
point that decreases the MSE exponentially and guarantees fast
convergence. For an 8-bit accessed word, the proposed algorithm
reduces the MSE by a factor of 21.

I. INTRODUCTION

Magnetic random access memory (MRAM) is a nonvolatile
memory technology that has a potential to combine the speed
of static RAM (SRAM) and the density of dynamic RAM
(DRAM). Furthermore, MRAM technology is attractive since
it provides high endurance and complementary metal-oxide-
semiconductor (CMOS) compatibility [1], [2].

In spite of its attractive features, one of the main challenges
is the high energy consumption to write information reliably in
the memory element [1]–[3]. In an MRAM device, a memory
state “1” or “0” is determined by the magnetic moment
orientation of the memory element [1]. Switching the magnetic
moment orientation requires high write current, which intro-
duces write errors when the energy budget is limited [2]. In
addition, high current injection through the tunneling barriers
incurs a severe stress and leads to breakdown, which degrades
the endurance of MRAM cells [3], [4]. Hence, one of the
key directions of MRAM research has been toward providing
reliable switching with limited energy cost. At the device level,
new materials [5], [6] or new switching mechanisms [7], [8]
have been explored. Several architectural techniques to reduce
write energy can be found in [3], [9], [10].

However, prior efforts have not considered the differential
importance of each bit position in error tolerant applications
such as signal processing and machine learning (ML) tasks.
In these applications, the impact of bit errors depends on bit
position, i.e., most significant bits (MSBs) are more important
than least significant bits (LSBs) [11], [12]. This differential
importance has been leveraged to effectively optimize energy
in major memory technologies such as SRAMs [13]–[16] and
DRAMs [17], [18].

In this paper, we provide a principled approach to improving
MRAM’s write fidelity. In error tolerant applications, the mean
squared error (MSE) is a more meaningful fidelity metric than
the write failure probability (or bit error rate). We formulate a
biconvex optimization problem to minimize the MSE for a
given write energy constraint. Since the write energy and
the MSE depend on the write current and the write pulse
duration, we attempt to optimize both parameters by solving
the biconvex problem.

A biconvex problem is an optimization problem where the
objective function and the constraint set are biconvex [19]. A
common algorithm for solving biconvex problems is alternate
convex search (ACS), which updates each variable by fixing
another and solving the corresponding convex problem in an
iterative manner [20]. We propose an iterative algorithm based
on ACS to optimize the write current and the write pulse
duration. In addition, we show that the proposed iterative
algorithm converges and the convergence speed can be very
fast by choosing a proper starting point.

In general, ACS cannot guarantee the global optimal solu-
tion since biconvex problems may have a large number of local
minima [19]. However, we prove that the proposed iterative
algorithm can reduce the MSE exponentially by choosing a
proper starting point. Furthermore, we show that this starting
point guarantees the fastest convergence. We derive analytic
expressions of the optimal solutions for each iteration. Since
each iteration of the algorithm corresponds to solving convex
problems, we rely on the Karush-Kuhn-Tucker (KKT) condi-
tions to derive the optimal solutions. We also provide water-
filling interpretations for each iteration.

Prior optimization studies on voltage swing of SRAMs [15],
[16] and refresh operations of DRAMs [18] are similar in
spirit, viz. minimizing the MSE for given resource constraints.
However, the MRAM write optimization of this work is non-
convex whereas the formulated problems in [15], [18] are
convex. Hence, we propose the iterative algorithm and analyze
convergence and improvement of the optimized MSE. To the
best of our knowledge, our work is the first principled ap-
proach to optimization of write pulse parameters of MRAMs.

The rest of this paper is organized as follows. Section II
explains the basics of MRAM and the challenges of high write
energy consumption. Section III introduces the optimization
metrics for MRAM write operations. Section IV formulates
optimization problems and provides the iterative algorithm
based on ACS. Section V provides theoretical analysis on
convergence and MSE reduction. Section VI gives numerical results and Section VII concludes.

II. BASIC PRINCIPLES OF MRAMs

MRAM cells store information by controlling bistable magnetization of ferromagnetic material and retrieve information by sensing resistance of magnetic tunnel junctions (MTJs). An MTJ device consists of two ferromagnetic layers of reference layer (RL) and free layer (FL), separated by a very thin tunneling barrier. Since RL has a very stable magnetization, it maintains the magnetization throughout all operations. On the other hand, FL can be switched between two stable magnetization states by a moderate stimulus. The resistance of an MTJ depends on the relative orientation of the FL magnetization with respect to that of the RL (see Fig. 1). If the magnetizations of FL and RL are in the same direction (parallel- or P-state), then the corresponding resistance is low. The opposite direction (antiparallel- or AP-state) results in high resistance. The difference in tunneling currents between a P-state (low resistance) and a AP-state (high resistance) is utilized to encode binary data [1], [2].

Writing information into an MTJ is performed by driving a sufficient current through it. Depending on the current’s direction, one can flip the magnetization of the FL into P- or AP-state. If a current flows from FL to RL (electrons from RL to FL), electrons are spin-polarized along the magnetization of RL while passing through the layer. The electrons transmitted from the RL interact and exchange the magnetic moments with ones in the FL. If the MTJ is in the AP-state and the current is sufficiently high, then the magnetization orientation is flipped to P-state. When the current is reversed, incoming electrons are polarized along the magnetization of FL. Since the RL’s magnetization is parallel to the FL, the majority of the electrons tunnel the barrier while the minority that have antiparallel magnetizations are reflected. Because of this selective tunneling, the antiparallel spins are accumulated in the FL. If the enriched antiparallel spin dominates the FL, it flips the magnetization of the FL into the AP-state.

The magnetization switching between P state and AP state is not deterministic. The write (switching) failure probability depends on the magnitude and the duration of the write current pulse as follows [4, Eq. (26)]:

\[
p(i, t) = 1 - \exp \left(-\frac{\Delta i^2 (i - 1)}{4 \{i \exp(2(i - 1)t) - 1\}} \right),
\]

where \(\Delta\) denotes the thermal stability factor. The normalized current \(i\) is given by \(i = \frac{I}{I_c}\) where \(I\) denotes the actual write current and \(I_c\) is the critical current. The normalized duration is given by \(t = \frac{T}{T_c}\) where \(T\) denotes the actual write duration and \(T_c\) is the characteristic relaxation time. Note that \(\Delta, I_c, T_c\) are fabrication parameters [4], [21].

To ensure a low write failure probability, we should control the write current magnitude or the duration judiciously. A longer write duration may lower the write failure probability at the expense of longer write latency and higher energy consumption. Instead of increasing the write duration, we can adopt higher write current, which increases the write energy and the risk of dielectric breakdown of the MTJ.

The MRAM cells are arranged in arrays and each of the cells is selectively connected to the read/write circuits through a selector to access the data. Because of the write current requirement, most crossbar MRAM architectures allow only one cell can be accessed at a time in each subarray. Multiple subarrays are operated in parallel to match the required data bandwidth. This MRAM architecture provides an opportunity to write each bit in different conditions.

III. METRICS FOR MRAM WRITE OPERATIONS

The write failure probability expression of (1) is too complicated to formulate an optimization problem. Fortunately, we can use the following approximation instead of (1):

\[
p(i, t) \approx c \exp \left(-2(i - 1)t \right).
\]

where \(c = \frac{\Delta i^2}{T_c}\). This is a slightly modified approximation of [4, Eq. (27)] so as to formulate a optimization problem. Fig. 2 shows that the approximated write failure probability (2) is very close to (1), especially for lower \(p\). The write failure probability can be controlled by the normalized current \(i\) and the normalized write duration \(t\). The fabrication parameters such as \(\Delta\) does not affect the optimized \(i\) and \(t\).

The normalized energy for writing a single bit is given by

\[
E(i, t) = i^2 t.
\]

As shown in (2) and (3), the write current \(i\) and the write duration \(t\) are key knobs to control the trade-off between write failure probability and the write energy. If we allocate different write currents and durations depending on the importance of
each bit position, then the corresponding current and duration assignments are given by
\[i = (i_0, \ldots, i_{B-1}), \quad t = (t_0, \ldots, t_{B-1})\] \hspace{1cm} (4)
where \(i_0\) and \(t_0\) define the write pulse for least significant bit (LSB) and \(i_{B-1}\) and \(t_{B-1}\) are the write pulse parameters for most significant bit (MSB).

We define metrics for energy, latency, and fidelity for writing a \(B\)-bit word.

Definition 1 (Normalized Energy): The normalized energy of writing a \(B\)-bit word is \(E(i, t) = \sum_{i=0}^{B-1} i_t^b t_b\).

Definition 2 (Normalized Latency): The normalized latency of writing a \(B\)-bit word depends on the maximum write duration among \(t = (t_0, \ldots, t_{B-1})\), i.e., \(L(t) = \max\{t_0, \ldots, t_{B-1}\}\).

Note that \(E(i, t)\) and \(L(t)\) are resource metrics. As a fidelity metric, we consider mean squared error (MSE).

Definition 3: The MSE of \(B\)-bit words is given by
\[\text{MSE}(i, t) = \sum_{b=0}^{B-1} 4^b p(i_b, t_b)\] \hspace{1cm} (5)
where \(p(i_b, t_b)\) is given in (2) and the weight \(4^b\) represents the differential importance of each bit position. The derivation can be found in [14], [15].

IV. OPTIMIZING PARAMETERS OF WRITE OPERATIONS

In this section, we investigate optimization of write operation parameters. First, the optimized current and duration for a single bit will be discussed and then we provide biconvex optimization problems for a \(B\)-bit word.

A. Optimized Parameters for Single Bit Write

First, we note that the normalized current should be greater than 1 for a successful write in (2). It shows that the write current should be greater than the critical current (i.e., \(I > I_c\)) so as to switch the direction of magnetization [4], [21]. Then, we can formulate the following optimization problem for single-bit (also multi-bit uniform) write:

\[
\begin{array}{ll}
\text{minimize} & p(i, t) = c \exp \left(-2(i - 1)t \right) \\
\text{subject to} & i^2 t \leq \mathcal{E}, \quad i \geq 1 + \epsilon, \quad t \geq 0,
\end{array}
\] \hspace{1cm} (6)

where \(\mathcal{E}\) is a constant corresponding to the given write energy budget. We introduce \(\epsilon > 0\) to guarantee \(i \geq 1\). This optimization problem is equivalent to

\[
\begin{array}{ll}
\text{maximize} & (i - 1)t \\
\text{subject to} & i^2 t \leq \mathcal{E}, \quad i \geq 1 + \epsilon, \quad t \geq 0.
\end{array}
\] \hspace{1cm} (7)

Note that the objective function \((i - 1)t\) is not concave. However, we can obtain the optimal \(i^*\) and \(t^*\) as follows.

Lemma 4: The optimized current and duration for single bit write are \(i^* = 2\) and \(t^* = \frac{\mathcal{E}}{1 + \epsilon}\), respectively. The corresponding write failure probability is given by
\[p(i^*, t^*) = c \exp \left(-\frac{\mathcal{E}}{2} \right). \] \hspace{1cm} (8)

Proof: The proof is given in [22].\[\square\]

Note that the write failure probability is an exponentially decaying function of \(\mathcal{E}\).

B. Optimized Parameters for \(B\)-bit Word Writes

We formulate an optimization problem to determine the currents and durations. For a given write energy constraint, we seek to minimize MSE as follows.

\[
\begin{array}{ll}
\text{minimize} & \sum_{b=0}^{B-1} 4^b \exp(-2(i_b - 1)t_b) \\
\text{subject to} & \sum_{b=0}^{B-1} i_b^2 t_b \leq \mathcal{E} \\
& i_b \geq 1 + \epsilon, \quad t_b \geq 0, \quad b = 0, \ldots, B - 1
\end{array}
\] \hspace{1cm} (9)

We may include additional constraints such as \(L(t) \leq \delta\) to guarantee a required write speed performance. Note that \(L(t) \leq \delta\) is a convex constraint.

Although the optimization problem (9) is not convex, we show that (9) is a biconvex optimization problem. Hence, we can find suboptimal solutions via effective algorithms such as alternate convex search (ACS) [19].

Definition 5 (Biconvex Set [19]): Let \(S \subseteq X \times Y\) where \(X \subseteq \mathbb{R}^n\) and \(Y \subseteq \mathbb{R}^m\) denote two non-empty and convex sets. The set \(S\) is defined as a biconvex set on \(X \times Y\), if for every fixed \((x, y) \in S\) is a convex set and for every fixed \(y \in Y\), \(S_y \triangleq \{ x \in X \mid (x, y) \in S \}\) is a convex set in \(X\).

Definition 6 (Biconvex Function [19]): A function \(f : S \to \mathbb{R}\) is defined as a biconvex function on \(S\), if for every fixed \(x \in X\), \(f_x(\cdot) = f(x, \cdot) : S_X \to \mathbb{R}\) is a convex function on \(S_X\), and for every fixed \(y \in Y\), \(f_y(\cdot) = f(\cdot, y) : S_Y \to \mathbb{R}\) is a convex function on \(S_Y\).

Definition 7 (Biconvex Problem [19]): An optimization problem of the following form:

\[
\text{minimize} \quad \{ f(x, y) \mid (x, y) \in S \}
\] \hspace{1cm} (10)

is defined as a biconvex problem, if the feasible set \(S\) is biconvex on \(X \times Y\) and the objective function \(f\) is biconvex on \(S\).

Theorem 8: The optimization problem (9) is biconvex.

Proof: First, we show that \(\sum_{b=0}^{B-1} i_b^2 t_b \leq \mathcal{E}\) is a biconvex set. Note that \(i_b^2 t_b\) is a convex function of \(i_b\) for every fixed \(t_b \geq 0\). In addition, \(i_b^2 t_b\) is a convex function for every fixed \(i_b \geq 1 + \epsilon\). Hence, \(\sum_{b=0}^{B-1} i_b^2 t_b \leq \mathcal{E}\) is a biconvex set.

It is clear that \(\exp(-2(i_b - 1)t_b)\) is a biconvex function of \(i_b\) and \(t_b\). Since the positive weight \(4^b\) preserves convexity, the objective function is biconvex.\[\square\]

Since (9) is a biconvex problem, ACS can effectively find a suboptimal solution [19], [20]. It alternatively updates variables by fixing one of them and solving the corresponding convex optimization problem. We propose Algorithm 1 to optimize the write current \(i\) and the write duration \(t\) of the biconvex optimization problem (9) by using ACS.
Algorithm 1 ACS algorithm to solve (9)

1: Choose a starting point \(i^{(0)}\) from the feasible set \(S\) and set \(k = 0\).

2: For fixed \(i^{(k)}\), find \(t^{(k+1)}\) by solving the following convex problem:

\[
\begin{align*}
\text{minimize}_t & \quad \sum_{b=0}^{B-1} 4^b \exp \left(-2 \left(t_b^{(k)} - 1 \right) t_b \right) \\
\text{subject to} & \quad \sum_{b=0}^{B-1} (i_b^{(k)})^2 t_b \leq \mathcal{E} \\
& \quad t_b \geq 0, \quad b = 0, \ldots, B-1
\end{align*}
\] (11)

3: For fixed \(t^{(k+1)}\), find \(i^{(k+1)}\) by solving the following convex problem.

\[
\begin{align*}
\text{minimize}_i & \quad \sum_{b=0}^{B-1} 4^b \exp \left(-2(i_b - 1) t_b^{(k+1)} \right) \\
\text{subject to} & \quad \sum_{b=0}^{B-1} i_b^{(k+1)} t_b^{(k+1)} \leq \mathcal{E} \\
& \quad i_b \geq 1 + \epsilon, \quad b = 0, \ldots, B-1
\end{align*}
\] (12)

4: If the point \((i^{(k+1)}, t^{(k+1)})\) satisfies a stopping criterion, then stop. Otherwise, \(k := k + 1\) and go back to line 2.

Remark 9 (Starting Point): Since biconvex optimization problems may have a large number of local minima [19], a starting point \(i^{(0)}\) can affect the final solution. We can choose \(i^{(0)} = (2, \ldots, 2)\) as a starting point, which minimizes the uniform write failure probability (see Lemma 4). In Corollary 16, we show that this starting point guarantees the fastest convergence.

Remark 10 (Stopping Criterion [19]): There are several ways to define the stopping criterion in Algorithm 1. For example, we can consider the absolute values of the differences between \((i^{(k)}, t^{(k)})\) and \((i^{(k+1)}, t^{(k+1)})\) or the difference between \(\text{MSE}(i^{(k)}, t^{(k)})\) and \(\text{MSE}(i^{(k+1)}, t^{(k+1)})\). Alternatively, we can set a maximum number of iterations.

V. ANALYSIS OF ALTERNATE CONVEX SEARCH FOR MRAM WRITE PARAMETERS

A. Optimal Solutions for Each Iteration

In this subsection, we present the optimal solutions for (11) and (12). Since these problems are convex, we exploit the structure of the problems to derive the optimal solutions analytically using the KKT conditions.

Theorem 11: For fixed \(i^{(k)}\), the optimal \(t^{(k+1)} = t^*\) of (11) is given by

\[
t_b^* = \begin{cases}
0, & \text{if } \nu \geq \frac{2^{4b} (i_b^{(k)-1})^{1/3}}{i_b^{(k)}}, \\
\log \left(\frac{\frac{2^{4b} (i_b^{(k)-1})^{1/3}}{i_b^{(k)}}}{2 (i_b^{(k)-1})} \right), & \text{otherwise}
\end{cases}
\] (13)

where \(\nu\) is a dual variable of corresponding KKT conditions. Note that \(\nu\) depends on the energy budget \(\mathcal{E}\).

Proof: The proof is given in [22].

Theorem 12: For fixed \(t^{(k+1)} = t\), the optimal \(i^{(k+1)} = i^*\) of (12) is given by

\[
i_b^* = \begin{cases}
1 + \epsilon, & \text{if } \nu \geq \frac{4^b}{1 + \epsilon} e^{-2t_b}; \\
\frac{1}{2b} W \left(\frac{2^{-4b} t_b^{-2t_b}}{\nu} \right), & \text{otherwise}
\end{cases}
\] (14)

where \(\nu\) is a dual variable. Also, \(W(\cdot)\) denotes the Lambert W function (i.e., the inverse function of \(f(x) = xe^x\)) [23].

Proof: The proof is given in [22].

Remark 13: The solutions of (13) and (14) can be interpreted as water-filling (see [22]). Each bit position can be regarded as an individual channel among \(B\) parallel channels as in [15], [16]. The ground levels depend on the importance of bit positions; hence, larger current or longer duration are assigned to more significant bit positions.

B. Convergence of MSE

We show that Algorithm 1 guarantees convergence to a locally optimal MSE. The converged MSE depends on a starting point.

Lemma 14: The sequence \(\{\text{MSE}(i^{(k)}, t^{(k)})\}_{k \in \mathbb{N}}\) obtained by Algorithm 1 is monotonically decreasing, i.e., \(\text{MSE}(i^{(k+1)}, t^{(k+1)}) \leq \text{MSE}(i^{(k)}, t^{(k)})\) for all \(k \in \mathbb{N}\).

Proof: Note that \(\text{MSE}(i^{(k)}, t^{(k+1)}) \leq \text{MSE}(i^{(k)}, t^{(k)})\) and \(\text{MSE}(i^{(k+1)}, t^{(k+1)}) \leq \text{MSE}(i^{(k+1)}, t^{(k+1)})\) because of (11) and (12), respectively. Hence, \(\text{MSE}(i^{(k+1)}, t^{(k+1)}) \leq \text{MSE}(i^{(k)}, t^{(k)})\).

Theorem 15: The sequence \(\{\text{MSE}(i^{(k)}, t^{(k)})\}_{k \in \mathbb{N}}\) obtained by Algorithm 1 converges monotonically.

Proof: It is clear that \(\text{MSE}(i^{(k)}, t^{(k)}) \geq 0\) for all \(k \in \mathbb{N}\) by (2) and (5). Then, \(\{\text{MSE}(i^{(k)}, t^{(k)})\}_{k \in \mathbb{N}}\) is monotonically decreasing and bounded below. \(\{\text{MSE}(i^{(k)}, t^{(k)})\}_{k \in \mathbb{N}}\) converges because of monotone convergence theorem.

Corollary 16: By setting \(i^{(0)} = (2, \ldots, 2)\), we obtain

\[
\lim_{k \to \infty} \left(i^{(k)}, t^{(k)} \right) = \left(i^{(0)}, t^{(1)} \right)
\] (15)

if \(t_b^{(1)} \neq 0\) for all \(b \in [0, B-1]\).

Proof: The proof is given in [22].

Corollary 16 means that the starting point \(i^{(0)} = (2, \ldots, 2)\) guarantees the fastest convergence.

C. Starting Point of \(i^{(0)} = (2, \ldots, 2)\)

In this subsection, we show that \(i^{(0)} = (2, \ldots, 2)\) is a good starting point, in the sense that it reduces the MSE exponentially with \(B\).

Suppose that the starting point is \(i^{(0)} = (2, \ldots, 2)\). By Theorem 11 and Corollary 16, Algorithm 1 provides the following optimized write durations \(t^{(1)} = \bar{t} = (t_0, \ldots, t_{B-1})\) where

\[
\bar{t}_b = \begin{cases}
0, & \text{if } \nu \geq \frac{4^b}{2}; \\
\frac{1}{2} \log \left(\frac{1}{\nu} \cdot \frac{4^b}{2} \right), & \text{otherwise}
\end{cases}
\] (16)

Lemma 17: If \(\mathcal{E} > 2B(B-1) \log 2\), then \(\bar{t}_b > 0\) for all \(b \in [0, B-1]\) and

\[
\bar{t}_b = \frac{\mathcal{E}}{4B} + \left(b - \frac{B-1}{2} \right) \cdot \log 2.
\] (17)
VI. NUMERICAL RESULTS

We evaluate the solutions to optimize the write failure probability for single bits as well as the MSE for B-bit words. The critical current I_c and the characteristic relaxation time τ_c do not affect the numerical results because the normalized values $i = \frac{i}{T_c}$ and $t = \frac{t}{\tau_c}$ are considered. As in [4], we set $\Delta = 60$ for the thermal stability factor.

Fig. 3 shows that $i^* = 2$ and $t^* = \frac{\xi}{T}$ minimize the write failure probability as proved in Lemma 4. The corresponding minimal write failure probability decreases exponentially with the write energy as shown in (8).

Fig. 4 shows numerical results by solving (9). Fig. 4 compares the MSEs of the uniform write energy allocation and the optimized energy allocation by Algorithm 1. We set a starting point $i^{(0)} = (2, \ldots, 2)$. As shown in Theorem 18, the MSE reduction ratio is $\gamma = \frac{3B}{2} \cdot 2^{-B} = 0.0469$ for $B = 8$.

Fig. 5 shows that the MSE reduction ratio improves exponentially with B (as derived in Theorem 18). Although we cannot guarantee the optimality, the proposed Algorithm 1 is very effective to reduce the MSE. Note that $\gamma = 3.66 \times 10^{-4}$ for $B = 16$ and $\gamma = 1.12 \times 10^{-8}$ for $B = 32$.

VII. CONCLUSION

We proposed a principled approach to improving MRAM’s write energy efficiency. After formulating the biconvex optimization problem, we proposed the iterative algorithm to solve the biconvex problem, which attempts to minimize the MSE under a write energy budget. Also, we proved that the proposed algorithm converges and it can reduce the MSE exponentially. The proposed optimization scheme can be extended in future work to coded information representations, where redundancy is added to the written values to further improve the fidelity.

ACKNOWLEDGMENT

The work of Yuval Cassuto was partly supported by the US-Israel Binational Science Foundation, and by the Israel Science Foundation.
REFERENCES

