
1

Detection and Coding Schemes for Sneak-Path
Interference in Resistive Memory Arrays

Yuval Ben-Hur and Yuval Cassuto, Senior Member, IEEE

Abstract—Resistive memory is a promising technology for
achieving unprecedented storage densities and new in-memory
computing features. However, to fulfill their promise, resistive
memories require array architectures suffering from a severe
interference effect called “sneak paths”. In this paper we ad-
dress the sneak-path problem through a communication-theory
framework. Starting from the fundamental problem of readout
with parallel-resistance interference, we develop several tools
for detection and coding that significantly improve the memory
reliability. For the detection problem we formulate and derive the
optimal detector for a realistic array model, and then propose
simplifications that enjoy similarly good performance and simpler
implementation. Complementing detection for better error rates
is done by a new coding scheme that shapes the stored bits to
get lower sneak-path incidence. For the same storage rates, the
new coding scheme exhibits error rates lower by an order of
magnitude compared to known shaping techniques.

Index Terms—memristor, sneak-path, detection, bhattacharyya
bound, coding.

I. INTRODUCTION

The ever-increasing demand for data storage capacity drives
a constant need to scale the storage density, while maintaining
its power efficiency and reliability. As Flash technology for
non-volatile memories seems to reach a scaling barrier, recent
advancements in the fabrication of resistive devices suggest
promising alternative technologies. The principal example of
resistive memory is the memristor technology [1], but in
addition other technologies, such as phase change memory
(PCM) and spin torque transfer (STT-MRAM), implement
arrays with similar structure. The key in resistive technologies
is that the memory cell is a passive two-terminal device that
can be both read and written over a simple crossbar structure.
This feature offers a huge density advantage, but at the cost
of poor isolation between cells, resulting in severe access and
reliability issues. Mitigating these issues is a highly motivated
objective, given the far-reaching impact resistive arrays can
strike on future computing systems. In addition to storing bits,
resistive arrays have been shown to be capable of performing
logic operations [2]–[5], analog and neural computation [6]–
[8], and vector similarity calculations [9]. In all those exciting
applications too, we are in need to solve the fundamental issues
of the crossbar array.

The importance of enabling reliable resistive arrays moti-
vated extensive research efforts over the last few years, which
contributed works toward modeling, detection and repair of
faults in resistive arrays [10], [11]. By far the greatest efforts

Y. Ben-Hur was with the Viterbi Department of Electrical Engineering,
Technion – Israel Institute of Technology. email: yuvalbh@technion.ac.il

Y. Cassuto is with the Viterbi Department of Electrical Engineering,
Technion – Israel Institute of Technology. email: ycassuto@ee.technion.ac.il

were pointed to solve the most fundamental problem of resis-
tive arrays called sneak paths. When a cell in a crossbar array
is read, a voltage is applied upon it, and current measurement
determines whether it is in a low-resistance state (logical 1) or
a high-resistance state (logical 0). Sneak paths are an effect by
which in parallel to the desired measurement path, alternative
current paths through other array cells distort the measure-
ment, which may result in reading an erroneous state. The
sneak-path problem was addressed by numerous works with
different approaches and at various system layers. Alternative
memory architectures, which include a modification of the
cell technology and/or the entire array structure, have been
proposed to decrease or eliminate sneak paths [12]–[14]. Other
approaches concentrate on low-level electric analysis, which
is meant to clean distorted measurements [15]–[18]. Addition-
ally, models for the resistance distortion caused by sneak paths,
with accompanying signal processing and data representation
techniques, appear in [19], [20]. Finally, information-theoretic
analysis and mitigation of sneak paths in crossbar memories
was first studied in [21] and then extended specifically to
resistive arrays in [22]–[24].

Despite all these impressive contributions, sneak paths re-
main a major problem for designers of next-generation mem-
ory architectures – part of the reason being that each scheme
works with its own model and assumptions, with no clear way
to accumulate their advantages in an integrated solution. Thus
in this paper our approach at the sneak-path problem is to
address it within a clear and general framework, which will
allow the tools to extend to future technology and research
advancements. The most suitable framework to deal with the
problem is communication theory, because sneak paths can be
modeled as a special kind of interference to the cell being
read. The paper lays down a framework for resistive memory
that encompasses the two central elements of communication
theory: detection and coding/modulation. Our solutions to the
detection problem start from the fundamental model of a
parallel-resistance channel, and extend to practical settings
with heterogeneous sneak-path configurations, cell-selectors
implemented in hardware, and multiple reads. Our proposed
coding scheme efficiently reduces the sneak-path incidence in
the array, and its analysis enables to extend optimal detection
to coded arrays as well. Our detection and coding schemes are
devised with practical implementation in mind: the detectors
are proposed with several degrees of simplification, and the
code preserves our ability to access small data units within
the array.

The results of the paper are presented as follows. In Sec-
tion II the problem of detection with sneak paths is formalized
as an estimation problem with interference and noise. Sneak-

2

path interference comes from resistances in parallel, which
introduces a unique and extremely challenging problem even
when the margins between the low and high resistances are
sizable. In Section III we formulate the optimal maximum
a posteriori (MAP) detector for sneak paths, and derive an
expression for it by calculating the incidence distribution of
sneak paths of different types. Then we suggest an approx-
imation of the MAP detector that is simpler to implement
in precision-limited hardware, and show empirically that it
offers essentially the same detection performance as the MAP
detector. Toward real-memory implementation, in Section IV
we study a simpler class of detectors: threshold detectors,
whereby resistance measurements are compared against a sin-
gle threshold value to decide between logical 1 (below thresh-
old), or logical 0 (above threshold). In this section too we use
the special structure of the problem to derive an approximately
optimal threshold value that is much easier to compute, and is
shown to give essentially the same performance as the optimal
threshold. In Section V we introduce coding toward reduction
of sneak-path incidence. We propose modulation (also called
shaping) codes that at the same storage rates improve the error
rates significantly compared to prior array-shaping techniques.
The key idea of these codes is to shape the distribution of
2 × 2 blocks in the array, which is more efficient for sneak-
path reduction than shaping individual-bit distributions. At the
same time the 2× 2 unit is small enough to allow read/write
access to small parts of the array. We extend the calculation
of the sneak-path distribution to 2×2-coded arrays, and hence
can apply the detectors from the first part of the paper to coded
arrays as well.

In summary, our work promotes the mitigation of sneak-
path interference by a combination of rigorous formulations,
analytical derivations, empirical insights, and practical simpli-
fications. While the basic sneak-path problem is still inherently
difficult due to the sheer number of potentially interfering
paths, our proposed framework and tools mark clear routes
toward the containment of this challenge in real memory
arrays.

II. THE SNEAK-PATH CHANNEL

A. Sneak-Path Basics

Consider a resistive crossbar array, where at the intersection
of row i and column j lies the resistive cell (i, j). The array
is represented as a binary matrix A with m rows and n
columns, where the bit in cell (i, j) is represented by Ai,j .
Each cell can store a single bit, by modulating it to one of
two predefined resistance levels. A logical 1 bit is represented
by low resistance, and a logical 0 bit by high resistance. To
meet this convention, we define R(b) as the resistance value
used to represent the logical bit b ∈ {0, 1}.

When reading the cell (i, j), the resistance measurement
of the target cell is influenced by parallel (sneak) paths
consisting of resistances of other array cells. In general, a
sneak path is defined as a closed path originating from and
returning to location (i, j), while traversing logical-1 cells
through alternating vertical and horizontal steps. For example,
cell (4, 1) in Fig. 1b has a sneak path composed of cells

(4, 2), (2, 2) and (2, 1). A longer sneak path, affecting cell
(1, 4), consists of 5 cells: (3, 4), (3, 2), (2, 2), (2, 1) and (1, 1).
The interference caused by sneak paths is most dominant when
the read cell has high resistance, while the parallel cells have
low resistance values. This situation can cause the target cell
to be erroneously read as low resistance, due to the equivalent
value being sensed by the peripheral reading hardware. This
issue has broad implications both on the storage reliability and
on the scaling potential of currently developed resistive arrays.

In principle, sneak paths can have different (odd) lengths,
where the length is the number of cells participating in the
path in parallel to (i, j). However, in this work we consider
only simple sneak paths, i.e., paths that contain exactly 3 cells
in parallel to (i, j). As will be explained in the next sub-
section, this length of sneak paths is by far the most dominant
interference among all potential sneak-path lengths. In the rest
of the paper we define a sneak path in parallel to cell (i, j) as
a pair of row indices i, i′ and a pair of column indices j, j′,
such that

Ai,j′ = Ai′,j′ = Ai′,j = 1 (1)

and i 6= i′, j 6= j′.
In actual resistive arrays, the most popular method to

combat and mitigate the problem of sneak paths is by intro-
ducing cell selectors. A selector is an electrical device that
allows current to flow only in one direction. Since sneak
paths inherently produce reverse currents in at least one of
the cells along the parallel path, placing a selector in series
to each array cell completely eliminates sneak paths in the
entire array. In this work, we consider selectors as diodes in
the 1D1R type of selectors. However, the proposed approach
can be used for other selector types as well (e.g. 1S1R)
with simple adaptations to the interference model [25]. Our
basic assumption is that imperfections in the production or
maintenance of the memory cause cell selectors to fail. We
model this behavior using a random fault model, in which
for every read operation each selector within the array fails
i.i.d. with probability pf . For a sneak path to be active despite
the selectors, it does not suffice that there will be a faulty
selector along the path. Cells (i, j′) and (i′, j) still conduct
current in the forward direction (associated with the direct
path), and will therefore not be affected by selectors. Only the
sneak current through cell (i′, j′) flows in the reverse direction
compared to a regular-readout current flow. Therefore, a sneak
path affecting cell (i, j) as in (1) will be active only if the
selector in cell (i′, j′) fails. In other words, in a crossbar
memory with selectors, sneak-path interference will occur for
cell (i, j) if the condition in (1) holds and the selector in cell
(i′, j′) fails. In this case, the sensed resistance value is the
equivalent resistance of the read cell, R(Ai,j), in parallel to
the sneak-path resistance.

B. The Sneak-Path Channel

The nature of interferences caused by sneak paths can
be modeled in the following manner: the desired resistor is
measured in parallel to a path of other resistors created within
the array during the measurement. The alternative paths can

3

(a) (b)

Fig. 1: (a): Physical illustration of a crossbar array. Every row-
column intersection is connected by a single resistive cell. (b):
Logical illustration of a crossbar array. White cells represent logical
0 bits, and black cells represent logical 1 bits.

be regarded to as a set of parallel interfering resistors, each
with a resistance value that is associated with the path length.
Since the resistances are accumulated in parallel, paths that
include large numbers of resistors have a significantly smaller
contribution to the equivalent resistance compared to paths the
have fewer resistors. For this reason we focus in this work only
on sneak paths that contain 3 resistors, and neglect the longer
(odd) lengths. Thanks to the non-linearity designed into the
array cells, the resistance of these longer paths is likely to be
negligible even if there are many such paths.

Let H0 and H1 denote two hypotheses that represent,
respectively, the two possible resistance values R(0) and R(1)
for the target cell. We denote the resistance measured in cell
(i, j) of the array A by rAi,j . In order to calculate the exact
parallel resistance induced by sneak paths, we have to know
the number of parallel paths, and the structure of connections
between the resistors along these paths. A reasonable assump-
tion in the memory access scenario is that the interfering
resistance is known (e.g., 3R(1)), but the number and structure
of sneak paths are data-dependent random variables, which are
typically unknown during the measurement. A simple example
that illustrates the unique nature of interference underlying
sneak paths is as follows. Consider a single sneak path
(composed of 3 resistors each with resistance of R(1)) around
a target cell that is set to an unknown value Ai,j . The sneak
path induces an equivalent parallel resistance of 3R(1), so that
the overall measured resistance can be written as the inverse
sum of reciprocals of the target resistance and a single branch
with resistance 3R(1),

rAi,j =

(
1

R(Ai,j)
+

1

3R(1)

)−1

+ η, (2)

where η is an additive noise. The additive noise may be
caused by various mechanisms within the memory system,
where each mechanism incurs different noise characteristics.
Noise sources in the sensing circuitry, as well as variabilities
between different cells due to non-homogeneous fabrication,
are commonly modeled as Gaussian noises [25]–[27]. While
there are noise sources that are not Gaussian distributed (such
as random variations in the resistance per logical value, which
are modeled as a log-normal random variable), in this work
we focus mostly on Gaussian distributed noise, which also
captures, by the central limit theorem, a mix of noise sources
with different (even unknown) distributions; we also focus on

Fig. 2: Plots of the conditional distributions of r for the two
hypotheses: H1 : Ai,j = 1 and H0 : Ai,j = 0. The different
plots are for L = 0, 1 and 2 (upper, middle and lower plots,
respectively). The parameters are R(0) = 1000Ω, R(1) =
100Ω, R = 250Ω and the noise standard deviation is ση =
50Ω.

noise models that are independent between distinct accesses to
the memory. However, the results throughout the paper can be
adapted to other noise types, and even combinations of several
noise mechanisms.

Interestingly, even the simple disturbance of the measured
value given in (2) imposes a fundamental challenge on the
task of detecting the stored bit Ai,j . The difficulty stems
from the unique nature of this disturbance: even relatively
small incidences of sneak paths result in severe drops in the
measured resistance. For example, Fig. 2 depicts a the scenario
in (2), where even a single sneak path significantly shrinks the
margin between the two hypotheses. Detection errors occur
when two hypotheses become close enough so that the additive
noise causes cross-over between them.

To capture the exact interference induced by sneak paths,
we first need to find the resistance values that are measured
in parallel to the resistance of the read cell. Because of the
crossbar structure, the parallel resistance does not only depend
on the number of active sneak paths affecting cell (i, j),
which we denote as L, but also on the type of the sneak-
path combination. This combination is essentially the structure
of connections between the resistors involved in the forming
sneak paths. We define the sneak-path type using the number
of active sneak paths and the number of rows and columns
participating in those sneak paths. For ease of notation, we
use vector notation for the parameters of the sneak-path type.

Definition 1. The type of a sneak-path combination is a vector
λ = (L; kr, kc), where L denotes the number of active sneak
paths, kr denotes the number of rows and kc denotes the
number of columns that participate in these L sneak paths.

Note that kr is the number of different i′ indices (from (1))
that appear in the L sneak paths, and similarly kc is the number

4

(a) The cell (4,1) in
Fig. 1b has L = 2
sneak paths involv-
ing kr = 2 rows and
kc = 2 columns.

(b) The cell (3,1) has
L = 2 sneak paths
involving kr = 2
rows and kc = 1
column. Cell (2,1)
is shared between
paths.

Fig. 3: L = 2 sneak-paths with different types.

of different j′ indices. Each array cell can be associated with
a corresponding sneak-path type. For example, if some array
cell has no sneak paths around it, its type is (0; 0, 0). A less
trivial example of sneak-path types is shown in Example 1
and Fig. 3 for two specific array cells from Fig. 1. For any
practical scenario, L is assumed to be bounded by some
constant upper bound Lmax, beyond which reliable detection
is practically impossible. The value of Lmax depends on the
problem parameters and on the specific detector being used.

Example 1. The importance of differentiating sneak path
combinations by their type can be demonstrated using the
array in Fig. 1b. The logical representation of the array in
this case is

1 0 1 0
1 1 0 1
0 1 0 1
0 1 1 0

.

There are several cells within the array that have sneak paths,
but let us focus on cells (3, 1) and (4, 1). Both of these cells
have L = 2 sneak paths, but each has a different type.
For cell (3, 1) the type is λ = (2; 2, 1) while cell (4, 1)
has type of λ = (2; 2, 2). This causes each cell to have a
different interfering circuit, as depicted in Fig. 3. Therefore,
although the number of sneak paths is equal in both cases,
the magnitude of interference is not the same, since their
equivalent resistance differs.

Given a specific sneak-path type, we can derive an analytical
expression for the sensed resistance value for cell (i, j). We
model the measured resistance as a combination of the read
cell’s resistance value, the sneak-path interference and additive
noise. Denoting the sneak-path equivalent parallel resistance
as α(λ)R(1), we get

rAi,j (λ) = ρ (Ai,j , λ) + η, (3)

where

ρ (Ai,j , λ)
∆
=

(
1

R(Ai,j)
+

1

α(λ)R(1)

)−1

.

The performance of the detection framework presented in

the following sections depends on precise characterization of
the sneak-path types λ and their incidence in the array. In
Table I, the first four rows list all sneak-path types for L up
to 3 and their corresponding values of α(λ). The last row
adds important information about the type’s incidence, which
we discuss after presenting the detector in the next section.
The values of α(λ) are obtained by simple electric-theory
equivalent-resistance calculations. The circuits that correspond
to these equivalent resistances appear in Fig. 4. Combinations
of kr, kc not in the table can be obtained from included
columns by row-column symmetry. For each L, the types are
ordered by increasing interference severity (decreasing parallel
resistance). In the table we stop at L = 3 because α = 1 in
the last column means sneak-path resistance equaling R(1),
which is a “cutoff” value for being able to distinguish between
R(0) and R(1) in the read cell. We later designate Lmax as
the maximal number of sneak paths handled by the detection
scheme, and for pure resistive cells we have Lmax = 3 (when
cells have non-linearity, we can get α > 1 for more than 3
sneak paths, in which case we may have Lmax > 3).

III. OPTIMAL DETECTION SCHEMES

The model described in the previous section induces a
detection problem, commonly referred to as composite hypoth-
esis testing [28]. Unlike simple hypothesis testing, composite
hypotheses involve hidden parameters that govern the posterior
probabilities of the hypotheses. In our case, for each array
cell (i, j) we have two composite hypotheses, H0 and H1,
for the two different possible resistances, where λ is a hidden
parameter. Although R(0) and R(1) are known, the interfering
parallel resistance α(λ)R(1) depends on λ and is therefore
random (since λ = (L; kr, kc) depends on specific assignment
of bits in the array and is typically unknown during the
measurement).

A. MAP Detector

An optimal detector for the model presented in (3) can be
formulated using the Maximum A-Posteriori (MAP) estimator
for the value of Ai,j , given the measurement rAi,j . Assume the
binary data stored in the memory cells are distributed Bernoulli
i.i.d., i.e.,

∀i, j, Pr(Ai,j = 1)
∆
= q1 = 1− q0

∆
= 1− Pr(Ai,j = 0). (4)

q1 is the parameter of the Bernoulli distribution, also denoted
q in the sequel. Having this prior, as well as the statistics of the
other variables in (3), let us now define the likelihood function
as a weighted sum of conditional likelihoods

Λb (r) , p(r|b) =
∑
λ′

p(r|b, λ′)pλ(λ′) =

∑
λ′

fη

(
r − ρ

(
b, λ′

))
pλ(λ′),

(5)

where b ∈ {0, 1}, and fη(·) is the noise probability density
function. For practical reasons, we restrict the sum to values of

5

Fig. 4: Electrical circuits that describe the sensed resistance for values of λ in Table I.

λ that correspond to 0 ≤ L ≤ Lmax (Lmax = 3 in Table I).
The realization of such detector requires to obtain the prior
probabilities of the sneak-path types λ. The distribution pλ
can be calculated combinatorially in closed form for values
of L up to Lmax = 3, as shown in the following theorem.
Note that the probabilities depend on the array size, the prior
of each bit and the selector fault probability.

Theorem 1. The probability that a cell has sneak-path type
λ′ = (L; kr, kc) in an array whose bits are chosen i.i.d.
Bernoulli with parameter q equals

pλ(λ′) =

m−1∑
u=0

n−1∑
v=0

Au,v(λ′)pu,vpL|u,v, (6)

where pu,v =
(
m−1
u

)(
n−1
v

)
qu+v(1 − q)m−1−u+n−1−v,

pL|u,v = (pfq)
L(1 − pfq)

uv−L and the values of Au,v(λ)
are as listed in Table I. pf is the probability that a selector is
faulty.

Proof. The probability pλ(L; kr, kc) is derived by marginal-
izing over the number of 1s in the read cell’s row, which we
denote u, and the number of 1s in its column, which we denote
v. The corresponding probability, pu,v , can be easily derived
using the Bernoulli distribution. Now, given u and v 1s in the
row and column, respectively, the probability of having a spe-
cific combination of L sneak-paths is (pfq)

L(1−(pfq))
uv−L,

because pfq is the probability that the cell at location i′, j′ in
the intersection of a 1-row and a 1-column is both written to
1 and has a faulty selector. The number of combinations for
each type, denoted Au,v(L; kr, kc), is as follows:
• L = 0 requires to force all uv intersecting cells to zero,

yielding a single combination.
• The case L = 1 sneak path has only one type: (kr, kc) =

(1, 1). In this case, there are uv possible locations for the
intersecting 1.

• The case of L = 2 has more possibilities. In the case
of (1, 2), we choose a row and then two locations in the

same row, such that the order of selection does not matter.
This yields uv(v−1)

2 . The type (2, 2) induces uv(u−1)(v−1)
2

combinations, since we select a pair of rows and a pair
of columns, and can match the pairs in two ways (hence
the denominator 2 and not 4).

• Finally, for L = 3 we have 6 types, divided into 4
categories. The type (1, 3) requires to choose a row
and then three cells in this row, yielding uv(v−1)(v−2)

6
combinations. For type (2, 3), we take a configuration of
type (1, 3) and choose which of the three cells to move,
and to which other row. This yields uv(u−1)(v−1)(v−2)

2
combinations. The type (2, 2) is similar to L = 2, only
factor 2 larger, since we have to assign the third sneak
path to one of two row-column pairs. The type (3, 3)
requires to choose three rows and three columns, and
then one of six ways to choose the three intersection cells,
yielding uv(u−1)(v−1)(u−2)(v−2)

6 combinations.
The remaining cases can be easily calculated by noting that
due to symmetry Au,v(L; kr, kc) = Av,u(L; kc, kr).

The values of α(λ) in Table I combined with the proba-
bilities calculated in Theorem 1 provide all the information
required for applying optimal MAP detection truncated at
Lmax = 3.

Detector 1. We obtain the optimal decision on Ai,j by
applying the MAP decision rule

Λ1

(
rAi,j

)
Λ0

(
rAi,j

) Âi,j=1

≷
Âi,j=0

q0

q1
. (7)

Detector 1 maximizes the a-posteriori probability of the
hypothesis without knowledge on λ. However, even when the
exact sneak-path type λ is known, the detection may still suffer
errors due to the additive noise. For example, the likelihoods
of 0 and 1 in a 4× 4 array are depicted in Fig. 5. In addition
to the likelihoods Λb(r), which do not assume any prior
knowledge on λ (except its distribution), we also plotted the

6

L 0 1 2 3
kr 0 1 1 2 1 2 2 3
kc 0 1 2 2 3 2 3 3

α(λ) ∞ 3 2 3/2 5/3 7/5 6/5 1

Au,v(λ) 1 uv uvv′

2
uvu′v′

2
uvv′v′′

6 uvu′v′ uvu′v′v′′

2
uvu′v′u′′v′′

6

TABLE I: Types of L = 0, 1, 2 and 3 sneak paths. For lack of space, u − 1 is replaced by u′ and u′′ = u − 2 (same for v).
We define Au,v(λ) to be 0 for any invalid selection of parameters, i.e., L > uv or kr > v or kc > u.

Fig. 5: Probability density functions of the resistance measured
in cells (4, 1) (λ = (2; 2, 2)) and (3, 1) (λ = (2; 2, 1)) from the
array in Example 1, with and without prior knowledge of λ,
and assuming additive Gaussian noise with ση = 10Ω. The λ-
independent solid and dashed curves are identical between the
two cells, but the λ-dependent dotted and dash-dotted curves
of cell (4, 1) are to the left of the ones in cell (3, 1), due to
the stronger interference.

actual probabilities given the values of λ for specific cells in
the array from Example 1. As can be seen, the severity of the
interference depends on the specific sneak-path types. Also,
even when the types are known there is still some overlap
between the conditional likelihoods.

B. Error Probability

The performance of Detector 1 can be analyzed using
numerical tools or by simulation. We start by presenting an
expression for the error probability associated with Detector 1.
Full analytic calculation of this expression is hard, due to
the composite nature of the hypotheses, but evaluation via
numerical calculations is indeed possible. In general, the error
probability is described by the following expression

pMAP
e =

∑
b∈{0,1}

p(Hb̄|Hb)qb = p(H1|H0)q0 + p(H0|H1)q1.

We marginalize over the hidden-variable vector λ to get

p(Hb̄|Hb) =
∑
λ

p(Hb̄|Hb, λ)pλ(λ)

where

p(Hb̄|Hb, λ) =

∫
r:

Λb̄(r)

Λb(r)
≥ qbq

b̄

exp
(
− 1

2σ2
η

(r − ρ(b, λ))2
)

√
2πσ2

η

dr.

Now, since p(λ) is known (see Theorem 1), all that is left
for evaluating the error probability is to calculate the integral
(numerically). The calculation of the error probability for a
range of standard deviations of the Gaussian additive noise
η appears in Fig. 6 (the error curves were also validated via
bit-error rate (BER) simulations for the completeness of the
analysis).

We conducted a comparison between the error rates of
the MAP detector for several array sizes. It can be seen in
Fig. 6 that the error rate rises as the array dimensions grow.
Specifically, the figure shows that relatively low error rates
(e.g. around 10−4 for 16×16 array) can be achieved even in a
noise regime of 10%−20% of R(1), when cell selectors have
pf = 10−3. In addition, the step-like behavior of the error-
rate plot can be observed: it abruptly changes its growth rate
from steep to moderate and vice-versa. We conjecture that this
phenomenon stems from the discrete nature of the interference
itself. The Gaussians that constitute the likelihood functions
expand their overlap as the noise magnitude increases. When
a Gaussian related to some λ overlaps with another Gaussian,
the error rate grows steeply. But when they are already
“blended”, the error rate reaches a certain saturation, until
the overlap of the next Gaussian becomes dominant. In other
words, we assess that, for a given noise magnitude, the error
probability is dominated mostly by a single pair of Gaussians
from the mixture. The moderate growth in error rates is due
to a blend of this pair. Steep ascent, however, occurs when a
more likely Gaussian from the mixture becomes the dominant
contributor of errors.

C. Error Probability Upper Bound

The error probability of the optimal (i.e., MAP) detec-
tor can be upper bounded by deriving a Bhattacharyya-type
bound [29] for the sneak-path channel. We consider 2 hypothe-
ses, b ∈ {0, 1} for which the classic Bhattacharyya bound is,
for any 0 ≤ s ≤ 1,

pMAP
e ≤ max

b∈{0,1}

{∫
R

[p(r|b)]s[p(r|b̄)]1−s
}
. (8)

However, although the additive noise is Gaussian, the inte-
grand in our case is not tractable as in the simple AWGN
channel due to the composite-hypotheses setting. As a results,

7

Fig. 6: Calculated error probability of the MAP detector for
several array sizes, with R(0) = 1000Ω, R(1) = 100Ω, q =
0.5 and pf = 10−3. As the array size grows, the rising sneak-
path probability adversely affects the error rate.

it is required to additionally simplify the bound expression.
For that purpose, we first set the free parameter s to the valid
(and effective) value s = 1/2. Now, using specific properties
of the sneak-path channel from Eq. (5) we obtain

pMAP
e ≤

max
b∈{0,1}

{∫
R

√∑
λ′

p(r|b, λ′)pλ(λ′)
∑
λ′

p(r|b̄, λ′)pλ(λ′)
}
,

(9)

which can be rewritten as

pMAP
e ≤

max
b∈{0,1}

{∫
R

√∑
λ′,λ′′

pλ(λ′)pλ(λ′′)p(r|b, λ′)p(r|b̄, λ′′)
}
.

(10)

Given that the integrand is a summation of non-negative
values, we can further simplify the expression using

√
x+ y ≤√

x+
√
y, obtaining

pMAP
e ≤

max
b∈{0,1}

{ ∑
λ′,λ′′

√
pλ(λ′)pλ(λ′′)

∫
R

√
p(r|b, λ′)p(r|b̄, λ′′)

}
.

(11)

Now, the integral may be calculated analytically, according
to p(r|b, λ) = 1√

2πσ2
η

exp
(
− (r−ρ(b,λ))2

2σ2
η

)
, eventually yielding

pMAP
e ≤∑
λ′,λ′′

√
pλ(λ′)pλ(λ′′) exp

(
− (ρ(b, λ′)− ρ(b̄, λ′′))2

8σ2
η

)
,

(12)

where the max operation was omitted considering the
symmetry in b.

Fig. 7: Optimal error probability and the Battacharyya-based
upper-bound from Eq. (12).

The calculation of this bound is extremely low-cost from
a computational point of view. It essentially requires to per-
form O(λ2) multiplications, and then sum O(λ2) weighted
exponents (where λ is the size of the set of all different
possible values of λ with non-negligible probabilities). The
bound from (12) can be viewed in Fig. 7 for specific channel
parameters. Interestingly, the upper bound exhibits behavior
similar to the error curve, ascending in alternating slopes as
the noise magnitudes increases.

D. Multiple-Reads Detector

A technique that can be used to enhance the detection
performance, i.e., reduce the bit-error rate, utilizes multiple
readouts of the same cell to improve the detection statistics.
Let us assume we have a set of N measurements of the
cell’s resistance denoted rAi,j (k) where k = 1, . . . , N . Each
measurement is as in (3). The measurements are represented
as an N -dimensional vector

rAi,j =
(
rAi,j (1), . . . , rAi,j (N)

)T
.

The MAP detector for multiple measurements is

Λ1

(
rAi,j

)
Λ0

(
rAi,j

) Âi,j=1

≷
Âi,j=0

q0

q1
, (13)

where Λb(rAi,j) = p(rAi,j |b) is the likelihood of the measured
vector given the hypothesis b. We assume the measurements
are collected with i.i.d. additive noise but note that the pa-
rameter vector λ remains unchanged between measurements.
In other words, the same information bits and sneak-path in-
terference bits are measured N times with independent noise.
Under this setup, the multi-dimensional likelihood function
p(rAi,j |b) can be decomposed into a summation similar to the
one-dimensional case

8

Λb(rAi,j) = p(rAi,j |b) =
∑
λ

p(rAi,j |b, λ)pλ(λ) =

∑
λ

pλ(λ)(
2πσ2

η

)N/2 exp
(
− 1

2σ2
η

N∑
k=1

(rAi,j (k)− ρ(b, λ))2
)
.

(14)

The resulting detector is a direct generalization of the single-
measurement MAP detector from (7) (Detector 1). Since MAP
detection only requires to find the b that maximizes (14)
(weighted by its prior), a standard simplification is to only
consider the terms that depend on the hypothesis, thus getting

Âi,j = arg max
b∈{0,1}

qbΛb(rAi,j) =

arg max
b∈{0,1}

{
qb
∑
λ

pλ(λ) exp
(
− Nρ(b, λ)2

2σ2
η

)
·

exp
(ρ(b, λ)

σ2
η

N∑
k=1

rAi,j (k)
)}
.

(15)

We notice that the evaluation of (15) for optimal decision
entails the computational challenge of summing (over λ) terms
spanning a very large number range. Implementing this sum-
mation in a precision-limited hardware may result in detection
errors due to rounding. To avoid this, we propose the following
detector that does not suffer from these computational issues.

Detector 2. First calculate

λ̂ , arg max
λ

p(λ|rAi,j) =

arg max
λ

∑
b∈{0,1}

qbpλ(λ)p(rAi,j |λ, b),
(16)

and then make the decision

Âi,j |λ̂ =

arg max
b∈{0,1}

{
log qb +

∑N
k=1 rAi,j (k)

σ2
η

ρ(b, λ̂)− N

2σ2
η

ρ(b, λ̂)2
}
.

(17)

Detector 2 works in two stages: first estimate the hidden pa-
rameter λ, and then determine the most likely hypothesis given
the estimated parameter value. As a result, when iterating
over the different possible λs we only need the maximization
operation, which is easier to implement with limited precision;
summation is now done over just two b hypotheses instead of
many λs in (15). The maximization problem can be addressed
by optimization algorithms, but due to the limited search-space
we find a simple search sufficient in this specific setup. Once
we have the most likely estimate λ̂, in the second stage (17)
there is no summation, and we can thus work in the more
stable log domain. Theoretically speaking, Detector 2 is not
equivalent to MAP, because the separation to two stages may,
in principle, lead to a decision that is not globally optimal.
However, we find in extensive empirical evaluation that the
performance of Detector 2 is in practice equivalent to MAP.
In Fig. 8 we present the bit-error rates of single- and multiple-
read detectors. As expected, the multiple-read detector shows

Fig. 8: Simulation of bit-error rates for multiple-read detectors
(MAP and Detector 2) with 10 reads, compared to single-read
MAP detector.

an advantage over the single-read detector. It is also observed
that Detector 2 reaches error rates almost identical to the
multiple-read MAP detector. We conjecture that the property
that allows this equivalent performance is that given any sneak-
path type λ, one bit hypothesis b has a negligible likelihood
p(rAi,j |λ, b) compared to the other hypothesis, and thus in
practice the sum in (16) is dominated by the contribution of
the more likely b.

IV. LOW COMPLEXITY DETECTION SCHEMES

The full MAP detector may be optimal, but it is also com-
plex to implement. Even with the simplification of Detector 2
it essentially requires to consider every possible assignment
of the parameter vector λ = (L; kr, kc), and evaluate the
likelihood function in an exhaustive manner. A much simpler
alternative, inspired by methods used in Flash memories,
divides the resistance axis to pre-defined fixed and convex
regions, and maps each region to a different hypothesis. In
this formulation, we have to determine a threshold resistance
value, τ , that separates between the decision regions of the
two possible hypotheses.

A. Single-Read Threshold Detection

For single-read detection, given a resistance measurement
of rAi,j , the threshold detector is simply

rAi,j
Âi,j=0

≷
Âi,j=1

τ. (18)

Optimally, the threshold value should be set such that the
corresponding error probability is minimized, i.e.,

τ = arg min0≤t≤∞P
TH
e (t),

where PTHe (t) is the error probability associated with a
threshold t. This probability is given by

9

PTHe (t) =

Pr{rAi,j > t|Ai,j = 1}q1 + Pr{rAi,j ≤ t|Ai,j = 0}q0.
(19)

However, direct derivation of the threshold in this way
is hard since the expressions resulting from (19) are hard
to manipulate. Therefore, we next try to apply reasonable
assumptions to simplify the expressions. Suppose that the
dominant errors occur when the noise causes the detector to
mix between 0s with a particular type of sneak path λ(0)

and 1s with another particular type of sneak path λ(1). The
identities of λ(0),λ(1) will be discussed later. In that case, the
error probability of the threshold detector simplifies to

P̃THe (t, λ(0), λ(1))
∆
=

q1pλ(1)Q
(t− ρ(1, λ(1))

ση

)
+ q0pλ(0)

(
1−Q

(t− ρ(0, λ(0))

ση

))
,

(20)

where Q (·) is the complementary cumulative density function
of a Gaussian random variable. Now we define the optimal
threshold detector for λ(0),λ(1) as

τ(λ(0), λ(1)) , arg min
0≤t≤∞

P̃THe (t, λ(0), λ(1)), (21)

and can find it in closed form

τ(λ(0), λ(1)) =
ρ(0, λ(0))2 − ρ(1, λ(1))2 − 2σ2

η ln
(
q0pλ(0)

q1pλ(1)

)
2(ρ(0, λ(0))− ρ(1, λ(1)))

=

ρ(1, λ(1)) + ρ(0, λ(0))

2
−

σ2
η ln

(
q0pλ(0)

q1pλ(1)

)
ρ(0, λ(0))− ρ(1, λ(1))

.

(22)

The assumption made on having specific λ(0), λ(1) simplified
the likelihood functions in (19) from Gaussian mixtures to
single Gaussians, thus enabling the closed-form expression
in (22). The intuition for considering a single λ(0), λ(1) pair
is that the r-axis separation between the Gaussian centers
makes one pair of Gaussians dominant in introducing errors,
while the others are negligible. In other words, Gaussian
mixtures induced by the sneak-path types mix only “lightly”.
For choosing the pair λ(0), λ(1) we need to consider: 1) the
type distribution pλ ranking the likelihoods of the Gaussian
centers, and 2) the noise level ση determining how wide each
Gaussian stretches toward the boundary with the opposite bit
hypothesis. Noticing that both pλ and ση appear in (22), we
propose the following simplified threshold detector.

Detector 3.
τ ′ = min

λ

{
τ (λ, (0; 0, 0))

}
, (23)

where τ
(
λ(0), λ(1)

)
is defined in (22).

We will next justify Detector 3’s choices of λ(1) = (0; 0, 0)
and taking λ(0) as the type minimizing the threshold. The
justification lies on the assumption that λ = (0; 0, 0) has the
highest pλ among all types. The detector can be adapted to the

Fig. 9: Error probability of the threshold Detector 3 (◦ mark-
ers) vs. the MAP Detector 1 (× markers). Also plotted are
the error probabilities of thresholds calculated for four values
of λ(0). Array parameters are: size 16 × 16, q = 0.5, and
pf = 10−3.

case where (0; 0, 0) is not the most probable, but by the nature
of pλ induced by (6), this happens only when the sneak-path
incidence is hopelessly severe. The idea of Detector 3 is to
choose the λ(0), λ(1) pair that is most dominant in introducing
errors. For λ(1) it is clear that (0; 0, 0) is the most error
dominant because the other types are less likely and farther
from the Gaussians of λ(0). Hence λ(1) = (0; 0, 0). For λ(0)

taking the minimum threshold among all λ types is justified
because for a fixed λ(1) = (0; 0, 0), the first term of the right-
hand side of (20) is monotone decreasing with t, so a low
τ
(
λ(0), (0; 0, 0)

)
necessarily means a high second term of

the right-hand side of (20), and an error-dominant type λ(0)

that should be chosen.

B. Error Probability

Unlike the MAP detector, the proposed threshold detector,
given as Detector 3, has a closed-form expression for the error
probability, given the threshold value τ . By marginalizing (19)
(with t = τ) over λ, we get

PTHe =∑
λ

pλ

[
q0

(
1−Q

(τ − ρ(0, λ)

ση

))
+ q1Q

(τ − ρ(1, λ)

ση

)]
.

(24)

In Fig. 9 we plot using (24) the error probability of Detector 3
(circle markers) in comparison to the optimal MAP Detector 1
(× markers, calculated numerically). It can be seen that the
error probabilities of both detectors are essentially the same,
despite Detector 3 being much simpler to calculate. We also
plot in Fig. 9 the error probabilities for the optimal thresh-
olds given four values of λ(0) (recall that Detector 3 takes
the minimum of those thresholds). The threshold-minimizing
sneak-path type is λ(0) = (1; 1, 1) for ση above 10Ω, and for
lower noise levels λ(0) = (2; 2, 2) is the threshold minimizer.

10

Fig. 10: Multi-read (N = 2) threshold detection (simulated for
16× 16 array with ση = 10Ω). The dashed curve (affine line
in logarithmic scale) is the threshold separating the 1 (lower
left) and 0 (upper right) decision regions.

C. Multiple-Reads Threshold Detector

As done in Section III-D for the MAP detector, we can
enhance the performance of the threshold detector by multiple
readouts of the same cell. Let us consider again the N
measurements of a cell’s resistance, denoted by the vector
rAi,j . A threshold detector for a vector of measurements has
the form

aT rAi,j

Âi,j=0

≷
Âi,j=1

C,

where a is a vector and C is a scalar that together represent the
affine hyperplane separating the decision regions. For the MAP
vector detector it is seen in (15) that the sum

∑N
k=1 rAi,j (k)

is a sufficient statistic for optimal decision. It can be similarly
shown that for the optimal threshold detector aT = (1, . . . , 1),
and the generalization of Detector 3 to the vector case is

1

N

N∑
k=1

rAi,j (k)
Âi,j=0

≷
Âi,j=1

min
λ

{
τ (λ, (0; 0, 0))

}
. (25)

An example of a threshold detector for N = 2 is depicted
in Fig. 10. The diagonal points marked with × markers are
(ρ(1, λ), ρ(1, λ)) and (ρ(0, λ), ρ(0, λ)) for different values of
λ. The points marked with · markers are (rAi,j (1), rAi,j (2))
noisy readouts. The vector threshold detector from (25) is
marked by the dashed curve (note that it is an affine line trans-
formed to logarithmic axes). The performance of the vector
threshold detector is depicted in Fig. 11, where it can be seen
that in most noise levels it gives lower error rates than the one-
dimensional (N = 1) MAP Detector 1 (for N = 1 Detector 3
reached the same results as Detector 1). Therefore, by using a
single additional measurement we can simultaneously enhance
the performance and significantly reduce the computational
load of the detection process.

Fig. 11: Comparison of bit-error rates (BER) of single-read
MAP detector and multiple-reads threshold detectors. Array
size is 16× 16 with q = 0.5 and pf = 10−3.

V. SNEAK-PATH REDUCING CODE

Although the detectors described throughout Sections III
and IV achieve far better performance than standard detection
methods (for example, a naı̈ve threshold at R(0)+R(1)

2), there
is still a need to improve their BER performance. Until now,
we have assumed that the sneak-path probabilities are given
(based on Theorem 1), and the detection schemes developed
above allowed us to reliably extract the written resistance value
under interference and noise. However, the performance of
any detector highly depends on the actual number of sneak
paths affecting the read cell. For good performance it does
not suffice to apply the detectors directly on raw data written
into the crossbar array. Hence, a pre-write coding scheme
that reduces the average number of sneak paths per cell can
dramatically enhance the performance of the detector used at
read time. In this section we develop such a coding scheme
to map the written data to arrays with fewer sneak paths.

Since sneak paths are a data-dependent effect, they can also
be mitigated by cleverly adapting the stored physical bits. The
simplest and most immediate way to reduce sneak paths is by
distribution shaping (also called q shaping), that is, changing
the fraction of array bits that store the value 1 (low resistance).
In Section III this fraction was denoted by q1 and q. It is
intuitively clear that fewer 1s in the array mean fewer sneak
paths affecting a read cell. But constraining the array bits to
have low q also has an adverse effect on the storage rate of
the array. Thanks to the simplicity of q shaping, we have a
full characterization of the sneak-path distribution in the array
as a function of q and the array dimensions m,n [24]. The
following is a simple adaptation of a theorem from [24].

Proposition 2. For a cell in an array whose bits are chosen
i.i.d. Bernoulli with parameter q, the probability that there are
exactly L′ sneak paths affecting the cell equals

pL(L′) =

m−1∑
u=0

n−1∑
v=0

pu,vpL′|u,v, (26)

11

where pu,v =
(
m−1
u

)(
n−1
v

)
qu+v(1 − q)m−1−u+n−1−v and

pL′|u,v =
(
uv
L′

)
(pfq)

L′
(1− pfq)uv−L

′
.

Note that Proposition 2 characterizes only the number of
sneak paths L′, rather than their full type λ. We choose in
this section to work with the simpler distribution on L to show
more clearly how the analysis extends to coded arrays.

The q that gives the sneak-path distribution in (26) also
induces a storage rate R = R(q) ≤ 1 (the binary entropy
of q). To get a better sneak-path distribution than (26) for
the same rate R, we next propose a coding scheme based on
encoding the array with 2 × 2 blocks. Our main idea in the
proposed coding scheme is that better sneak-path shaping can
be obtained when imposing a richer structure on the array bits
than the bit-wise shaping method with a single parameter q.
The structure that we choose for the coding scheme is 2 × 2
blocks whose properties induce low incidence of sneak paths.
2 × 2 blocks give advantage in sneak-path mitigation, while
their small size still allows simple encoding and decoding (yet,
may be more complex than q-shaping).

A. The 2× 2 Shaping Code

Consider the 16 possible assignments to a 2 × 2 bit word.
To reduce sneak-path incidence, we first forbid using the 5
assignments that have 1s in more than half of the word (4
assignments with three 1s and the all-1 assignment). Now
comes our key observation that among the assignments with
two 1s, those with the two 1s in the same row or column are
more prone to having multiple sneak paths affecting the same
cell location. Because of that, we forbid these 4 assignments as
well. This leaves our code with 7 words out of the 16 possibil-
ities. The set of 7 words, which we denote C, divides into three
symmetry classes according to their weight (see Table II), and
the code is decided by determining the probabilities p0, p1, p2

of words in these three respective classes. Before discussing

Word Probability Words

p0

[
0 0
0 0

]
p1

[
1 0
0 0

]
,
[
0 1
0 0

]
,
[
0 0
1 0

]
,
[
0 0
0 1

]
p2

[
1 0
0 1

]
,
[
0 1
1 0

]
TABLE II: 2× 2 code-words and corresponding probabilities

the important problem of choosing the probabilities p0, p1, p2

to optimize sneak-path reduction, we derive a closed-form
expression for the sneak-path distribution given the chosen
probabilities.

Theorem 3. Let the array store bits whose 2 × 2 blocks are
chosen i.i.d. from the 7 legal assignments with probability
p0, p1, p2 for each word with weight 0, 1 and 2, respectively.
The probability that an array cell is affected by exactly L′

sneak-paths equals

p′L(L′) =

n
2−1∑
u=0

m
2 −1∑
v=0

p′u,v · p′L′|u,v, (27)

Fig. 12: Sneak-path tail probabilities of 2×2 coding compared
to q shaping (with 0 ≤ q ≤ 0.5) as a function of storage
rate. Painted area represents 2 × 2 codes with every possible
word distributions. The black solid curve depicts the specific
distributions selected by weight minimization.

where

p′u,v =

(n
2 − 1

u

)(m
2 − 1

v

)
(2p1 + 2p2)

u+v

(1− 2p1 − 2p2)
n/2−1−u+m/2−1−v

(28)

and

p′L′|u,v =

(
uv

L′

)
[(p1 + p2) pf]

L′
[1− (p1 + p2)pf]

uv−L′
.

(29)

Proof. We derive the probability p′L(L′) by conditioning on
the number of 1s in the read cell’s row, which we denote by u,
and the number of 1s in the cell’s column, which we denote
by v. Observe the 2 × 2 words in Table II. Each 1 in the
cell’s row or column results from one of two weight-1 words
(two other weight-1 words have no 1s in that row or column),
or from one of the two weight-2 words. Also, we can ignore
the 1s from the word of the read cell itself, because in none
of the legal words a 1 in this word can be part of a sneak
path affecting a 0 in the same word. These facts explain the
expression for p′u,v in (28). Now given u, v, we have uv pairs
of a 1 in the cell’s row and a 1 in the cell’s column. We
examine the word intersecting the row and column of words
corresponding to the pair of 1s. It can be seen that in all cases
there are exactly two assignments to this word that cause a
sneak path: one weight-1 word and one weight-2 word (the
identities of these two words depend on the location of the
pair 1s within their words). This explains the expression for
p′L′|u,v in (29).

The proof of Theorem 3 reveals an important advantage
of the 2 × 2 coding scheme: even though each row, column
and their intersection can have one of 73 = 343 word
combinations, the symmetries in the problem simplify the
analysis and yield compact and wieldy expressions.

12

Fig. 13: Bit error rate (BER) of 2 × 2 coding (solid curves)
vs. q shaping (dashed curves) for different storage rates. Array
dimensions are m = n = 8 and pf = 1. For a given storage
rate (≤ 0.7), 2 × 2 coding is clearly preferred over simple q
shaping.

Note that for a given storage rate R, there are multiple com-
binations of word probabilities, p0, p1, p2 that induce that rate.
The simplest and most effective method to set the probabilities
p0, p1, p2 is weight minimization. In that method, we are given
a prescribed storage rate R, and look for the combination of
p0, p1, p2 that minimizes the expected word Hamming weight
W(p0, p1, p2) = 4p1 + 4p2 while satisfying the constraints: 1)
p0 + 4p1 + 2p2 = 1, 2) R(p0, p1, p2) = R. In Fig. 12 we plot
for each rate R the possible tail probabilities (Pr{L′ > 3})
obtained by 2×2 coding with different p0, p1, p2 distributions.
For comparison, we show the same tail probability with simple
q shaping (for the same storage rates). Sneak paths only affect
read cells that are 0s, thus the tail probabilities are multiplied
by 1 − q in q shaping and by 1 − qeff in the 2 × 2 code,
where qeff is the expected fraction of 1s given p0, p1, p2.
Weight minimization is shown to achieve almost the optimal
(lowest) tail probability among all p0, p1, p2 distributions, and
significantly lower than q shaping.

In Fig. 13 we show error rates obtained in a 2 × 2-
coded array compared to q shaping, for several chosen storage
rates R. For both schemes we assume storage rates meeting
the entropy of the respective source probabilities. Practical
encoders approaching these rates are known; for q-shaping,
encoding (and decoding) can be done row-by-row, and for 2×2
coding, row-pair by row-pair. For both schemes we use the bit-
wise MAP Detector 1, with the corresponding distributions of
L. For this comparison we assume pf = 1, that is, no selectors
are used. The results show a clear advantage for the 2 × 2
coding scheme, which improves the error rate by almost an
order of magnitude for all of the examined storage rates.

B. 2× 2 Optimal Detector

Having calculated in Theorem 3 the sneak-path distribution
in a coded array allows using the bit-wise detectors from
Sections III and IV for reading coded arrays as well. Fig. 13

Fig. 14: Bit error rate (BER) improvement for bit-wise detector
(dashed) and 2×2 detector (solid). The performance improve-
ment is measured as the ratio of the coded BER to the same-
rate uncoded BER (q shaping), in units of dB (10 log10(·)).
Array dimensions are m = n = 8 and pf = 1.

shows that with the same MAP detector adjusted to the coded
sneak-path distribution, coded arrays significantly improve
error-rate performance. However, the detection performance
in the case of 2× 2-coded arrays can be further enhanced by
incorporating the code structure into the detector, and deciding
jointly on the four bits of the codeword. Instead of deciding
on each array bit independently, the mutual dependence of bits
in 2 × 2 blocks can be utilized. Let r be a 2 × 2 matrix that
corresponds to a block of resistance values measured in the
array. The MAP estimator for the 2 × 2 codeword stored in
the array is given in the following.

Detector 4. The MAP detector for a 2× 2 codeword c is

ĉ = arg max
c∈C

p(c|r) ≈ arg max
c∈C

pw(c)

2∏
i,j=1

Λci,j (ri,j), (30)

where pw(c) is one of p0, p1, p2 of Table II according to the
Hamming weight w(c) of the codeword c.

Detector 4, in the right-hand side of (30), makes the decision
on the codeword by a separable product of the codeword
probability and the likelihood functions of individual bits in
the codeword. This is only possible thanks to the special
property of the code C: as seen in Table II, no 1 in a
codeword shares a row or a column with another 1 in the same
codeword, so there can be no sneak paths caused by 1s in the
currently-read codeword. As a result, the sneak-path incidence
distribution affecting a codeword bit is independent of the bits
of the codeword itself. Technically the second equality in (30)
is only an approximation (because the sneak-path incidence
between different array bits is not independent), but practically
this separation offers significant gain in detection performance
with low computation cost.

Fig. 14 shows simulation results demonstrating the im-
provement in error rates of the bit-wise MAP detector and

13

the 2 × 2 Detector 4 compared to uncoded (q shaping). The
improvement is plotted as the ratio (in units of dB) between
coded and uncoded BER

10 log10

(P q−shapinge

P 2×2−coded
e

)
,

where both arrays have the same rate. The difference between
the solid curves (Detector 4) and the dashed curves (bit-wise)
shows an extra performance advantage for deciding on 2× 2
blocks jointly. Overall the 2 × 2 coding scheme offers sig-
nificant performance improvement by both suppressing sneak
paths and allowing joint detection. This extra performance
is obtained without significant complexity cost: changing the
basic unit from a single bit to 4 bits, still very small compared
to the full array size or the row/column size.

VI. CONCLUSION

In this paper we provided a formal communication-theoretic
treatment for the problem of resistive-array readout with sneak
paths. This treatment yielded constructive tools to combat
sneak paths in both the detection and coding layers. Some
of the ideas underlying these tools are natural extensions from
existing tools for less-challenging channels, but thanks to the
rigorous treatment we were able to find simplifications that
perform close to the optimal schemes. The same framework
can lead in future work to even better tools, and for richer
setups capturing more of the realities of memory arrays. In the
theoretical direction it is most interesting to further analyze
and bound the error probabilities of natural detectors. It is
also important to construct codes that meet certain prescribed
sneak-path incidence properties, for example an upper bound
on the number of sneak paths affecting a read cell. In the
practical direction it is useful to apply similar treatment
to existing sneak-path mitigation techniques (e.g., the pilot
setting in [19]), and then merge together multiple schemes in
a bigger solution.

ACKNOWLEDGMENT

The authors wish to thank Shahar Kvatinsky and Neri
Merhav for valuable discussions, and the TCOM reviewers and
associate editor for valuable comments and suggestions. This
work was supported in part by the Intel Center for Computing
Intelligence, by the US-Israel Binational Science Foundation,
and by the Israel Science Foundation.

REFERENCES

[1] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[2] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proceedings of the 2009 IEEE/ACM International Symposium on
Nanoscale Architectures. IEEE Computer Society, 2009, pp. 33–36.

[3] T. Raja and S. Mourad, “Digital logic implementation in memristor-
based crossbars,” in International Conference on Communications, Cir-
cuits and Systems (ICCCAS) 2009. IEEE, 2009, pp. 939–943.

[4] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: design
principles and methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014.

[5] R. Ben-Hur and S. Kvatinsky, Processing within a Memristive Memory,
2016.

[6] M. Di Ventra, Y. V. Pershin, and L. O. Chua, “Putting memory into
circuit elements: memristors, memcapacitors, and meminductors [point
of view],” Proceedings of the IEEE, vol. 97, no. 8, pp. 1371–1372, 2009.

[7] D. Chabi, W. Zhao, D. Querlioz, and J.-O. Klein, “Robust neural logic
block (nlb) based on memristor crossbar array,” in 2011 IEEE/ACM
International Symposium on Nanoscale Architectures. IEEE, 2011, pp.
137–143.

[8] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
“Memristor-based multilayer neural networks with online gradient de-
scent training,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 10, pp. 2408–2421, 2015.

[9] Y. Cassuto and K. Crammer, “In-memory hamming similarity compu-
tation in resistive arrays,” in 2015 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2015, pp. 819–823.

[10] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Detection, diagnosis,
and repair of faults in memristor-based memories,” in 2014 IEEE 32nd
VLSI Test Symposium (VTS). IEEE, April 2014, pp. 1–6.

[11] ——, “Modeling, detection, and diagnosis of faults in multilevel mem-
ristor memories,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 5, pp. 822–834, 2015.

[12] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,”
Microelectronics Journal, vol. 44, no. 2, pp. 176–183, 2013.

[13] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. Fahmy, and K. N. Salama,
“Memristor multiport readout: A closed-form solution for sneak paths,”
IEEE Transactions on Nanotechnology, vol. 13, no. 2, pp. 274–282,
2014.

[14] X. Wang, M. Chen, Y. Shen, and X. Hu, “A new crossbar architecture
based on two serial memristors with threshold,” in 2015 International
Joint Conference on Neural Networks (IJCNN). IEEE, July 2015, pp.
1–6.

[15] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky,
and R. S. Williams, “Writing to and reading from a nano-scale crossbar
memory based on memristors,” Nanotechnology, vol. 20, no. 42, p.
425204, 2009.

[16] S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive
devices array: Data-dependent statistical model and self-adaptable sense
resistance for rrams,” Proceedings of the IEEE, vol. 100, no. 6, pp.
2021–2032, June 2012.

[17] C. Liu and H. Li, “A weighted sensing scheme for reram-based cross-
point memory array,” in 2014 IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI). IEEE, July 2014, pp. 65–70.

[18] M. Zidan, H. Omran, R. Naous, A. Sultan, H. Fahmy, W. Lu, and K. N.
Salama, “Single-readout high-density memristor crossbar,” Scientific
reports, vol. 6, 2016.

[19] R. Naous, M. A. Zidan, A. Sultan-Salem, and K. N. Salama, “Memristor
based crossbar memory array sneak path estimation,” in 2014 14th
International Workshop on Cellular Nanoscale Networks and their
Applications (CNNA). IEEE, 2014, pp. 1–2.

[20] T. Luo, O. Milenkovic, and B. Peleato, “Compensating for sneak currents
in multi-level crosspoint resistive memories,” in 2015 49th Asilomar
Conference on Signals, Systems and Computers. IEEE, 2015, pp. 839–
843.

[21] P. P. Sotiriadis, “Information capacity of nanowire crossbar switching
networks,” IEEE Transactions on Information Theory, vol. 52, no. 7,
pp. 3019–3032, 2006.

[22] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints in
memristor crossbar arrays,” in 2013 IEEE International Symposium on
Information Theory Proceedings (ISIT). IEEE, 2013, pp. 156–160.

[23] ——, “On the channel induced by sneak-path errors in memristor
arrays,” in 2014 International Conference on Signal Processing and
Communications (SPCOM). IEEE, 2014, pp. 1–6.

[24] ——, “Information-theoretic sneak-path mitigation in memristor cross-
bar arrays,” IEEE Transactions on Information Theory, vol. 62, no. 9,
pp. 4801–4813, 2016.

[25] Y. Deng, P. Huang, B. Chen, X. Yang, B. Gao, J. Wang, L. Zeng, G. Du,
J. Kang, and X. Liu, “Rram crossbar array with cell selection device:
A device and circuit interaction study,” IEEE Trans. Electron Devices,
vol. 60, no. 2, pp. 719–726, 2013.

[26] X. Guan, S. Yu, H.-S. P. Wong et al., “On the switching parameter
variation of metal-oxide rram part i: Physical modeling and simulation
methodology,” IEEE Transactions on Electron Devices, vol. 59, no. 4,
pp. 1172–1182, 2012.

[27] A. Chen and M.-R. Lin, “Variability of resistive switching memories
and its impact on crossbar array performance,” in Reliability Physics
Symposium (IRPS), 2011 IEEE International. IEEE, 2011, pp. MY–7.

14

[28] R. N. McDonough and A. D. Whalen, Detection of Signals in Noise.
Academic Press, 1995.

[29] J. G. Proakis and M. Salehi, “Digital communications,” 1995.

