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Abstract—We study a new decoding strategy of multi-block SC-
LDPC codes motivated by data-storage applications. To decode
a sub-block out of the full code block, our proposed decoder
accesses a small number of sub-blocks around the desired sub-
block. We call this decoding strategy ”semi-global decoding”, and
parametrize it by its access cost: the number of accessed sub-
blocks. We provide a theoretical characterization of decoding
performance, and evaluate this performance for random-access
SC-LDPC ensembles.

1. INTRODUCTION

Spatially-coupled low-density parity-check (SC-LDPC)
codes [1] were extensively studied recently, and were shown
to have many desired properties. For example, threshold satu-
ration [2], linear-growth of minimum distance [3] and linear-
growth of minimal trapping sets of typical codes from the en-
semble [4], imply good BER performance in the waterfall and
error floor regions, using the Belief-Propagation (BP) decoder.
Moreover, the special structure of SC-LDPC codes, where bits
participating in a particular parity-check equation are spatially
close to each other, renders a locality property that can be
exploited to implement low-latency high-throughput belief-
propagation based decoders; such decoders are pipelined de-
coders [1], [5] and window decoders [7], [8], [6].

When used in data-storage applications, where decoding
failures imply data-losses, an error-correcting code must pro-
tect against extremely high noise levels (although most noise
instances are much milder), requiring very large block lengths
and complex decoding. A possible solution to this problem
are random-access codes [9], [10], [11], where (small) sub-
blocks of a long block can be decoded (local decoding)
independently from each other for fast read access. In case
of catastrophic error events, the full code block is decoded
(global decoding) for increased data reliability. In this paper
we study SC-LDPC codes decoded in a mode in between
local and global decoding, which we call semi-global (SG)
decoding. A SG decoder decodes a requested target sub-block
using its neighboring sub-blocks, which we call helper sub-
blocks. Our work follows up on [11] where we introduced
protograph-based random-access SC-LDPC codes called SC-
LDPCL codes. Semi-global decoding was suggested in [11],
but only with ”black-box” analysis based on the single sub-
block threshold.

In this paper we develop an analysis for true semi-global
decoding, which accounts for propagation of partial infor-
mation between neighboring sub-blocks. We define the SG
decoding graphs, and introduce a density-evolution framework
to analyze them. The new analysis reveals that decoding
a target sub-block using helper sub-blocks from both sides
is superior to the one-sided variant proposed in [11]. We

compare between global and semi-global decoding over the
BEC, exemplifying that the threshold loss is negligible, while
the complexity reduction is substantial. We further evaluate
the performance of semi-global decoding over a channel with
variability in the sub-block erasure parameter.

2. PRELIMINARIES

A. Protograph Based SC-LDPC Codes

An LDPC protograph is a (small) bipartite graph G =
(V ∪ C, E), where V, C, E are the sets of variable nodes (VNs),
check nodes (CNs), and edges, respectively. A protograph is
said to be (l, r)-regular if for every VN v ∈ V has degree l,
and every CN c ∈ C has degree r. A Tanner graph is generated
from a protograph G by a lifting (”copy-and-permute”) oper-
ation specified by a lifting parameter L (for more details see
[3]). If we let L→∞, then we can analyze the performance
of the BP decoder on the resulting ensemble of Tanner graphs
via density evolution (DE) on the original protograph G, and
calculate its asymptotic decoding threshold. For the binary
erasure channel (BEC), we can compute the threshold ε∗(G).
A protograph G = (V ∪ C, E) can be represented through a
bi-adjacency matrix HG , where the VNs in V are indexed by
the columns of HG , and the CNs in C by the rows.

An (l, r)-regular spatially-coupled (SC) LDPC protograph is
constructed by coupling together (l, r)-regular protographs, in
the following way. Let B = 1l×r be an all-ones matrix repre-
senting an (l, r)-regular LDPC protograph, and let {Bt}Tt=1 be
T matrices such that B =

∑T
t=1Bt (T is the coupling width).

Coupling M copies of B amounts to diagonally placing copies
of
(
B1;B2; . . . ;BT

)
as in Figure 1 (b) (see [3] and references

therein).
In the rest of the paper, we focus on (l, r)-regular SC-LDPC

protographs with a coupling width T = 2. The results can
be readily extended to irregular base matrices and a larger
coupling width, albeit with a more cumbersome notation.

Example 1. A (3, 6)-regular SC-LDPC protograph is obtained
with T = 2, B1 = (1 1 0 0 0 0 ; 1 1 1 1 0 0 ; 1 1 1 1 1 1) and
B2 = 13×6 −B1.

B. Random-Access SC-LDPC Codes: review from [11]

Our new semi-global decoder relies on a construction from
[11] of SC-LDPC codes with sub-block access, which we
review in this sub-section. Consider a coupled protograph
G = (V ∪ C, E), divided into M > 1 sub-blocks (SBs)
{Vm}Mm=1. In what follows, let H = HG be a bi-adjacency
matrix representing the coupled protograph G, and let m ∈
{1, 2, . . . ,M} be a SB index. When decoding SB m locally,
all of the bits outside the SB are treated as erasures; hence only
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Fig. 1. (a) The (3, 6, 1) SC-LDPCL protograph with M = 3 SBs; (b) the
infinite matrix representing the protograph coupling operation.

CNs connected inside SB m are relevant to local decoding.
The next definition formalizes this observation.

Definition 1.
1) If VN j ∈ V belongs to SB m, we write j ∈ Vm.
2) CN i ∈ C is said to be a local check (LC) in SB m if

and only if {j : Hi,j = 1} ⊆ Vm, and we write i ∈ Cm.
3) CN i ∈ C is said to be a coupling check (CC) if it is not

a local check.
4) The local protograph of SB m is the sub-graph Gm =

(Vm ∪ Cm, Em), where Em is the set of edges in E that
connect between Vm and Cm.

5) The global and local BP decoding thresholds are given
by ε∗G , ε∗ (G) and ε∗m , ε∗ (Gm) , respectively.

The following construction gives SC-LDPC codes with non-
zero local decoding thresholds, which we call random-access
SC-LDPC codes, or for short, SC-LDPCL (suffix L stands for
locality) codes.

Construction 1 ((l, r, t) SC-LDPCL). Let t ∈ {1, . . . , l − 1},
and let A1 be a t× r matrix given by

A1 =



1 0

1 1 0 0
1 1 1 0
...

...
...

. . .
...

1 1 1 · · · 1 0

 ,

where 1 and 0 are length-b r
t+1c all-ones and length-(

r − tb r
t+1c

)
all-zeros vectors, respectively. Let A2 be an all-

ones (l− t)× r matrix. We build the (l, r, t) protograph as in
Figure 1 (b) with T = 2, and M copies of

(
B1;B2

)
on the

diagonal, where B1 =
(
A1;A2

)
and B2 = 1l×r −B1.

The parameter t specifies the number of check nodes
connecting two adjacent sub-blocks (i.e., there are l − t local
check nodes). In fact, t controls the local-global trade-off of
the protograph (see [11] for more details).

Example 2. Figure 1 (a) illustrates the (3, 6, 1) random-
access SC-LDPCL protograph with M = 3 SBs.

For the rest of the paper, we denote the set of integers
{a, a+ 1, . . . , b} by [a : b].
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Fig. 2. Example of SG decoding with target SB m ∈ [1 :M ], and d = 4; the
steps are shown from top to bottom. The gray SBs are those that are decoded
in a given step, and the arrows represent information passed between sub-
blocks.

3. SEMI-GLOBAL DECODING

In this section we define semi-global (SG) decoding, and
analyze it through DE. As shown later, SG decoding has a
substantial complexity advantage over global decoding with
a very small cost in threshold. Consider a SC-LDPCL proto-
graph with M SBs, and assume that the user wants to extract
SB m ∈ [1 : M ]. We call SB m the target. In SG decoding,
the decoder uses d helper SBs to decode the target in two
phases: the helper phase, and the target phase. In the former,
helper SBs are decoded locally using information from other
previously-decoded helper SBs, and in the latter, the target SB
is decoded using information from its neighboring helper SBs.

Example 3. Figure 2 exemplifies SG decoding with d = 4
helper SBs. The helper phase consists of decoding helpers m−2
and m+2 locally, and decoding helpers m−1 and m+1 using
the information from helpers m−2 and m+2 , respectively.
In the target phase, SB m is decoded using information from
both SB m−1 and m+1.

Semi-global decoding resembles window decoding of SC-
LDPC codes [8], but differs in: 1) there is no overlap between
two window positions, which decreases latency, and 2) decod-
ing starts close to the target SB (i.e. not necessarily at the first
or last SBs), thus allowing low-latency access to sub-blocks
anywhere in the block. The built-in structure of SC-LDPCL
protographs enables these two distinctions.

The complexity reduction of SG decoding, compared to
global decoding, comes from both specifying d < M , and the
fact that decoder messages between sub-blocks are exchanged
in one direction only. To see this, consider the (3, 6, 1) SC-
LDPCL protograph (Figure 1(a)), and assume SG-decoding of
target SB 2 with helpers SBs 1 and 3. In the helper phase, we
decode SB 1 and 3 locally, so the coupling checks are erased,
and the decoder ignores all edges connected to them. In the
target phase, the coupling checks are no longer erased, but
they send information towards the target SB only. As a result,
the 6 edges connecting the coupling checks to SBs 1 and 3
do not participate in SG decoding.

A. SG Density Evolution

We now perform DE analysis for helper and target SBs
during SG erasure decoding. We denote the incoming (resp.
outgoing) edges carrying messages to (resp. form) a helper
SB by δI (resp. δO). The incoming messages to the target
SB from the left-side and right-side helper SBs are denoted
by δL and δR, respectively. Note that δO of some helper



is either δI of the next helper, or one of the incoming
messages to the target, δR or δR (see Figure 2). With a little
abuse of notations, we use δI δO, δL, δR to mark the erasure
probabilities carried on these edges.

Definition 2. Let G be an (l, r, t) SC-LDPCL protograph, and
let w ,

⌊
r
t+1

⌋
. The semi-global graph GSG = (V ∪ C, E)

is a bipartite graph equipped with a VN labeling function
LV : V → [1 : t + 1], an edge labeling function LE : E →
[1 : (t + 1)2], and 2t incoming edges {δR,1, . . . , δR,t}, and
{δL,1, . . . , δL,t} such that:

1) V = {v1, v2, . . . , vr} is a set of r VNs.
2) C is a set of l + t CNs: l − t of them are local checks

(LCs), t of them are right coupling checks (RCCs), and
another t are left coupling checks (LCCs).

3) We mark the 2t coupling checks as cR,1, . . . , cR,t, and
cL,1, . . . , cL,t. For every i ∈ [1 : t], cR,i (resp. cL,i) is
connected to an incoming edge δR,i (resp. δL,i).

4) There is one edge between every LC and every VN. For
every i ∈ [1 : t], cR,i is connected to r − iw VNs, one
edge to each VN vj , where j ∈ [1 + iw : r], and for
every i ∈ [1 : t], cL,i is connected to iw VNs, one edge
to each VN vj , where j ∈ [1 : iw].

5) For every k ∈ [1 : t+ 1] and every VN v ∈ V , we label
LV(v) = k if v is connected to k − 1 RCCs.

6) For every edge e = (v, c) ∈ E , if LV(v) = k, we label

LE(e) =

 k c is an LC
sk,t + i c = cR,i
vk,t + i c = cL,i

,

where sk,t , t+1+ (k−1)(k−2)
2 , and vk,t , 2t + 1 +

t(t−1)
2 + (k−1)(2t−k)

2

Remark. Definition 2 refers to the graph when decoding the
target SB. The helper graph is similar with the only difference
that t incoming edges (say, {δL,1, . . . , δL,t}) turn into outgo-
ing edges {δO,1, . . . , δO,t}, and the checks connected to them
do not participate during the SB’s decoding.

Example 4. Figure 3 illustrates the semi-global graph (helper
and target) corresponding to the (l = 3, r = 6, t = 1)
SC-LDPCL protograph from Example 2. Dotted edges in the
helper graph do not participate during decoding, and are
calculated at the end of the step to output a message on
δO. There are t+ 1 = 2 VN labels (drawn inside nodes),
and (t+1)2 = 4 edge labels (drawn on edges) in the target
graph: red, blue, violet and black for edge types 1, 2, 3, and
4, respectively.

Since edges with same labels are connected to VNs and
CNs of the same degree, then in terms of density evolution, in
any iteration, the erasure fraction of edges e1, e2 ∈ E coincide
if LE(e1) = LE(e2). This structure is the key observation for
reducing the complexity of the DE equations. Due to space
limitations we limit the presentation of DE equations to the
special case of t = 1, but similar equations can be obtained
with complexity growing quadratically with t.

B. The t = 1 Case
In view of Definition 2, if t = 1, then there are 4 different

edge types in the target SB graph. However, as shown below,
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Fig. 3. The (3, 6, 1) semi-global graphs GSG as described in Definition 2.

it is sufficient to track only 2 edge types. This simplification
renders a two-dimensional graphical representation of the DE
equations. We define x(k)` as the erasure fraction carried on
any edge with label k in iteration `. Then,

x
(1)
` = ε

[
1−

(
1− x(1)`−1

)w−1 (
1− x(2)`−1

)r−w]l−2
·
[
1−

(
1− x(4)`−1

)w−1
(1− δL)

]
, (1a)

x
(2)
` = ε

[
1−

(
1− x(1)`−1

)w (
1− x(2)`−1

)r−w−1]l−2
·
[
1−

(
1− x(3)`−1

)r−w−1
(1− δR)

]
, (1b)

x
(3)
` = ε

[
1−

(
1− x(1)`−1

)w (
1− x(2)`−1

)r−w−1]l−1
, (1c)

x
(4)
` = ε

[
1−

(
1− x(1)`−1

)w−1 (
1− x(2)`−1

)r−w]l−1
, (1d)

where w =
⌊
r
2

⌋
. Since x(3)` and x

(4)
` both depend solely on

x
(1)
`−1 and x(2)`−1, then we can substitute the last two equations

into the first two equations, and get that

x
(1)
` = f̃

(
ε, δL, x

(1)
`−1, x

(1)
`−2, x

(2)
`−1, x

(2)
`−2

)
, ` ≥ 2

x
(2)
` = g̃

(
ε, δR, x

(1)
`−1, x

(1)
`−2, x

(2)
`−1, x

(2)
`−2

)
, ` ≥ 2

x
(1)
1 = x

(2)
1 = ε, x

(1)
0 = x

(2)
0 = 1,

(2)

for continuous and monotonically non-decreasing functions
f̃ , g̃ obtained from (1a)–(1d). By taking the limit ` → ∞
in (2) and marking x(k) = lim

`→∞
x
(k)
` , k ∈ {1, 2}, we get a

two-dimensional fixed-point characterization similar to the one
derived in [10] for ordinary LDPCL codes

x(1) = f̃
(
ε, δL, x

(1), x(1), x(2), x(2)
)
,f
(
ε, δL, x

(1), x(2)
)
,

x(2) = g̃
(
ε, δR, x

(1), x(1), x(2), x(2)
)
, g
(
ε, δR, x

(1), x(2)
)
,

(3)

for continuous and monotonically non-decreasing functions
f, g.

Remark. The above derivations refer to the target SB. If one
considers helper SBs, one should set δL (or δR) to 1. In this
case, after finding the fixed point of (3), we calculate δO =

1−

(
1− ε

(
x(1)

ε

) l−1
l−2
)b r2c

.
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Fig. 4. A graphical representation of the SG DE equations in (3) for the
(l = 3, r = 6, t = 1) SC-LDPCL protograph over the BEC(ε = 0.5). In
the left plot δL = 0.3, δR = 0.3, and in the right plot δL = 0.3, δR = 0.5.

Example 5. Figure 4 shows the SG DE equations of the
(3, 6, 1) SC-LDPCL protograph over the BEC(ε = 0.5).
The incoming erasure messages in the left plot are δL =
0.3, δR = 0.3, where the DE curve converges to the origin,
indicating a decoding success. In the right hand plot we have
δL = 0.3, δR = 0.5, which leads to a halt in the BP process.

4. PERFORMANCE ANALYSIS

In this section we analyze the performance of the semi-
global decoder for the family of (l, r, t) SC-LDPCL codes
over the BEC. First, we wish to compare the global and SG
modes in terms of thresholds and complexity. Evidently, the
threshold and complexity induced by the SG mode depend
on the number of helpers d: the larger d is, the higher the
threshold and complexity are.

Remark. For simplicity, we assume that t + 1 divides r so
that w ,

⌊
r
t+1

⌋
= r

t+1 . This assumption means that the SG
graph GSG from Definition 2 is right-left symmetric.

A. Complexity

We assume a fixed number of BP iterations in any decoded
sub-block, and a fixed lifting parameter; hence, to compare
complexities, we count the number of edges participating in
the entire decoding process. We assume an (l, r, t) SC-LDPCL
protograph with M SB, each consisting of r VNs. In what
follows we mark by χG and χSG the complexities of global
and semi-global decoding, respectively.

From Construction 1, there are Mlr edges in the SC-
LDPCL protograph, so the global-decoding complexity is
χG = Mlr. In view of Definition 2 (also Figure 3), in the
helper graph there are (l− t)r+

∑t
i=1(r− iw) edges, and in

the target graph there are (l − t)r + 2
∑t
i=1(r − iw) edges.

Since we assumed that w = r
t+1 , then

χSG = d

(
lr − wt(t+ 1)

2

)
+ (l + t)r − wt(t+ 1)

= d

(
lr − rt

2

)
+ lr,

and the reduction in complexity is given by

1− χSG
χG

= 1−
d(l − t

2 ) + l

Ml
. (4)
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Fig. 5. ε∗D(m=5, d) for the (5, 12, t) protograph with M=11 SBs.

B. Threshold

We define the SG threshold ε∗SG(m, d) as the largest erasure
probability ε ∈ [0, 1] such that SG decoding successfully
decodes a target SB m ∈ [1 : M ] using d helper SBs.
Figure 5 exemplifies the SG thresholds ε∗SG(5, d) for the
(5, 12, t = 1, 2, 3) SC-LDPCL protographs with a total of
M = 11 SBs. For all t ∈ [1 : 3], the curves start (d = 0)
from the local threshold (see Definition 1), strongly increase
with the help of adjacent helpers (d = 2), and end close to the
global threshold (d = M − 1 = 10): the global threshold of
the (5, 12, t = 3) protograph with M = 11 is 0.375, while for
t = 3 the plots shows ε∗SG(5, 10) = 0.361 (3.7% difference).
On the other hand, (4) implies that for t = 3 the complexity
reduction for d = 10 equals 1− 1

55

(
10
(
5− 3

2

)
+ 5
)

= 27%.

C. The Sub-Block Varying BEC

We now examine the SG decoding performance when
operating on a channel with SB variability ([11], [12]), i.e.,
the channel parameter changes between SBs. Let M ∈ N be
the number of SBs, let E1, . . . , EM be i.i.d. random variables
taking values in [0, 1], and let F be the CDF of each Em. In
the SB varying-erasure channel, every SB m ∈ [1 : M ] passes
through a BEC(Em), i.e., first Em is realized, and then the
bits of SB m pass through a BEC(Em). SG decoding is
highly motivated by this practical channel since even if the
target SB suffers from high erasure rates, and local decoding
fails, potentially the helpers have low erasure rates.

In the following analysis we assume that the protograph is
large enough, such that no helper SB is the first or last SB.
For every even d and δ1, δ2 ∈ [0, 1]t, we define pd (δ1, δ2)
as the SG-decoding success-probability to decode a target SB
m with d

2 helper SBs to the right (i.e. larger indexes than the
target) and d

2 helpers to the left, where δ1 and δ2 are the t
erasure probabilities incoming from the left to SB m− d

2 and
from the right to SB m+ d

2 , respectively.

Definition 3. Let δ1, δ2 ∈ [0, 1]t. We define:
1) ε∗ (δ1, δ2): the target’s threshold given that the incoming

erasure probabilities are δL = δ1, and δR = δ2.
2) ∆: [0, 1] × [0, 1]t → [0, 1]t: the helper function that

calculates the outgoing erasure probabilities δO given
the SB’s erasure probability ε and the incoming erasure
probabilities δI , i.e., δO = ∆ (ε, δI).

3) ∆k : [0, 1]k×[0, 1]t→ [0, 1]t: a recursive function, k ∈N

∆0(δI)=δI ,

∆k(ε1, . . . , εk, δI)=∆(ε1,∆k−1(ε2, . . . , εk, δI)) .



Theorem 1 (proof omitted). For every varying-erasure chan-
nel, and every even d ≥ 0,

pd (δ1, δ2) = E [pd−2 (∆ (E, δ1) ,∆ (E′, δ2))] , d > 0,

p0(δ1, δ2) = Pr (E < ε∗(δ1, δ2)) ,

where E,E′ are i.i.d random variables representing the chan-
nel parameter.

Since Theorem 1 involves recursive evaluation of continu-
ous random variables E,E′ in [0, 1], we cannot use it directly
to calculate pd (δ1, δ2). Thus in the following we quantize the
domain to get a provable lower bound.

Theorem 2 (proof omitted). Let F (·) be the CDF of a SB
varying BEC channel, let K, d ∈ N, and δ1, δ2 ∈ [0, 1]t, and
let 0 = e0 < e1 < e2 < . . . < eK = 1 be a partition of
[0, 1]. For every 2d indexes i = (i−d, . . . , i−1, i1, . . . , id) ∈
[1 : K]2d, let

yi(δ1, δ2),ε∗
(
∆d

(
ei−1 , . . . , ei−d , δ1

)
,∆d (ei1 , . . . , eid , δ2)

)
.

Then,

pd(δ1, δ2) ≥
∑

i∈[1:K]2d

F
(
yi(δ1, δ2)

) d∏
j=−d
j 6=0

[
F (eij )−F (eij−1)

]
.

Remark. To get good bounds, it is preferable to have εL ,
ε∗(1, 1) and εS , ε∗(1, 0) as points in the partition {ei}Ki=1.
For example, one may set

e = (0, εL, εL + ξL, . . . , εS , εS + ξS , . . . , 1) , (5)

where ξL = bK2 c(εS − εL) and ξS =
⌊
K
2

⌋
(1− εS).

In order to ease calculation complexity, we state the next
lower bound. Similar to the definition of pd(δ1, δ2), we denote
by p̂d(δ) the SG success probability when all d helper SBs
have larger indexes than the target, given an input erasure
message δ.

Proposition 3 (proof omitted). For every even d ≥ 2

pd(1, 1) ≥ P 2
Lpd−2 (0, 0) + 2PL(1− PL)pd−2 (1, 0)

+ (1− PL)
2
pd−2 (1, 1) ,

pd(δ1, δ2) ≥ PL + (PS − PL)(p̂ d
2−1

(δ1)+p̂ d
2−1

(δ2))

+(PD−2PS+PL)p̂ d
2−1

(δ1)p̂ d
2−1

(δ2),

where PL , Pr (E < ε∗(1, 1)) , PS , Pr (E < ε∗(0, 1)) ,
PD , Pr (E < ε∗(0, 0)), and E is the channel-parameter
random variable.

Example 6. Figure 6 compares between the success prob-
ability of SG-decoding when all helpers have SB indexes
larger than the target (p̂d(1)), and when half of them have
SB indexes smaller than the target (pd(1, 1)). The plots refer
to the (l = 5, r = 12, t) SC-LDPCL protograph over the
varying-erasure channel BEC(E), E ∼ U [0, 0.4]. As seen
in Figure 6, two-sided SG decoding performs better than one-
sided SG decoding for every value of t = 1, 2, 3 and every
d ∈ {2, 4, 6, 8, 10}. The bounds are computed according to
Theorem 2 and Corollary 3. In Theorem 2 we calculated the
bound for d = 2, with K = 40 and the partition in (5).
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(5, 12) SC-LDPCL over BEC(E), E ∼ U [0, 0.4]
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p̂d(1), t = 3 pd(1, 1), t = 3

Fig. 6. Lower bounds on pd(1, 1) and p̂d(1) for the (5, 12, t) SC-LDPCL
protograph over the BEC(E), E ∼ U [0, 0.4].

Figure 6 also exemplifies the trade-off between locality and
coupling in SC-LDPCL protographs. If d = 0 (local decoding)
it is preferable to use the t = 1 protograph which is highly
localized. However, if d ≥ 6, the t = 3 protograph, which
is strongly coupled, is superior. In the range d ∈ {2, 4} the
t = 2 protograph is superior.
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