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Abstract—In this paper, we introduce a new channel model
we term the q-ary multi-bit channel (QMBC). This channel
models a memory device, where q-ary symbols (q = 2s) are
stored in the form of current/voltage levels. The symbols are
read in a measurement process, which provides a symbol bit
in each measurement step, starting from the most significant
bit. An error event occurs when not all the symbol bits are
known. To deal with such error events, we use GF(q) low-
density parity-check (LDPC) codes and analyze their decoding
performance. We start with iterative-decoding threshold analysis,
and derive optimal edge-label distributions for maximizing the
decoding threshold. We later move to finite-length iterative-
decoding analysis and propose an edge-labeling algorithm for
improved decoding performance. We then provide finite-length
maximum-likelihood decoding analysis for both the standard
non-binary random ensemble and LDPC ensembles. Finally,
we demonstrate by simulations that the proposed edge-labeling
algorithm improves finite-length decoding performance by orders
of magnitude.

I. INTRODUCTION

In multi-level memories, information is often stored in
the form of q = 2s (for some integer s) voltage/current
levels. In the read process, the stored levels are measured and
converted to a q-ary symbol. In this work, we introduce the q-
ary multi-bit channel (QMBC) model for imperfectly reading
information from memory devices. The QMBC is a special
case of a partial-erasure channel [1], where the channel output
is a set containing the input symbol.

In the QMBC, each q-ary symbol is decomposed into s
bits with hierarchical structure. The bits are organized such
that when the channel erases bit j ∈ {1, . . . , s}, all lower
bits {1, . . . , j − 1} are erased as well. That is, the QMBC
directly models a readout by a binary-search sequence that
may terminate while the last j measurements are missing. The
channel outputs in the QMBC are either the input symbol, or
a set of 2j (j ∈ {1, ..., s}) consecutive symbols that contain
the input symbol. In the latter case, we say that a partial-
erasure event occurred. For example, in the highest-severity
partial-erasure event that is not a full erasure, the output set
contains either the lower or upper q/2 symbols. This model is
different from the q-ary partial-erasure channel (QPEC) model
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[1], where the channel output is a random set containing the
input symbol.

The hierarchical structure of the QMBC puts it in lineage
with prior coding schemes that exhibit hierarchy among bits
in the code symbol. For example, a partition rule based on the
significance of the bits is proposed in the seminal paper of
Ungerboeck [2]. In [3], a wireless-network receiver observes
only the upper bits of the transmitted symbols, where the
number of bits depends on the channel gain. Hence this
paper’s theoretical framework for designing LDPC codes for
the QMBC may find use in applications other than the specific
one mentioned above in non-volatile memories. Our choice
to define the QMBC as an erasure-type channel is made for
the sake of mathematical preciseness and theoretical insight,
which are much harder to obtain with error-type channels. That
said, classical LDPC theory has shown that binary erasures
are a good proxy for symmetric bit errors, and we believe that
QMBC partial erasures are a similarly good proxy for natural
errors in non-volatile memories, such as graded-magnitude
errors [4].

To deal with QMBC partial-erasure events, we use GF(q)
low-density parity-check (LDPC) codes [5], [6], due to their
good performance under iterative decoding. We show that mes-
sages exchanged in the iterative-decoding process have cer-
tain structural properties that facilitate decoding-performance
analysis. To obtain a suitable measure of asymptotic iterative-
decoding performance, we extend the binary erasure channel
(BEC) decoding threshold [7], by defining the QMBC decod-
ing threshold region. We use the structure of the messages
to both simplify the decoding-threshold region analysis and
to derive an optimal code-graph edge label distribution for
maximal performance.

We later move to design and analysis of finite-length LDPC
codes for the QMBC. When iterative decoding is applied over
the QMBC, in addition to the stopping sets [8], the finite-
length performance depends strongly on the edge labels. We
theoretically characterize this dependence by analyzing the
algebraic structure of the partial-erasure sets within the finite
field, and propose an edge-labeling algorithm that considerably
mitigates the harmful effect of stopping sets. In that, our work
extends previous label-optimization algorithms (e.g., [9], [10])
to the special structure of the QMBC. The advantage here
is that the QMBC has strong solvability conditions that are
local to a single check, and thus allow neutralizing stopping
sets even without relying on the cycle structure of the graph.
We demonstrate the use of universal edge labels for local
solvability at the check node for all combinations of two
QMBC partial-erasure sizes that satisfy j1 + j2 ≤ s. We then
study the QMBC finite-length maximum-likelihood decoding
performance, both for the standard non-binary ensemble and
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regular LDPC ensembles. Because QMBC erasures are subsets
of the field GF(q), the main analytical challenge here is in
losing the linear structure. Finally, simulation results show that
our edge-labeling algorithm offers significant improvement
over uniform labeling, and even more so compared to using a
binary LDPC code.

This paper is structured as follows. In Section II, the QMBC
model and an iterative message-passing decoder are provided.
Structural properties of the iterative decoder are given in
Section III. The QMBC decoding-threshold region and optimal
edge-label distributions are introduced in Section IV. Finite-
length analysis of iterative-decoding performance and an edge-
labeling algorithm for improved decoding performance are
presented in Section V. We study finite-length maximum-
likelihood decoding performance in Section VI. Finally, simu-
lation results are presented in Section VII and conclusions are
provided in Section VIII.

II. CHANNEL MODEL AND ITERATIVE DECODER

The q-ary multi-bit channel (QMBC) belongs to the class of
partial-erasure channels [1], where the read process provides
either the correct symbol or a partially-erased symbol. In the
latter case, a subset of the input symbols that contains the
correct symbol is provided as the channel output. The binary
and the q-ary erasure channels (BEC and QEC) are special
cases of the QMBC, where full erasures may occur, carrying
no non-trivial information.

A. Channel model and capacity

The QMBC input alphabet consists of q = 2s symbols: X =
{0, 1, ..., q − 1}, for some integer s. For each input symbol x
and j = 0, 1, 2, ..., s, a partial-erasure event of type j occurs
when only the s − j left bits of x in binary representation
are known. In this case, the channel output is a set of 2j

consecutive symbols that have the same s − j left bits as x.
We denote this output set by Mj

x. Note that x ∈Mj
x for any

j, i.e., the correct input symbol belongs to the output set. In
addition, the input symbol is completely known when j = 0.
The transition probabilities governing the QMBC are:

Pr
(
Y =Mj

x

∣∣X = x
)

= εj , (1)

where εj for j = 0, 1, ..., s are the partial-erasure probabilities.
Note that for ε1 = ε2 = ... = εs−1 = 0 the QMBC reduces
to the QEC, and when s = 1 the QMBC reduces to the BEC.

Example 1. Assume that q = 4. Then M1
0 = M1

1 =
{0, 1} ,M1

2 = M1
3 = {2, 3} ,M2

0 = M2
1 = M2

2 = M2
3 =

{0, 1, 2, 3}.

We now move to provide the QMBC capacity.

Theorem 1. The QMBC capacity is

1−
s∑
j=1

jεj
s
, (2)

measured in q-ary symbols per channel use.

The proof is similar to the proof of [1, Theorem 1] and is
omitted. The QMBC capacity (2) implies that a QMBC has

the same capacity as a BEC with erasure probability
s∑
j=1

jεj/s.

Note that if the only non-zero partial-erasure probability is εs,
the QMBC capacity reduces to the QEC capacity 1 − εs, as
expected.

B. GF(q) representation

For analysis purposes, we map the symbols in X to
GF(q = 2s) elements. Consider a basis {ω1, ω2, ..., ωs} of
GF(q = 2s) over GF(2). Denote by 〈ω1, ω2, ..., ωj〉 the span
of the basis elements ω1, ω2, ..., ωj for j = 1, 2, ..., s. As an
example, 〈ω1, ω2〉 = {a · ω1 + b · ω2 : a, b ∈ {0, 1}}. We map
the sets Mj

0 for j = 1, 2, ..., s to 〈ω1, ω2, ..., ωj〉, which are
subgroups of the additive group of GF(q). These subgroups
are linear subspaces of the field GF(q = 2s) when viewed
as a dimension-s vector space over GF(2). More generally,
for each j = 1, 2, ..., s and x ∈ X we map Mj

x to the 2s−j

cosets of 〈ω1, ω2, ..., ωj〉, where the coset representatives are
taken from 〈ωj+1, ωj+2, ..., ωs〉.

Example 2. Let α designate a root of the primitive polynomial
x2 + x + 1 such that {1, α} is a basis of GF(4) over GF(2).
The sets M0

0,M1
0 and M2

0 are mapped to the subgroups
{0}, {0, 1} and {0, 1, α, α + 1}, respectively. The cosets of
{0, 1} are {0, 1} and {α, α + 1}. Thus, M1

1 is mapped to
{0, 1}, while M1

2 and M1
3 are mapped to {α, α+ 1}.

We will assume a mapping as above, and will refer to sym-
bol/field representation of the elements in X interchangeably.

C. GF(q) LDPC codes

The error-correcting codes we consider for dealing with
the QMBC are GF(q) LDPC codes [5], [6]. These codes
are defined by a sparse parity-check matrix with elements
taken from GF(q). This matrix is commonly visualized as
a Tanner graph [11]. The graph is bipartite, with variable
(left) nodes corresponding to codeword symbols, and check
(right) nodes corresponding to parity-check equations. The
edge labels on the graph are taken from the non-zero elements
of GF(q). The parity-check equation induced by check node
c is

∑
v∈N (c)

hc,v · v = 0, where N (c) is the set of variable

nodes adjacent to check node c and hc,v is the label on the
edge connecting check node c to its neighbour v ∈ N (c). The
calculations are performed using the GF(q) arithmetic.

LDPC codes are usually characterized by the degree dis-
tributions of the variable and check nodes. They are called
regular if both variable nodes and check nodes have con-
stant degree. Otherwise, they are called irregular. Denote
by dv and dc the maximal degree of variable nodes and
check nodes, respectively. As is customary [7], we define

the degree-distribution polynomials λ (x) =
dv∑
i=2

λix
i−1 and

ρ (x) =
dc∑
i=2

ρix
i−1, where a fraction λi (ρi) of the edges is

connected to variable (check) nodes of degree i. The design
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rate R of an LDPC code, measured in q-ary symbols per
channel use, is [7]:

R = 1−

(
dc∑
i=2

ρi/i

)
/

(
dv∑
i=2

λi/i

)
. (3)

The design rate equals the actual rate if the rows of the LDPC
code parity-check matrix are linearly independent. Otherwise,
the design rate is a lower bound on the actual rate.

D. Set iterative decoder

Since the QMBC belongs to the class of partial-erasure
channels, we use the iterative decoder suggested for such
channels in [1]. In this decoder, sets of symbols are exchanged
as messages in the decoding process. The set iterative decoder
extends the BEC iterative decoder [7] to partial erasures,
as follows. As usual, we have variable-to-check (VTC) and
check-to-variable (CTV) messages. We denote by CTV(l)

c→v

the CTV message from check node c to variable node v

at iteration l. In a similar way, VTC(l)
v→c denotes the VTC

message at iteration l. Both the VTC and CTV messages are
sets containing GF(q) elements.

An outgoing message from a graph node to a target (ad-
jacent) node depends on incoming messages along edges
connected to the source node except the outgoing message
edge. At iteration l = 0 (initialization), variable node v sends
its channel-information set (which can be one of the sets Mj

x

defined in Section II-A) to adjacent check nodes. We denote
these initial messages by VTC(0)

v .
A CTV message CTV(l)

c→v contains all the possible symbol
values of v that satisfy the parity-check equation at c given
the VTC messages to c at iteration l−1. To calculate the CTV
messages efficiently, the sumset operation [12] is used. This
operation is defined for two sets A and B that contain GF(q)
elements as

A+ B , {a+ b : a ∈ A, b ∈ B} , (4)

where the addition is performed using the GF(q) arithmetic.
That is, the set A+B contains all pairwise sums of elements
taken from A and B. The CTV message from check node c

to variable node v is then:

CTV(l)
c→v =

∑
v′∈{N (c)\v}

(
hc,v′

hc,v

)
·VTC

(l−1)
v′→c , (5)

where the sum is a sumset operation and the multiplications
are performed element-wise. Once all the CTV messages are
calculated, the VTC messages are calculated as the intersection
of the channel-information set and the incoming CTV message
sets:

VTC(l)
v→c = VTC(0)

v

⋂ ⋂
c′∈{N (v)\c}

CTV
(l)
c′→v

. (6)

A decoding failure occurs if unresolved variable nodes (i.e.,
containing sets with more than one symbol) remain after the
decoder terminates.

III. STRUCTURAL PROPERTIES OF EXCHANGED
MESSAGES

In this section, we show that the VTC and CTV messages
admit structural properties that facilitate iterative-decoding
performance analysis. Denote the additive group of GF(q)
by GF+(q). We will see that to analyze the probability of
decoding failure, it suffices to consider messages that are
subgroups of GF+(q). Assuming the all-zero codeword, the
decoding process starts with the channel-information sets
Mj

0 as channel subgroups, which evolve into more general
subgroups in the message-passing process. We start with two
fundamental properties of the sumset and intersection opera-
tions between cosets of subgroups. Note that sums involving
sets are interpreted as sumsets (see (4)).

Lemma 2. Consider two subgroups Ha,Hb of GF+(q) and
two cosets Ha + ga and Hb + gb for some ga, gb ∈ GF+(q).
Then

(Ha + ga) + (Hb + gb) = (Ha +Hb) + (ga + gb) . (7)

In addition, if both cosets contain an element γ, then

(Ha + ga)
⋂

(Hb + gb) =
(
Ha
⋂
Hb
)

+ γ. (8)

Proof. The relation in (7) is due to the associativity of the
field addition operation. In addition, the sumset of Ha +Hb
forms a group, due to the closure of Ha and Hb. Thus, the
right-hand side of (7) is a coset of Ha+Hb. To prove (8), note
that if γ belongs to Ha + ga (resp. Hb + gb) then Ha + ga =
Ha + γ (resp. Hb + gb = Hb + γ). An element µ lies in
(Ha + ga)

⋂
(Hb + gb) = (Ha + γ)

⋂
(Hb + γ) if and only if

there are ha ∈ Ha and hb ∈ Hb such that µ = ha+γ = hb+γ.
This holds if and only if µ − γ = ha = hb, meaning that
µ− γ ∈ Ha

⋂
Hb or µ ∈ (Ha

⋂
Hb) + γ.

As a result of Lemma 2, the right-hand side of (7) is a
coset of the group Ha +Hb and the right-hand side of (8) is
a coset of the group Ha

⋂
Hb. That is, the sumset and non-

empty intersection operations between cosets result in cosets.
Moreover, these operations can be performed between the
underlying subgroups, followed by the addition of a constant.
We leverage this observation to derive structural properties of
the exchanged messages in the set iterative decoder.

Lemma 3. The VTC and CTV messages exchanged in the
QMBC iterative-decoding process are cosets of subgroups of
GF+(q).

Proof. As we saw in Section II-B, the setsMj
0 (j = 0, 1, ..., s)

are mapped to subgroups of GF+(q). More generally, the
channel-information setsMj

x for x ∈ X are mapped to cosets
of these subgroups. Denote by xv the correct codeword symbol
at a certain variable node v. The CTV message from an
adjacent check node c to v at iteration 1 has the form (see
(5)) ∑

v′∈{N (c)\v}

(
gv′ · Mjv′

0 + gv′ · xv′
)
, (9)

where for each v′ ∈ {N (c) \v}, gv′ is a constant determined
by the graph edge labels and 2jv′ is the cardinality of the
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channel-information set at v′. For each v′, the set gv′ ·Mjv′
0 is

a subgroup of GF+(q), where closure follows from the closure
of the subgroup Mjv′

0 . Therefore, (9) is a sumset of cosets,
resulting in a coset (see the first part of Lemma 2).

Recall that the correct codeword symbol xv is contained in
any CTV message to v, as the channel may introduce partial
erasures but no errors. Thus, the sumset of cosets (9) can be
written as  ∑

v′∈{N (c)\v}

gv′ · Mjv′
0

+ xv. (10)

The VTC message at iteration 1 from v to c is the intersec-
tion between the channel-information set at v and the CTV
message sets from {N (v) \c} to v. Both types of sets were
shown above to be cosets, and all of them contain the correct
codeword symbol xv. According to the second part of Lemma
2, the intersection between these cosets is a coset. Repeating
the arguments above for the next decoding iterations, an
invariant is maintained that the VTC and CTV messages are
cosets of subgroups of GF+(q).

In the following theorem, we provide an important simpli-
fication for iterative-decoding performance analysis.

Theorem 4. The probability of decoding failure is independent
of the transmitted codeword. Furthermore, if the all-zero code-
word was transmitted, the exchanged messages are subgroups
of GF+(q).

Proof. We formally prove the intuitive fact that decoding
progress only depends on the underlying subgroups exchanged
in the messages, and not on which cosets of these subgroups
are exchanged. A VTC message from variable node v de-
pends on the intersection of cosets as in (10). However, an
intersection of cosets is a coset of the intersection of the
underlying subgroups (Lemma 2). Thus, the cardinality of
the VTC message depends on the underlying subgroups Mjv

0

only. In other words, it depends on the partial-erasure pattern,
i.e., on the cardinalities of the channel-information sets. Thus,
the VTC message cardinalities are independent of the actual
transmitted codeword.

A decoding failure occurs if a variable node set cardinality
is larger than one at the end of the decoding process (recall
that the correct symbol is always contained in the messages).
Thus, the probability of decoding failure is independent of
the transmitted codeword. If the all-zero codeword is trans-
mitted, xv in (10) are all zero. Thus, the CTV messages are
obtained as a sumset of subgroups, resulting in subgroups.
As a consequence, the intersection operation at variable nodes
is performed between subgroups, resulting in subgroups as
well.

The size of the space of possible messages passed in the
iterative-decoding process provides a measure of complexity
of the iterative decoder. Due to Theorem 4, this size is upper
bounded by the number of subgroups of GF+(q). This is
an important property of the iterative decoder that facilitates
performance analysis, as we show next that the number of

Fig. 1: A comparison of the number of subgroups of GF+(q)
and the number of non-empty subsets of GF+(q), measured in
bits.

subgroups is much smaller compared to number of possible
subsets.

Theorem 5. The number of possible VTC and CTV messages
passed in the decoding process, assuming that the all-zero
codeword was transmitted, is upper bounded by

T =

s∑
j=0


j∏
i=1

(
2s − 2i−1

)
j∏
i=1

(2j − 2i−1)

, (11)

which is the number of subgroups of GF+(q).

Note that the number of subgroups of GF+(q) of cardinality
2j is the jth summand in (11), which is the Gaussian coeffi-
cient

(
s
j

)
2
. The proof of Theorem 5 is based on representing

GF+(q) as an s-dimensional vector space over GF(2). Then,
the number of subgroups of order 2j is found as the number of
subspaces of dimension 2j (see e.g. [13] for the details). We
remark that the actual number of subgroups exchanged in the
decoding process (assuming that the all-zero codeword was
transmitted) is not necessarily T . Instead, it depends on the
channel information and on the edge labels. As an example,
the only possible subgroups in the full-erasure case (i.e., if the
only non-zero partial-erasure probability is εs) areM0

0 = {0}
and Ms

0, where the latter set contains all the field elements.
We compare the number of subgroups of GF+(q) to the

number of non-empty subsets of GF+(q) in Figure 1 (in
logarithmic scale). This figure reveals the importance of the
QMBC iterative-decoder structure to the analysis feasibility,
by which the number of subgroups is orders of magnitude
smaller compared to the number of subsets of GF+(q). Hence
performing density-evolution analysis for the QMBC is orders
of magnitude less complex than for a general channel in the
class of partial-erasure channels.
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IV. THE QMBC DECODING THRESHOLD REGION

To evaluate the performance of the iterative decoder, we
use the density evolution method [14]–[16]. In this method,
the probabilities of the exchanged messages as a function of
the decoding iteration are tracked. The code length is assumed
to be sufficiently large, such that the exchanged messages
are statistically independent with high probability [14]. Let
us consider a Tanner graph drawn uniformly at random out
of the graphs with certain degree distributions λ(x) and ρ(x).
The transmission of the all-zero codeword is assumed (see
Theorem 4), such that the possible messages are subgroups
of GF+(q). We denote these subgroups by {Ht}Tt=1 (recall
that T is provided in (11)). For convenience, we assume that
H1 =M0

0 = {0}.

Example 3. Consider the representation of GF(4) in Example
2. There are T = 5 subgroups of GF+(4), which can
be ordered as follows: H1 = {0}, H2 = {0, 1} ,H3 =
{0, α} ,H4 = {0, α+ 1} and H5 = {0, 1, α, α+ 1}.

To obtain the QMBC density-evolution equations, we define
w

(l)
t (resp. z(l)

t ) as the probability that a CTV (resp. VTC)
message at iteration l is Ht. We denote by Ri−1 an ordered
list containing i−1 subgroup indices taken from {1, 2, ..., T}.
These subgroups are interpreted as VTC (resp. CTV) messages
to a check (resp. variable) node of degree i.

Example 4. Assume that q = 4 (i.e., T = 5 subgroups)
and consider the (3, 6) LDPC code ensemble. Then R2

can be one of the ordered lists [1, 1] , [1, 2] , . . . , [5, 5]. Sim-
ilarly, R5 can be one of the ordered lists [1, 1, 1, 1, 1],
[1, 1, 1, 1, 2],. . .,[5, 5, 5, 5, 5].

In the case of binary LDPC codes, the edge labels of a
Tanner graph are simply ’1’s. In the GF(q) case, they are
taken from the non-zero field elements. Thus, a GF(q) LDPC
ensemble is characterized by an edge-label distribution in
addition to the degree distributions. Let us denote the edge-
label probability distribution by L. We define Pt (Mi−1,L)
as the probability of Ht as a CTV message, given the VTC
messages indexed in Ri−1, and the distribution L. We also
define It,j (Ri−1) as an indicator function, which equals 1
if the intersection of the CTV messages indexed in Ri−1

and the channel-information set Mj
0 is the VTC message Ht.

Otherwise, It,j (Ri−1) is 0 (note that the calculation of It,j
is independent of the edge labels). The following density-
evolution equations are obtained:

w
(l)
t =

dc∑
i=2

ρi
∑
Ri−1

 ∏
m∈Ri−1

z(l−1)
m

 · Pt (Ri−1,L) , (12)

z
(l)
t =

dv∑
i=2

λi

s∑
j=0

εj
∑
Ri−1

 ∏
m∈Ri−1

w(l)
m

 · It,j (Ri−1) ,

(13)

where the summation over Ri−1 is understood over all the
ordered lists containing i − 1 subgroup indices taken from
{1, 2, ..., T}. The initial conditions of the density-evolution

equations (12)-(13) are determined by the transition prob-
abilities in (1). That is, for each t such that Ht = Mj

0

(j = 0, 1, ..., s), z(0)
t is initialized to εj . For example, if

q = 4 and the subgroups are numbered as in Example 3,
then z

(0)
1 = ε0, z(0)

2 = ε1, z(0)
5 = ε2 and z

(0)
3 = z

(0)
4 = 0.

The asymptotic probability of decoding failure at iteration
l, denoted P

(l)
error, is the probability that a VTC message at

iteration l is not H1 = {0}:

P (l)
error =

T∑
i=2

z
(l)
i = 1− z(l)

1 . (14)

The QMBC is characterized by multiple partial-erasure
probabilities {εj}sj=1 rather than by a single erasure probabil-
ity (as in the BEC or the QEC). Thus, we define the QMBC
decoding threshold region by extending the BEC decoding
threshold [7]. First, define the following QMBC L-region
for given (λ(x), ρ(x)) degree-distribution pair and edge-label
distribution L

ΩL (λ, ρ) =

{
ε1, ε2, ..., εs ∈ [0, 1]

s
: lim
l→∞

P (l)
error(L) = 0

}
.

(15)
That is, an L-region contains the partial-erasure probabilities
leading asymptotically to zero probability of decoding failure
under the edge-label distribution L. The QMBC decoding-
threshold region is the union of the QMBC L-regions over
all possible choices of L:

Ω (λ, ρ) =
⋃
L

ΩL (λ, ρ) . (16)

If both the boundaries of Ω (λ, ρ) and ΩL (λ, ρ) contain the
same certain point, we say that L is optimal with respect to
this point.

A. Optimal edge-label distributions

As mentioned earlier, GF(q) LDPC code ensembles are
characterized by edge-label probability distributions in addi-
tion to degree distributions. In the following theorem, it is
demonstrated that a poor selection of label distribution may
degrade performance to that of a much worse channel. Denote
by εBEC the decoding threshold of the BEC (or QEC) for a
given degree-distribution polynomial pair λ (x) and ρ (x).

Theorem 6. If the edge-label distribution L is chosen such
that one of the non-zero GF(q) elements appears with proba-
bility 1 (i.e., all the labels are the same), then

ΩL (λ, ρ) =

ε1, ε2, ..., εs ∈ [0, 1]
s

:

s∑
j=1

εj ≤ εBEC

 .

(17)

That is, when the labels are all the same, a partial erasure
is asymptotically equivalent to a full erasure, which is an un-
desired property. The key observation in proving this theorem
is that messages exchanged in this case are restricted to the
channel information messages (i.e., to the initial subgroups
Mj

0). Thus, the only way to get cardinality-1 intersection
at a variable node is when a neighbouring check node has
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all its other neighbours with cardinality 1, same as when
decoding over the BEC. The details are provided in Appendix
A. As an immediate consequence of Theorem 6, simply taking
binary ensembles (where the edge labels are all ’1’) with good
performance (e.g., BEC capacity-achieving) necessarily gives
poor performance over the QMBC.

In the following, we derive explicitly optimal L distributions
for key points of interest in the QMBC decoding threshold
region. For the derivation, we assume that the only non-zero
partial-erasure probability is εjmax

, where jmax divides s. This
choice does not mean that we are only interested in correcting
partial erasures of type jmax, but rather that we want to analyze
the case when these are the dominant type of erasures (that
is, when εjmax

is considerably larger than any εj 6=jmax
). With

this restriction we show that the multi-dimensional density-
evolution equations (12)-(13) collapse to a single-letter density
evolution where the only possible erasure type throughout
decoding is the set Mjmax

0 . With additional types of channel
erasures there is need to track multiple erasure types in density
evolution, and thus future optimality results are potentially
more involved.

We assume a polynomial basis of GF(q), whereMj
0 (for j =

0, 1, ..., s) contains all the polynomials of degree at most j−1
with coefficients in GF(2). These polynomials are evaluated at
a primitive element of GF(q), denoted α. In this case, a basis
to GF(q) over GF(2) is {1, α, α2, ..., αs−1}.

Theorem 7. Consider a QMBC with partial erasures of type
jmax only, where jmax divides s. Then choosing L as the
uniform distribution on

{
αt·jmax

}s/jmax−1

t=0
is optimal with

respect to achieving capacity.

Proof. Suppose that the edge labels are taken from{
αt·jmax

}s/jmax−1

t=0
. Denote the probability that a variable node

is partially erased to Mjmax

0 at iteration l by yl, and recall
that y0 = εjmax

. Suppose that the VTC messages at iteration
l ≥ 0 are either {0} or Mjmax

0 . We show by induction that
the possible VTC messages at iteration l + 1 remain {0} or
Mjmax

0 . We first observe that a CTV message to a variable
node at iteration l has a non-trivial intersection with Mjmax

0

(i.e., containing a non-zero element) if and only if at least one
of the incoming VTC messages is a partial erasure and the
label on this incoming VTC message edge is the same as the
label on the outgoing CTV message edge. To see that, note
that if the labels are the same, then Mjmax

0 is an argument in
the CTV sumset operation (see (5)), whose result must contain
Mjmax

0 . Conversely, if edges from all partially-erased variable
nodes have labels different from the label h to the target
variable node, we show that the CTV message intersects with
Mjmax

0 only on {0}. Take an edge label hi of one partially-
erased variable node. The labels h, hi ∈

{
αt·jmax

}s/jmax−1

t=0
as monomials in α have degrees separated by at least jmax.
That means h · Mjmax

0 and hi · Mjmax

0 intersect only on the 0
polynomial. This is true for all i, and thus any sum

∑
i

hi · xi,

where xi’s are elements from Mjmax

0 not all zero, gives a
polynomial not in h ·Mjmax

0 . Equivalently, the CTV message
intersects with Mjmax

0 only on the symbol 0. The intersection

with {0} or Mjmax

0 at the variable nodes completes the
induction step.

Now by choosing L as the uniform distribution on{
αt·jmax

}s/jmax−1

t=0
, each label has probability jmax/s, and by

the argument above a CTV message contains Mjmax

0 with
probability

dc∑
i=2

ρi

(
1−

(
1− yl

jmax

s

)i−1
)

= 1− ρ
(

1− yl
s/jmax

)
.

(18)
The product yl jmax

s is the probability that both “bad” events
happen: the variable node connected by the incoming edge is
partially erased (with probability yl), and its edge has the same
label as the one on the outgoing edge (with probability jmax

s ).
The two events are statistically independent hence the product.
A variable node remains partially-erased at iteration l + 1 if
and only if it was partially-erased initially (with probability
εjmax

), and all its incoming CTV messages contain Mjmax

0 .
This leads to the single-letter recurrence relation

yl+1 = εjmax
·λ
(

1− ρ
(

1− yl
s/jmax

))
. (19)

The expression in (19) is the same recurrence equation as the
BEC/QEC density evolution, only with yl divided by s/jmax in
the argument of ρ(x). That is, we obtained a QMBC decoding
threshold that is s/jmax times the BEC/QEC threshold for
the same ensemble (when εjmax is the only non-zero partial-
erasure probability). This is optimal because a BEC/QEC
capacity-achieving ensemble will give a capacity-achieving
QMBC ensemble according to (2).

We remark that as all finite fields of the same order
are isomorphic, the basis elements in

{
αt·jmax

}s/jmax−1

t=0
can

always be mapped to basis elements in any other representation
of GF(q). As a consequence of Theorem 7, we can calculate
explicitly the threshold of the optimal label distribution for any
code ensemble, for jmax and q values given in the theorem.
We now demonstrate how the optimal edge-label distribution
derived in Theorem 7 improves the decoding performance.
Assume that q = 4 and partial erasures of type jmax = 1. In
Figure 2, the QMBC L-region defined in (15) is plotted for the
optimal distribution (solid line) and is compared to the uniform
distribution on the non-zero field elements (dotted line), for the
(3, 6) LDPC code ensemble. The QMBC Shannon capacity
region is plotted (dashed line) for reference.

For the optimal distribution, the lower-right corner is ε1 =
0.858, double the QEC threshold 0.429, according to (19).
At the upper-left corner (ε1 = 0), both label distributions
attain the same ε2 threshold – identical to the standard QEC
threshold for full erasures. While the optimal distribution
is superior at the lower-right corner, we found by a closer
look on the threshold values obtained in Figure 2 that the
uniform distribution becomes superior (by a small margin)
for ε2 ≥ 0.194. This hints that in general there is no single
distribution L universally optimal for all combinations of
{εj}sj=1.

It is an interesting fact that achieving optimality requires a
label distribution that is not the uniform distribution on the
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Fig. 2: The GF(4) QMBC L-regions of two edge-label dis-
tributions for the (3, 6) LDPC code ensemble. The QMBC
Shannon capacity region is plotted for reference.

non-zero field elements. We note that we can alternatively
achieve optimality by using a binary capacity-achieving en-
semble on jmax least significant bits of the symbols. However,
the advantage of q-ary ensembles with an optimal edge-label
distribution is that in addition to the optimality for εjmax ,
the same code has good correction performance for infinitely
many combinations of partial-erasure probabilities. There are
several other ways by which some combination of binary codes
can perform well over the QMBC, and even approach capacity
in long block lengths. However, the advantage of designing q-
ary QMBC LDPC codes is that one single code is directly
optimized, and as we show in the sequel, that code-design
algorithms for finite-length performance follow from the q-
ary algebraic structure.

V. EDGE-LABELING ALGORITHM FOR IMPROVED
FINITE-LENGTH PERFORMANCE

In this section, we show how improved finite-length decod-
ing performance is achieved by a wise labeling of the LDPC
graph edges.

A. Stopping sets and local resolvability

A stopping set S is defined as a subset of variable nodes,
such that all neighbours (check nodes) of S are connected to
S at least twice. A key result in BEC finite-length iterative-
decoding performance analysis is that the variable nodes in the
maximal (fully) erased stopping set remain erased when the
decoder stops [7], [8]. However, QMBC partially-erased vari-
able nodes that belong to a stopping set might be eventually
resolved. The reason is that with partial erasures the iterative
decoder can make progress even if two or more neighbours of
a check node are partially erased. This is demonstrated in the
following example.

Example 5. Consider the Tanner graph in Figure 3, where
the variable nodes v1 and v2 form a partially-erased stopping

Fig. 3: v1 and v2 form a partially-erased stopping set (the
channel information sets appear to the left). The resolvability
of v1 and v2 depends on the values of h1 and h2.

set (q = 4 is assumed). The initial CTV messages from the
check node at the bottom are {0, h2/h1} to v1 and {0, h1/h2}
to v2. If h1 = h2, the variable nodes are not resolved, as
the intersection operation at variable nodes results in {0, 1}.
Otherwise, they are resolved as {0}.

As shown in Example 5, partially-erased variable nodes in
a stopping set might be eventually resolved, depending on
the edge-label configuration. However, non-resolved partial
erasures must belong to a stopping set. Let us denote by E
the set of partially-erased variable nodes.

Lemma 8. The variable nodes that remain unresolved when
the iterative QMBC decoder terminates belong to the maxi-
mum stopping set contained in E .

The proof of Lemma 8 is similar to the proof of [7, Lemma
3.140] and is omitted. Consider a check node connected to
κ partially-erased variable nodes denoted v1, v2, ..., vκ, via
edge labels h1, h2, ..., hκ, respectively. We show that there
are values of the edge labels such that a decoding progress
is guaranteed, independently of information from any other
variable node. Recall that in the full-erasure case (i.e., BEC or
QEC), the local parity-check equation at a check node resolves
at most one (full) erasure. However, it is possible to resolve
multiple partial erasures in the QMBC case.

Definition 1. The edge labels h1, h2, ..., hκ are said to be
κ-resolvable if v1, v2, ..., vκ are resolvable (i.e., decoded suc-
cessfully), independently of other variable nodes.

The motivation for Definition 1 is that by placing resolvable
edge labels in stopping sets, improved decoding performance
is expected. Let us denote by jmax the maximal partial-
erasure type with non-zero probability. Consider the basis
{1, α, α2, ..., αs−1} of GF(q) over GF(2) (see Section IV).

Theorem 9. Consider a QMBC with partial-erasure types
at most jmax, where jmax divides s. The edge labels{
αt·jmax

}s/jmax−1

t=0
are (s/jmax)-resolvable for any set of

s/jmax partially-erased variable nodes.

Proof. Following the proof of Theorem 7, if hi are distinct
labels taken from

{
αt·jmax

}s/jmax−1

t=0
, the non-zero polynomi-

als hi · xi of the variable nodes vi have disjoint degrees, and
thus can only satisfy the check equation if they are all zero.
Hence the variable nodes can be resolved locally at the check
node.

Resolvable edge labels take advantage of the fact that a part
of the q-ary symbol is not erased, or equivalently, that some of
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the bits in that symbol went through a noiseless channel. They
essentially align the noiseless bit channels algebraically to get
resolvability. What makes the use of resolvable edge labels
interesting is that an edge-labeling algorithm will find (later
in this section) the specific edges in the decoding graph that
are particularly beneficial to align these noiseless bit channels.

B. Universal edge labeling

In addition to partial erasures of maximal type jmax, a wider
spectrum of partial erasures can be resolved when considering
check nodes of degree 2. The resolvability of variable nodes
connected to such check nodes is important, as every stopping
set (in graphs without singly-connected variable nodes) is
comprised of cycles that contain degree-2 check nodes [17].
As an example, the stopping set in Figure 3 is comprised of
one cycle of length 4, with two check nodes of degree 2.
This motivates finding edge labels that resolve QMBC partial
erasures universally, that is, the same pair of labels will resolve
any partial-erasure combination (j1, j2) satisfying j1 +j2 ≤ s.
It turns out that universal edge labels exist for field sizes
q = 2s with s up to (at least) s = 13. We provide a list
of universal coefficients for up to s = 6 in Table I. In this
table, α denotes a root of a primitive polynomial, such that
the basis elements are wi = αi−1 for i = 1, 2, ..., s (see
Section II-B). While non-binary LDPC codes are not likely
to be used beyond these values of s, pairs of universally
resolvable coefficients are implied for all even values s by [18,
Theorem 1]. Finding universally resolvable edge labels in more
generality (including for degrees more than 2) is an interesting
algebraic problem, with broader relevance to applications such
as RAID [19] and information dispersal [20].

C. Edge-labeling algorithm

Based on the existence of resolvable and universally-
resolvable edge labels, we propose an edge-labeling algorithm
for improved finite-length decoding performance. The idea is
to distribute resolvable edge labels within edges of stopping
sets such that partially-erased variable nodes are more likely
to be resolved. Our proposal to solve QMBC stopping sets
with an edge-labeling algorithm does not replace (and can be
added on top) classical stopping-set mitigations through graph-
level optimizations. Consider an LDPC graph with edge labels
uniformly selected from the non-zero elements of GF(q).
Suppose that the dominant partial-erasure type is jmax, and
that jmax divides s. If jmax does not divide s, then the
maximal partial-erasure type (smaller than jmax) that divides
s is considered instead.

Algorithm 1. (Edge labeling)
1) Run the BEC iterative decoder with the channel param-

eter ε = εjmax
for a predefined number of times. After

each run, store the set of unresolved variable nodes.
2) Initialize Σ as the subgraph induced by the variable

nodes from the sets of Step 1. Rank the variable nodes
by their number of occurrences in the sets.

3) Modify the edge labels of check nodes of degree 2
connected to variable nodes in Σ to universal edge

labels. Set the rank of connected variable nodes to 0.

4) Modify the edge labels of check nodes in Σ of degree
larger than 2 but no larger than s/jmax to labels taken
from

{
αt·jmax

}s/jmax−1

t=0
. Set the rank of connected vari-

able nodes to 0.
5) Run over the sets found in Step 1 by ascending cardi-

nality. For each check node connected to a set:
a) Set κ′ as the minimum between the number of non-

zero ranking variable nodes and s/jmax.
b) Modify the κ′ edge labels connected to non-zero

highest-ranking variable nodes according to either
Step 3 (if κ′ = 2) or Step 4 (otherwise).

The steps of Algorithm 1 are explained as follows. First,
we circumvent the hardness of finding stopping sets [21], [22]
by running the BEC decoder, which fails on stopping sets. To
focus on variable nodes that are likely to belong to a partially-
erased stopping set, we rank the variable nodes according to
their occurrences in the stopping sets found in Step 1. We
construct the subgraph induced by the union of the sets found
in Step 1, considered as a union of stopping sets, which is a
stopping set as well. We then distribute either resolvable or
universal edge labels for increased probability of local resolv-
ability. Algorithm 1 assumes no prior information on the code
graph structure and requires no topology changes. Specifically,
one of its advantages is that the degree distributions are not
affected.

As an alternative to Algorithm 1, one may consider to
distribute resolvable edge labels on the graph edges (i.e.,
without concentrating on stopping sets). However, this will
result in a Tanner graph with at most s/jmax + 1 edge label
values instead of the possible q − 1 = 2s − 1 edge labels.
As a consequence, the probability of edge labels of the same
value is increased, degrading the decoding performance (see
Theorem 6). Thus, it is desired to first distribute the q − 1
non-zero field elements uniformly on the edge labels and then
to apply Algorithm 1 to stopping sets only. The performance
improvement of Algorithm 1 is shown in Section VII.

VI. FINITE-LENGTH ANALYSIS OF
MAXIMUM-LIKELIHOOD DECODING

In this section, we analyze the finite-length decoding perfor-
mance when a maximum-likelihood (ML) is used. We study
the ML decoding performance for both the standard non-
binary linear ensemble and LDPC ensembles. We denote by
Ej (j = 1, 2, ..., s) the index set of variable nodes partially-

erased toMj
0 (see Section II), and define E ∆

=
s⋃
j=1

Ej . We start

with the following lemma.

Lemma 10. Consider a linear code used for transmission
over the QMBC. The probability of decoding failure under
ML decoding is independent of the transmitted codeword.

The proof of this lemma is provided in Appendix B. As a
result of Lemma 10, we assume in the rest of this section the
transmission of the all-zero codeword. Similarly to the BEC,
an ML decoder fails when a codeword other than the all-zero
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TABLE I: Universal cofficients for GF(q = 2s), s = 2, 3, 4, 5, 6.

s Primitive polynomial Universal coefficients

2 x2 + x+ 1 {1, α} or {1, 1 + α}
3 x3 + x+ 1 {1, α2} or {1, 1 + α+ α2}
4 x4 + x+ 1 {1, α+ α3} or {1, α2 + α3}
5 x5 + x2 + 1 {1, 1 + α2 + α4} or {1, α+ α3 + α4}
6 x6 + x+ 1 {1, 1 + α3 + α5} or {1, 1 + α+ α2 + α3 + α5}

codeword agrees with the partial-erasure pattern output by the
channel. For analyzing ML decoding performance, we next
define consistent vectors as the set of vectors that could have
been the input to the channel given that the partial-erasure
pattern {Ej}sj=1 is observed.

Definition 2. A GF(q) vector of length |E| is said to be
consistent with respect to {Ej}sj=1 if for j = 1, 2, ..., s an
element of this vector indexed in Ej is contained in Mj

0.

Example 6. Suppose q = 4, E1 = {1} and E2 = {2},
and consider the representation of GF(4) as in Example 2.
There are 8 consistent vectors with respect to E1, E2: (0, 0),
(0, 1),(0, α), (0, 1 + α), (1, 0), (1, 1), (1, α) and (1, 1 + α).

A. Standard non-binary random ensemble

In this part we calculate the expected probability of ML
decoding failure over the standard non-binary random ensem-
ble (SNBRE) of linear codes. Each code in the SNBRE is
defined by a parity-check matrix H of dimensions (n− k)×n,
whose entries are i.i.d. uniform random variables taken from
the GF(q) elements. HE denotes its submatrix formed by the
columns indexed in E . That is, the columns corresponding to
partially-erased variable nodes. To calculate the probability of
decoding failure in the SNBRE case, we present the following
definition. This definition uses the terminology of consistent
vectors from Definition 2.

Definition 3. The columns of HE are said to be partially
linearly independent if no consistent vector apart from the
zero vector exists in the null space of HE .

The partial linear independence definition reduces to the
ordinary linear independence definition when the partial era-
sures are full erasures (i.e., only Es is non empty). However,
the columns of HE can be partially linearly independent
even if they are not linearly independent under the ordinary
definition (e.g., when there are more columns than rows). This
is demonstrated in the following example.

Example 7. Consider the representation of GF(4) as in Ex-
ample 2. Assume that |E1| = 2 (all the other Ej are empty),
such that the columns of HE are (1, 1)

T and (α, α)
T . These

columns are linearly dependent (e.g., the vector (α, 1)
T is in

the null space of HE ). However, there is no vector of length 2
with elements taken fromM1

0 = {0, 1} (with at least one non-
zero element) in the null space of HE . Therefore, the columns
are partially linearly independent according to Definition 3.

To derive the probability of ML decoding success, we
calculate the probability of partial linear independence. Let
us define the set

Mj,j′

0
∆
=

{
hj
hj′

: hj ∈Mj
0, hj′ ∈M

j′

0 / {0}
}
, (20)

obtained by an element-wise division of the set Mj
0 by

Mj′

0 / {0} (for certain j, j′ ≤ s). Further, define χj,j
′

as the
cardinality of Mj,j′

0 :

χj,j
′ ∆

=
∣∣∣Mj,j′

0

∣∣∣ . (21)

Note that from group properties χj,j
′

is symmetric, i.e.,
χj,j

′
= χj

′,j . In addition, χj,s = q for any j.

Example 8. Assume that q = 4. Then χ1,1 = 2 and χj,j
′

for
j 6= 1 or j′ 6= 1 are 4.

Let ψ denote the probability that the columns of a randomly
drawn HE are partially linearly independent. For later use, we
define x+ ∆

= max (0, x).

Lemma 11. Given {Ej}sj=1, let O contain all vectors of length
|E| in which j occurs |Ej | times. Then

ψ ≥ max
o∈O

|E|∏
i=1

(
1−

(
i−1∏
l=1

χol,oi

)
/qn−k

)+

. (22)

Proof. As the matrices in the SNBRE are equiprobable, ψ
is a function of {|Ej |}sj=1 rather than of {Ej}sj=1. Let us
concentrate on some fixed but arbitrary choice of index sets
with cardinalities {|Ej |}sj=1. This choice is represented by
a vector o that contains j in indices of codeword symbols
partially-erased to Mj

0. Consider a matrix HE with columns
ei and denote by Ai the partial-erasure set indexed in oi
(i = 1, 2, ..., |E|). We count in how many ways partially
linearly independent columns can be placed in HE .

Assume that the first i′ − 1 columns of HE are partially
linearly independent. The next column, ei′ , must satisfy Ai′ ·

ei′ 6=
i′−1∑
l=1

Al · el. Thus, ei′ must be different from the vectors

in Γ =
i′−1∑
l=1

Al/ {Ai′ \ 0} · el. The number of elements in Γ is

upper bounded by
i′−1∏
l=1

χol,oi′ , as the linear combinations of el

in Γ might not be distinct. This is since linear independence in
the ordinary sense is not necessarily guaranteed. We maximize
over o ∈ O to tighten the bound, and to obtain a probability
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we normalize by q(n−k)|E|, which is the number of possible
HE matrices.

Apart from the lower bound on ψ of Lemma 11, there are
cases where the exact value of ψ can be found. Consider a
subset J ∗ of {1, 2, ..., s} such that each element in J ∗ divides
s and j′ divides j for all j, j′ ∈ J ∗, j′ ≤ j. We assume a
representation of GF(q) (see Section II-B) such that for each
j∗ ∈ J ∗, the partial erasure set Mj∗

0 is mapped to a subfield
of GF(q) (i.e., in addition to being an additive subgroup of
GF(q)). Moreover, for each pair j, j′ ∈ J ∗, j′ ≤ j, Mj′

0 is
mapped to a subfield of Mj

0.

Example 9. If q = 4, the possible choices of J ∗ are {1}, {2}
and {1, 2}. If q = 8, J ∗ can be {1}, {2}, {1, 2} or {1, 3}.

The following lemma shows that when the divisibility
conditions above are met, the upper bound on ψ via sequential
exclusion of dependencies (Lemma 11) becomes exact, if we
sort the partial erasures in non-increasing order.

Lemma 12. Assume that Ej = ∅ for j /∈ J ∗. Denote by o
the (now specific) vector of length |E| with s in its first |Es|
entries, s−1 in its next |Es−1| entries downto 1 in its last |E1|
entries. Then

ψ =

|E|∏
i=1

(
1−

(
i−1∏
l=1

2ol

)
/qn−k

)+

. (23)

Proof. Consider the placement process depicted in the proof of
Lemma 11 and assume that we place the i′th column. From the
ordering of o we get that χol,oi′ = 2ol for l < i′. In choosing
the vector ei′ we exclude all combinations of previous vectors
el with coefficients in Mol,oi′

0 . Assume by contradiction that

two of these
i′−1∏
l=1

2ol combinations result in the same vector.

But this would imply an ei′′ , i′′ < i′, that is a combination
of vectors el, l < i′′, with coefficients in Mol,oi′

0 . Since for
any l , Mol,oi′

0 = Mol,oi′′
0 , this is a contradiction because it

means that at step i′′ we did not exclude all partially dependent
vectors, and thus the count is exact with no over-subtraction.

Based on either the lower bound on ψ of Lemma 11 or
its exact value for the cases of Lemma 12, we calculate the
expected value of PML

error for the SNBRE.

Theorem 13. The expected probability of decoding failure
over codes drawn from the non-binary random ensemble under
ML decoding is

ESNBRE

[
PML (H)

]
(24)

≤
∑

|E0|,|E1|,...,|Es|:
s∑

j=0
|Ej |=n

n!

|E0|! |E1|!... |Es|!

s∏
j=0

εj
|Ej | ·

(
1− ψ̃

)
,

where ψ̃ is1 either the lower bound of Lemma 11, or its exact
value in the cases of Lemma 12 (in the latter cases, an equality
is attained in (24)).

1While implicit in the expressions, recall that ψ̃ depends on {|Ej |}sj=1.

Fig. 4: Exact ESNBRE

[
PML (H)

]
as a function of ε1, for ε2 =

ε1/10 and q = 4 (solid lines). An asymptotically equivalent
QEC with ε = (3/5) ε1 is also shown (dashed lines). The
codeword lengths are n = 128, 256, 512 (top to bottom) and
the rate is 8/9 (Shannon limit: 0.185).

Proof. Recall that the transmission of the all-zero codeword
is assumed without loss of generality. Consider a fixed but
arbitrary partial-erasure index sets {Ej}sj=1. The channel out-
put is not resolved as the all-zero codeword if and only
if there is a non-zero consistent solution to HEx

T
E = 0.

This happens if the columns of HE are partially linearly
independent, with probability which is 1 − ψ. Finally, we
sum over the possible cardinalities of the partial-erasure index
sets, using the multinomial distribution and the channel partial-
erasure probabilities, to obtain (24).

If s = 1 and all the partial-erasure sets are {0, 1} (i.e.,
BEC full-erasures), we obtain [8, Theorem 3.1] as a special
case of Theorem 13 (with equality). In Figure 4 we plot
ESNBRE

[
PML (H)

]
for a q = 4 channel with ε2 = ε1/10

and different n values. This is compared to an asymptoti-
cally equivalent q-ary erasure channel (QEC), i.e., with ε =
ε1/2+ε2. It is demonstrated that the QMBC finite-length ML
performance is orders of magnitude better, though the Shannon
limit is the same.

B. LDPC ensembles under ML decoding

In this part, we derive an upper bound on the expected
ML decoding performance over the regular non-binary (dv, dc)
LDPC ensemble. We start with the following lemma, which
will serve us later in calculating the probability that a certain
check node is satisfied.

Lemma 14. Consider a vector a of length m ≥ 2, whose
entries are i.i.d. random variables uniformly distributed on
the non-zero GF(q = 2s) elements. The probability that the
entries of a sum to 0 is

Pr

(
m∑
i=1

ai = 0

)
=

1− (1− q)1−m

q
≤ 1

q − 1
. (25)
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Fig. 5: The probability that a check node is satisfied given
m non-zeros among its connected variable nodes, under the
uniform distribution of the edge labels. The binary case (q = 2,
no sensitivity to edge labels) is provided for reference.

The proof of this lemma is provided in Appendix C. In

Figure 5, the zero-sum probability Pr

(
m∑
i=1

ai = 0

)
is shown

for several values of m and q. Note that in the binary case
(q = 2) this probability is 1 if m is even, and 0 otherwise,
as expected. It is demonstrated in Figure 5 that the zero-
sum probability is approximately independent of m when
q ≥ 2, and that the upper bound 1/(q − 1) is tight. Note that

Pr

(
m∑
i=1

ai = 0

)
depends on the number of non-zero entries in

a and not on the entries themselves. In the following lemma,
we calculate the number of consistent vectors (see Definition
2) with a certain number of non-zero entries.

Lemma 15. Given E = {Ej}sj=1, the number of vectors with
w non-zero entries that are consistent with E is

η (w) =
∑

u:
s∑

j=1
uj=w,

uj≤|Ej |

s∏
j=1

(
|Ej |
uj

)(
2j − 1

)uj
. (26)

Proof. An element uj of u counts the number of non-zero
entries taken from the |Ej | partial-erasure setMj

0. The number
of ways to choose the locations of the partial-erasure sets is
counted with the factor

(|Ej |
uj

)
, where for each choice there are(

2j − 1
)uj ways to choose the non-zero entries.

Note that when s = 1 and all the partial-erasure sets
are {0, 1} (i.e., BEC full-erasures), η (w) degenerates into(|E|
w

)
, which is the number of binary vectors of length |E|

whose Hamming weight is w. Let us denote by PML (G) the
probability of ML decoding failure for a certain Tanner graph
G from the regular (dv, dc) ensemble. We now use Lemma 14
and Lemma 15 to upper bound the expected value (over graphs
in the (dv, dc) ensemble) of PML (G). As in [8], [23], we use
polynomial characteristic functions to identify graph configu-
rations leading to failure events. We denote by coef

(
f (x) , xi

)
the ith coefficient fi of xi in the polynomial f (x) =

∑
i≥0

fix
i

(note that coef
(
(1 + y)

n
, xk
)

=
(
n
k

)
). We also denote by

ELDPC(dv,dc)

[
PML (G)

]
the expected probability of decoding

failure, where the expectation is taken over LDPC codes in the
(dv, dc) ensemble. Recall that η (w) is a function of {|Ej |}sj=1.

Theorem 16.

ELDPC(dv,dc)

[
PML (G)

]
≤ (27)∑

|E0|,|E1|,...,|Es|:
s∑

j=0
|Ej |=n

n!

|E0|! |E1|!... |Es|!

s∏
j=0

εj
|Ej |

·min

{
1,

|E|∑
w=1

η(w)

coef

((
(1 + y)

dc − 1− ydc
)n dv

dc
, ywdv

)
(
ndv
wdv

)
(

1

q − 1

)w dv
dc
}
.

Proof. An ML decoder fails if and only if there is a non-trivial
solution to the equation HEx

T
E = 0, which is consistent with

respect to {Ej}sj=1:

Pr
(
∃xE 6= 0,xE is consistent : HEx

T
E = 0

)
(28)

≤
∑

xE 6=0,xE is consistent

Pr
(
HEx

T
E = 0

)
,

where the upper bound follows by the union bound. Con-
sider an arbitrary but fixed consistent vector xE and denote
the number of its non-zero entries by w(xE). There are
w(xE)dv edges connected to variable nodes corresponding
to the non-zero elements of xE . For HEx

T
E = 0 to hold,

each neighbouring check of the w(xE) non-zero variable
nodes must be connected to these variable nodes at least
twice. As the total number of check nodes is ndv/dc, we

have coef

((
(1 + y)

dc − 1− dcy
)n dv

dc
, yw(xE)dv

)
configura-

tions out of
(

ndv
w(xE)dv

)
such configuration. According to

Lemma 14, the probability that a certain check node is satisfied
is upper bounded by 1/(q − 1) (recall that uniform edge
labels are assumed). The number of check nodes connected
to w(xE) variable nodes is at least w(xE)dv/dc. Thus,
(1/ (q − 1))

w(xE)dv/dc is an upper bound on the probability
that all check nodes connected to the w(xE) non-zero variable
nodes are satisfied. Finally, by summing over all the possible
weights of consistent vectors (counted by η (w) of Lemma 15)
and taking into account the channel partial-erasure probabili-
ties, (27) is obtained. The minimum in (27) is taken to tighten
the upper bound.

In Figure 6, we compare (27) for q = 4, where the set
{0, 1} is considered as either a partial erasure (decoded with
the QMBC decoder) or a full erasure (decoded with the BEC
decoder). In terms of the upper bound (27), the QMBC model
is expected to provide ML decoding performance orders of
magnitude better compared to full-erasure decoding.

VII. SIMULATION RESULTS

In this part, we present simulation results of the QMBC
iterative-decoding performance. We used the regular (3, 27)
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Fig. 6: A comparison of ELDPC(dv,dc)

[
PML (G)

]
for the

LDPC ensemble (3, 27) (rate 8/9), for a GF(4) code of length
252. The set {0, 1} is either considered as a partial erasure or
a full erasure with probability ε1.

LDPC code ensemble (rate 8/9), whose high rate is desired in
memory and storage applications. Two codeword lengths were
considered: n = 513 and n = 1026. The average decoding
performance is measured by symbol erasure rate (SER), where
each variable node that remains partially erased when the
decoder terminates contributes to this quantity.

A. Comparison to binary full erasures

As a preliminary step, we considered binary coding with
GF(q) symbols converted to bits. In this setting, a GF(q)
symbol is decomposed into s bits, where a partial-erasure
event of type j corresponds to j (fully) erased least significant
bits. We compare GF(q) codes with partial erasures (decoded
using the QMBC decoder) to binary codes with equivalent
full erasures (decoded using the BEC decoder). The results
are shown in Figure 7. It is demonstrated that partial-erasure
decoding outperforms binary erasure decoding, offering SER
performance better by up to an order of magnitude. The
improved performance of GF(q) codes over binary codes is
explained by the mitigated effect of stopping sets due to the
non-binary edge labels, as we developed in Section V. We see
that the performance gap diminishes as the codeword length
is increased. The reason is that for sufficiently long codeword
lengths, the probability of having a stopping set of a certain
size gets smaller. Thus in long block lengths, binary codes are
likely to offer competitive performance. However, stopping
sets are still the cause of failure events in practical block
lengths. In this section we do not consider the alternative
(mentioned in Section IV) of using binary codes for the j
upper bits only. While this alternative will likely outperform
the plotted options on one specific value of j, it would
completely collapse if there is even a tiny fraction of higher-
order partial erasures.

(a) q = 4, j = 1 (decoding threshold: 0.184).

(b) q = 8, j = 1 (decoding threshold: 0.276).

Fig. 7: SER performance comparison between GF(q) and bi-
nary codes. The labels of the GF(q) LDPC codes are uniformly
distributed.

B. Performance of the edge-labeling algorithm

In this part, we show that the decoding performance of
GF(q) LDPC codes can be further improved using the edge-
labeling algorithm (Algorithm 1) developed in Section V-C.
In Figure 8, we compare the iterative decoding performance
of GF(q) with uniformly-distributed edge labels to edge labels
optimized using Algorithm 1. The optimized edge labels lead
to a significant improvement in in SER performance, up to two
orders of magnitude. It is demonstrated that the performance
gap increases with q for a fixed partial-erasure type. The reason
is the larger number of resolvable edge labels, which increases
with q (see Theorem 9).

VIII. CONCLUSION

This work offers a study of the performance of iterative
decoding of GF(q) LDPC codes over the QMBC. By an
asymptotic threshold analysis, we demonstrated explicitly how
the edge label distribution affects decoding performance. We
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(a) q = 4, j = 1 (decoding threshold 0.184).

(b) q = 8, j = 1 (decoding threshold 0.276).

Fig. 8: SER performance comparison of QMBC partial-erasure
decoding, between uniformly-distributed and optimized edge
labels. The decoding thresholds are given for optimal edge-
label distributions.

later showed that unlike the binary case, partially-erased
stopping sets can be resolved by a wise setting of edge labels.
For this aim, we proposed and evaluated an edge-labeling
algorithm for improved finite-length decoding performance.
Finally, we derived expressions for the finite-length perfor-
mance of a maximum-likelihood decoder, both for the standard
non-binary random ensemble and for LDPC ensembles.

Our work leaves interesting problems for future research.
Designing good GF(q) LDPC codes for the QMBC is an im-
portant research direction. Unlike binary codes, GF(q) LDPC
codes require a joint optimization of degree and edge-label
distributions. It is of importance to give an expression for the
QMBC finite-length performance that depends on the edge-
label distribution in addition to the stopping-set distribution.
As another direction, the upper bound on the ML decoding
performance for LDPC ensembles might be improved by
considering non-uniform edge-label distributions.

APPENDIX A
PROOF OF THEOREM 6

Assume that all the edge labels are the same. In this case,
the CTV messages are independent of the edge labels, and we
have (see (5)):

CTV(l)
c→v =

∑
v′∈{N (c)\v}

VTC
(l−1)
v′→c . (29)

That is, an outgoing CTV message is simply the sumset of
the incoming VTC messages. Recall that the initial channel-
information sets are contained in each other, i.e. Mj

0 ⊆M
j′

0

for j ≤ j′, and that each set is an additive subgroup of GF+(q),
closed under addition. For example, the possible channel-
information sets when q = 4 are {0} , {0, 1} and {0, 1, 2, 3}
(we define M0

0 as the singleton {0}). Due to the closure
property of subgroups, the initial sumset at a check node can
be written as: ∑

j∈Mv

Mj
0 =M

max
j∈Mv

j

0 , (30)

where Mv is an ordered list containing indices of incoming
VTC messages (See Section IV). Thus, the sumset operation
at check nodes simplifies to finding the incoming VTC mes-
sage of the maximum cardinality. In a similar manner, the
intersection operation performed at variable nodes simplifies
to finding the incoming incoming CTV message of smallest
cardinality: ⋂

j∈Mc

Mj
0 =M

min
j∈Mc

j

0 , (31)

where Mc is an ordered list containing indices of incoming
CTV messages. As a result of (30) and (31), the QMBC de-
coder simplifies to the BEC decoder. That is, a CTV message
is a partial erasure if any of the incoming VTC messages is
a partial erasure and a VTC message is a partial erasure if
the corresponding variable was initially partially erased and
all incoming CTV messages are partial erasure. This leads to

the BEC density-evolution equation with ε =
s∑
j=1

εj .

APPENDIX B
PROOF OF LEMMA 10

Assume the transmission of a codeword c from a linear code
defined by a parity-check matrix H. Let us denote by x(t) (t =

1, 2, ...,
s∏
j=1

|Ej |) the GF(q) words (not necessarily codewords)

consistent (see Definition 2) with the channel output y. That is,
any x(t) as input would result in the output y, given the partial-
erasure index sets {Ej}sj=1. An ML decoder fails if and only
if there exists x(t) 6= c, such that Hx(t) = 0. Now assume the
transmission of the all-zero codeword, and recall that Mj

ci =

Mj
0+ci (see Section II-A). Then each x(t) consistent with the

setsMj
ci and satisfying Hx(t) = 0 has a corresponding z(t) =

x(t) − c that is consistent with the sets Mj
0 and satisfying

Hz(t) = 0. Thus, the probability of decoding failure under
ML decoding is independent of the transmitted codeword.
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APPENDIX C
PROOF OF LEMMA 14

Let us start with the case m = 2. The elements of the
vector a sum to zero if and only if they are the same. Thus,
there are q − 1 vectors with all non-zero elements of length
2 whose elements sum to zero. As a consequence, there are
(q − 1)2 − (q − 1) vectors with all non-zero elements whose
elements sum to a non-zero field element. Let us move to the
m = 3 case, where we consider a vector ã = (ã1, ã2, ã3)
of 3 non-zero elements. The equation ã1 + ã2 + ã3 = 0 is
equivalent to ã1 + ã2 = ã3. As ã3 can be any non-zero field
element, the number of ways to obtain ã1 + ã2 + ã3 = 0 is
the same as the number of ways to obtain a non-zero sum of
ã1 + ã2. According to the previous m = 2 result, this number
is (q − 1)2 − (q − 1). Continuing in the same fashion, there

are
m−1∑
i=1

(q − 1)
i
(−1)

m−i−1 ways to obtain a zero sum for a

random vector of m non-zero elements, m ≥ 2. Simplifying
the sum and normalizing by the number of possible vectors
(q− 1)m leads to (25). The upper bound in (25) is equivalent
to (1− q)2−m ≤ 1, which holds for all m ≥ 2. This upper
bound is sharp, as it is attained with equality for m = 2.
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