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Error-Correcting WOM Codes: Concatenation and
Joint Design

Amit Solomon and Yuval Cassuto, Senior Member, IEEE

Abstract— We construct error-correcting WOM (write-once
memory) codes that guarantee correction of any specified number
of errors in q-level memories. The constructions use suitably de-
signed short q-ary WOM codes and concatenate them with outer
error-correcting codes over different alphabets, using suitably
designed mappings. With a new storage-efficiency measure we
call EC-rate, we show that for common error types the codes save
redundancy and implementation complexity over straightforward
concatenation. In addition to constructions for guaranteed er-
ror correction, we extend the error-correcting WOM scheme to
binary multi-level coding for random errors, and toward soft-
decision decoding provide an efficient way to extract reliability
information without using higher-precision readout.

Index Terms— WOM codes, error-correcting WOM codes, codes
for memories, concatenated codes, multi-level coding, coded mod-
ulation.

I. INTRODUCTION

Flash-based non-volatile memories (NVM) are the storage
media of choice in most modern information applications,
thanks to their fast access and growing densities. However,
the Flash technology suffers from the major impediment of not
being able to update data in-place. Because removing charges
from memory cells cannot be done at a fine granularity, it is
not possible to update written data without first erasing a very
large data unit. As a result, write performance is degraded
and the wear of cells is accelerated. It has been demonstrated
and recognized [20], [24] that WOM (write-once memory)
codes [21] hold promise to mitigate this access limitation by
allowing to update the logical data multiple times without need
to physically remove charges from the cells. While WOM
codes can support a more flexible write access to Flash, a
concern is raised about their effect on data reliability. With
WOM codes, cells are written multiple times between erases,
and are accessed in a less predictable order than when written
only once without WOM. These two effects may increase the
severity of inter-cell interference, and degrade reliability if not
properly addressed.

Our objective in this paper is to improve the reliability of
WOM codes by making them resilient to errors from noise
and interference. Our method is to combine WOM codes with
error-correcting (EC) codes to get guaranteed error correction
with flexible parameters. In general combining WOM codes
with EC codes is a non-trivial task because the EC encoder
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may not respect the WOM constraints, and the WOM de-
coder may cause error propagation affecting a large number
of EC symbols. While there have been some works addressing
EC+WOM combination [26], [23], [17], the problem is yet to
be adequately solved for practical deployment in non-volatile
storage. In particular, prior to our work no scheme provides
guaranteed correction of τ errors, for an arbitrary τ . One ex-
ception is a construction in [23] that lifts triple-error correcting
WOM codes to general τ , but due to its use of codeword
replication has sum-rates degrading as the reciprocal of τ . In
comparison, the sum-rates of our constructions degrade much
slower: linearly with τ . A combination of EC and WOM codes
is also the subject of [16], however, in that scheme the EC
code is used as a building block for the WOM codes’ re-write
capabilities. The results of [16] also include the basic EC-
WOM concatenation we use as a baseline to compare to our
constructions.

Our contribution in this paper is a new scheme to com-
bine WOM with EC codes. We use short (n = 2) WOM
codes over the memory’s q-ary alphabet (q is the number
of levels supported by the physical device), and concatenate
them with outer EC codes of any length N . Our contributions
divide into two parts: the first part (Section IV) addresses code
constructions for guaranteed error correction with worst-case
errors, while the second part (Section V) develops additional
tools for random error channels. In the first part we propose
multiple code constructions for guaranteed τ -error correction
(for any τ ), which improve storage rates over straightforward
concatenation for errors common in Flash (e.g. magnitude-1
or asymmetric magnitude-1). Our construction method is to
jointly design the EC and WOM codes, such that the WOM
redundancy expended for rewriting is designed to also con-
tribute to error correction. By that, our work develops con-
crete formal constructions building on the notion that WOM
codes can have intrinsic error resilience, previously observed
in [19] and further developed in [14]. The main observation
leading to the constructions’ good correction capabilities is
that the WOM alphabet can be decomposed and mapped to
multiple smaller alphabets, and on each alphabet different EC
capabilities can be prescribed for the outer EC code. Each
of the constructions is specified with four components: 1)
the WOM code, 2) the alphabet decomposition and mapping,
3) the EC code, and 4) the construction combining 1-3. To
evaluate and compare our constructions, we define the EC-rate
as a new rate measure that captures the residual redundancy
added to a WOM code for error correction. Code families with
concrete parameters are obtained by evaluating the EC-rate on
parameters of the ubiquitously used BCH codes. In addition to
concrete advantage in EC-rates, the lower-alphabet EC codes
used in our constructions reduce the implementation complex-



2

ity over straightforward concatenation. In the second part we
complement the code constructions with additional coding-
theoretic tools that can improve error-correction performance
with random errors. Firstly, we develop a multi-level coding
framework for which WOM codes are constructed to work
with binary-only EC codes (for low implementation complex-
ity). The WOM alphabet is mapped hierarchically to multiple
bits, and information from the WOM decoding function is used
to feed an error+erasure multi-stage decoder. Analysis using
decoding-error probability bound shows the good performance
of the WOM codes constructed especially for multi-level cod-
ing. In addition, it shows the significant advantage in decoding
performance of decoders that know the current write number
of the WOM code. Secondly, toward extending the EC-WOM
framework to soft-decision decoding, we show how the soft
reliability inputs can come not from costly higher-precision
readout, but from the reliability information provided by the
inner WOM decoder. We show that for additive Gaussian noise
channels the ordering of symbol reliabilities based on the
WOM decoding function has a nice structure.

Our constructions of EC-WOM codes provide code families
that are infinite in two ways: we can grow the block length in
return to more information or larger τ , and we can grow the
alphabet size in return to more writes. The constructions use
different inner WOM codes with n = 2, which we found to
offer a good balance between error controllability and re-write
efficiency. We believe that our approach can be extended to
using longer inner q-ary codes, such as those in [8], [2], [11],
[12], [18].

II. PRELIMINARIES

We start by including definitions regarding WOM codes;
then we add definitions addressing error correction by WOM
codes.

A. WOM codes

A WOM code is our basic object of study in this paper, and
we focus on the generalization of the WOM coding model to
q-ary alphabets, with q > 2. We give the general definition of
a WOM code up to restricting it to be fixed-rate, that is, the
same number of bits is written in each of its writes.

Definition 1. A (`, q, t, B) (fixed-rate) WOM code is a code
applied to a size ` block of q-ary cells, and guaranteeing twrites
of input size B each, while the cell levels do not decrease.

A WOM code is specified through a pair of functions: the
decoding and update functions.

Definition 2. The decoding function is defined as
ψ : {0, . . . , q − 1}` → {0, . . . , B − 1}, which maps the cur-
rent levels of the ` cells to the data input in the most recent
write. The update function is defined as µ : {0, . . . , q − 1}` ×
{0, . . . , B − 1} → {0, . . . , q − 1}`, which specifies the new
cell levels as a function of the current cell levels and the new
data value at the input. By the WOM requirement, the i-th cell
level output by µ cannot be lower than the i-th cell level in the
input, for each i.

Definition 2 of the WOM-code functions assumes the special
case that the function outputs do not depend on the current
write number. Later in the paper (Definition 10), we generalize
the definition of the decoding function ψ to also depend on
the write number.

Definition 3. The code’s physical state is defined as the ` q-ary
levels to which the cells are currently programmed. The code’s
logical state is the data element from {0, . . . , B − 1} returned
by ψ on the current physical state.

A convenient way to specify the WOM decoding function is
through an `-dimensional matrix of physical states {0, . . . , q−
1}`, where at each position the matrix holds the logical state
in {0, . . . , B−1} corresponding to the output of the decoding
function for that physical state. The update function specifies
the target physical state given the current physical state and
the input logical value.

Example 1. Let us consider two WOM-code examples. In Fig-
ure 1a we have the decoding function of a
(` = 2, q = 7, t = 3, B = 8) WOM code constructed by Con-
struction 3 in [5]. This code is applied on a pair of q = 7-
level memory cells, enabling t = 3 guaranteed writes of size
B = 8 (log2B = 3 bits) each. In Figure 1b we have a differ-
ent (` = 2, q = 7, t = 3, B = 8) code, offering the exact same
parameters. Let us assume that for the t = 3 writes we want to

Figure 1: Sample ` = 2 WOM constructions (from [5]). (a)
- Decoding function ψ for a (2, 7, 3, 8) code. (b) - Decoding
function ψ for another (2, 7, 3, 8) code. Physical states are
represented by (c1, c2) and logical states are labeled inside
each matrix position.

write the logical values 7, 6 and 2 using the WOM code of Fig-
ure 1a. For the first write the logical state is 7 and the physical
state is (2, 1). When updating the logical state to 6, the physical
state becomes (2, 4). For the third write of 2, the physical state
becomes (2, 6). The codes of Figure 1a,b are equivalent in terms
of their specified re-write performance (the same guaranteed
t and B using the same coding resources ` and q). However,
the codes may differ significantly in performance beyond the
specified parameters. For example, the code of Figure 1a can
be extended to 4 writes when moving from q = 7 to q = 8,
while the code of Figure 1b cannot.

In the remainder of the paper, we focus on WOM constructions
that maximize the error-correction performance within their
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class of (`, q, t, B) codes. The error-correction performance of
a WOM code is now defined.

Definition 4. A WOM code with parameters (`, q, t, B) is called
τ -error correcting if it can correct any error combination in up
to τ (out of the `) q-ary code symbols.

III. EC-WOM CONCATENATION

The route to error-correcting WOM codes we pursue in this
paper is through concatenation. We call such codes EC-WOM
codes. Let W be a (n, q, t,M) WOM code. Denote an EC
code C by CA[N,N − r] if it is defined over an alphabet of
size A (power of a prime), it has length N , and r redundant
A-ary symbols. A pictorial illustration of concatenating the
EC code C with the WOM code W is given in Figure 2.

.

Figure 2: EC-WOM concatenation. Note that ui, vj ∈GF (A),
whereas wi ∈{0, ..., q − 1}n

We start with the simplest construction using an inner WOM
code and an outer EC code over the same alphabet as the
WOM-code input [16].

Construction 1. Given a (n, q, t,M) WOM code W and a
CM [N,N − r] EC code C, the concatenated code is the(
nN, q, t,MN−r) WOM code obtained by taking N copies of
W and inputing to each a symbol of C. In addition, if C can
correct τ M -ary errors, then the concatenated code is a τ -error
correcting WOM code.

The concatenation of Construction 1 is extremely simple, but
it requires to use an EC code over an alphabet as large as
the input size of the WOM code. In subsequent sections we
generalize to constructions that concatenate outer EC codes
with alphabets smaller than M , which will be shown to offer
savings in both redundancy and complexity over Construc-
tion 1, for error models that are not q-ary symmetric.

A. EC codes and BCH redundancy

We now define a measure of redundancy that is suitable
for evaluating the concatenated codes. To compare between
different EC-WOM concatenated constructions we use the EC-
rate of the code, defined next.

Definition 5. Let CW be a
(
nN, q, t,MN−reff

)
WOM code with

some error-correction capability, which is constructed with a
(n, q, t,M) inner WOM code. We define the EC-rate of CW
to be

1− reff

N
. (1)

reff is the effective redundancy of the EC-code in units ofM -ary
symbols.

Note that the usual WOM sum-rate of the same code is (t(N−
reff) logqM)/(nN), which equals the EC-rate multiplied by

the factor (t logqM)/n depending only on the (non error-
correcting) WOM code used in the concatenation. Thus for no-
tational compactness we use the EC-rate in the sequel to com-
pare EC-WOM constructions that concatenate WOM codes
with the same parameters (n, q, t,M).

The constructions we provide in the paper work with general
EC codes, but for convenience we present them with BCH
EC codes [3] [15]. Beyond their well-known effectiveness in
a variety of applications (including non-volatile memories),
BCH codes are especially useful for this study because they
can be defined over different alphabet sizes, and there are
simple expressions for their redundancy that can capture and
compare their performance.

Definition 6. For alphabet size A, code length N , and designed
minimum distance d, define the BCH (approximate) redun-
dancy as

A− 1

A
· (d− 2) · logAN [A−ary symbols]. (2)

The BCH redundancy is the approximate number of parity
symbols in the codeword, given in units of A-ary symbols.
This definition of redundancy comes from a known approxi-
mation of the redundancy of primitive A-ary BCH codes for
large N , when A is a power of a prime [25]. We can see
that fixing N and d the BCH redundancy as defined decreases
with A as (A − 1)/(A logA), but note that when fixing the
units (e.g. to bits) the amount of actual redundancy in the code
grows with A as (A− 1)/A.

When using Construction 1 with a BCH code we get the
following result combining Definitions 6 and 5.

Example 2. Take a (n = 2, q = 8, t = 4,M = 8) WOM code
W and concatenate it with an outer τ -error correcting (design
minimum distance d = 2τ + 1) BCH code C = C8[N,N − r]
using Construction 1. Then we get a

(
2N, 8, 4, 8N−r

)
WOM

code that is τ -error correcting.

The outer code C used in the construction of Example 2 has
BCH redundancy

7

8
· (2τ − 1) · log8N [8−ary symbols].

Proposition 1. A τ -error correcting WOM code obtained by
Construction 1 with an M -ary BCH code C has EC-rate

1−
M−1
M (2τ − 1) logM N

N
, (3)

and one may recognize the BCH redundancy of the M -ary
BCH code as reff at the numerator of the right term in (3).
Specifically for the parameters of Example 2 we get that Con-
struction 1 attains the EC-rate of

1− 7

8
· (2τ − 1) log8N

N
. (4)

Equation (3) reveals the advantage of the concatenation-based
constructions of this paper: offering WOM sum-rates that scale
with the number of errors as ρ(1− βτ) (ρ, β some constants
independent of τ ), whereas the sum-rates of the best prior
constructions [23] decay to zero much faster, as ρ′/τ , due to
their use of codeword replication.
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B. Construction parameters

In the rest of the paper we present concatenated construc-
tions using inner WOM codes, and we design these inner codes
to provide error correction in addition to re-writing capabil-
ities. For ease of presentation, our constructions are given with
inner codes of specific WOM parameters:
(n = 2, q = 8, t = 4,M = 8), but we explain how each con-
struction can be extended to an infinite family of codes with
any q and t = b4(q − 1)/7c. The advantage of this parameter
family is that M = 8 is an integer power of 2 (thus offer-
ing easy mapping of information bits), and n = 2 is small
enough to control error propagation and large enough to get
good re-write efficiency (for n = 2, t = 4,M = 8, no code
exists with q < 8 and, in addition, the WOM sum-rate of
(n = 2, q = 8, t = 4,M = 8) WOM codes is within ∼ 10%
from the theoretical fixed-rate binary WOM capacity [13] that
limits any binary EC-WOM alternative.)

IV. EC-WOM CONCATENATED CONSTRUCTIONS

In this section we construct concatenated EC-WOM codes
that improve over the basic Construction 1 from the previous
section. Construction 1 offers EC-WOM codes by using stan-
dard M -ary error-correcting codes for symmetric errors. The
main drawback of this construction is that symmetric error
correction of the M -ary information symbols is costly in re-
dundancy and complexity, while not necessary when the phys-
ical errors are restricted in magnitude and/or direction. In the
constructions of this section we show that for the error types
common in non-volatile memories, guaranteed error correc-
tion can be attained with less redundancy and lower decoding
complexity. In particular, the error-correcting codes used in the
concatenation will be over alphabets smaller than M , and often
the binary alphabet. The key method is to carefully design
the inner WOM code such that guaranteed error correction is
attained with a more efficient outer error-correcting code.

The error model considered in Definition 4 covers any pos-
sible error affecting a code symbol. In non-volatile memories
with relatively large number of levels q (e.g. q = 8), the
dominant errors are often more restricted in magnitude and/or
direction [6]. Instead, specific dominant error types are ad-
dressed, which are more limited in the symbol transitions they
cover. We follow the same wisdom here, and refine the error-
correction characterization for EC-WOM codes. We consider
the following error types defined over the alphabet {0, . . . , q−
1}.
Definition 7. Let c∈{0, . . . , q − 1} be the symbol written to a
memory cell. The cell suffers a mag-1 error if the read symbol
is c′ ∈{0, . . . , q − 1} such that |c′ − c| = 1.

Mag-1 errors allow transitions of one level either upward or
downward from the correct symbol. We similarly define the
asymmetric version Amag-1.

Definition 8. Let c∈{0, . . . , q − 1} be the symbol written to
a memory cell. The cell suffers an Amag-1 error if the read
symbol is c′ ∈{0, . . . , q − 1} such that c′ − c = 1.

Amag-1 errors allow transitions of one level in the upward
direction only. Amag-1 errors are common in non-volatile

memories such as Flash due to inter-cell interference (ICI):
adding charges to a cell due to writing to a neighboring cell.

We can plug in the mag-1 and Amag-1 error types into the
definition of τ -error correction (Definition 4) as follows.

Definition 9. A WOM code with parameters (`, q, t, B) is called
τ mag-1 error correcting / τ Amag-1 error correcting if it
can correct any combination of mag-1/Amag-1 errors, respec-
tively, in up to τ (out of the `) q-ary code symbols.

Note that in particular a τ mag-1 error correcting code is also
τ Amag-1 error correcting, and a τ -error correcting code (from
Definition 4) is both τ mag-1 error correcting and τ Amag-1
error correcting.

To efficiently correct mag-1 and Amag-1 errors in WOM
codes, in the sequel we specify the constructions in three steps:
1) specification of the inner WOM code, 2) mapping the M -
ary logical alphabet of the WOM code {0, . . . ,M − 1} to a
more structured alphabet, and 3) prescribing EC-codes over the
structured alphabet with parameters that guarantee correcting
τ errors. This construction method has the flavor of gener-
alized concatenation (GC) and coded modulation (CM) [4]
found very useful in previous applications1. Unlike the simple
Construction 1, in the improved constructions that follow we
will need to go beyond specifying just the parameters of the
inner WOM code, to designing new WOM codes with extra
properties that are needed for the concatenation to work.

A. EC-WOM construction for mag-1 errors

We present the construction for the specific parameters q =
8 and t = 4, but the same construction can be extended to
any q and t = b4(q− 1)/7c, from the periodicity of the tiling
construction (proved in [5]), and of the mapping below.

1) Tiling WOM code: The inner WOM code we use in this
construction is the known tiling-based
(n = 2, q = 8, t = 4,M = 8) code from [5], depicted in Fig-
ure 3. The figure shows the decoding function of the code,
and we omit here the specification of the update function
because in this case it is immaterial for proving the error-
correction properties (this is not true in general, and in sub-
sequent constructions we will rely on the update function for
error correction).

2) Mapping 8-ary to a product of 4-ary and binary: The
concatenation requires introducing structure to the logical M =
8-ary alphabet as follows. We map each number s∈{0, . . . , 7}
to its mixed radix representation (s, s), where the upper sym-
bol s∈{0, 1, 2, 3} and the lower symbol s∈{0, 1} satisfy
2s+s = s, and are unique. In Figure 4 we apply this mapping
to the tiling WOM code of Figure 3, where for clarity we
map {0, 1, 2, 3} to {a, b, c, d}. It can be seen in Figure 4b that
tiling the space with the tile of Figure 4a gives the property
that physical states adjacent horizontally or vertically have the
opposite binary value in their lower symbol. This property will
be used by the construction to combat mag-1 errors, which cor-
respond to horizontal and vertical transitions between adjacent
physical states.

1GC fits when seeing the WOM as a code, and CM is appropriate when
thinking about WOM as modulation.
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Figure 3: Decoding function of the tiling-based W (2, 8, 4, 8)
code taken from [5].

Figure 4: Mapping the 8-ary WOM logical symbols to 4-
ary+binary symbols. (a): a single tile, and (b): the entire WOM
code.

3) Outer 4-ary and binary EC codes: For the 4-ary upper
symbols we take the C4[N,N − r1] BCH code with design
distance τ + 1; for the binary lower symbols we take the
C2[N,N − r2] BCH code with design distance 2τ + 1. These
choices will allow us to correct up to τ errors in the binary
lower symbols and up to e′ errors and e erasures in the 4-ary
upper symbols, for 2e′ + e 6 τ .

4) The construction:

Construction 2. Given the (2, 8, 4, 8) WOM codeW specified
with its logical mapping in Figure 4b and EC codes C4[N,N −
r1], C2[N,N−r2] specified in Section IV-A.3, the concatenated
code is the

(
2N, 8, 4, 4N−r1 · 2N−r2

)
WOM code obtained by

taking N copies of W and inputing to each a symbol of C4 to

its upper symbol and a symbol of C2 to its lower symbol.

The essential properties of Construction 2 are given in the
following proposition. The proof includes the decoding algo-
rithm.

Proposition 2. For any N and τ , a
(
2N, 8, 4, 4N−r1 · 2N−r2

)
code obtained by Construction 2 is τ mag-1 error correcting.
Moreover, the code has EC-rate

1−
[
3
4 (τ − 1) + 1

2 (2τ − 1)
]
log8N

N
. (5)

Proof: To see that the code from Construction 2 is τ
mag-1 error correcting, define by τ1 the number of copies of
W that suffered a mag-1 error in exactly one of their two
symbols. Similarly, define by τ2 the number of copies of W
that suffered mag-1 errors in both their symbols. We show
that any combination with τ1 + 2τ2 6 τ is correctable. We
first decode the binary code C2. From the mapping seen in
Figure 4, there will be bit errors in all positions corresponding
to the τ1 mag-1 errors affecting one symbol out of a W pair.
Since τ1 6 τ , the decoder of C2 will locate and correct all
these errors. Next we decode the 4-ary code C4, where every
position with error in C2 is erased in the input of C4’s decoder.
The decoder sees τ1 erasures and τ2 errors, and can correct
them because of the restriction τ1 + 2τ2 6 τ (recall that C4
has design minimum distance τ +1). At this point all up to τ
symbols in error are recovered by C2 and C4 jointly.

To prove the EC-rate, we observe that

4N−r1 · 2N−r2 = 8N−
2
3 r1−

1
3 r2 . (6)

Hence in Definition 5 we have reff =
2
3r1+

1
3r2 8-ary symbols.

Substituting in reff the BCH redundancies from (2)

r1 =
3

4
(τ − 1) log4N, r2 =

1

2
(2τ − 1) log2N,

we get (5) for the EC-rate.
Comparing to Construction 1, we see that Construction 2 gives
EC-rate higher by 3

8
log8N
N . This advantage is possible for

the model of mag-1 errors, in which case Construction 2 is
able to reduce the EC-code alphabet, and thanks to (2) saves
redundancy for the same number of errors. Another important
advantage of Construction 2 is in its much simpler decoding.
While Construction 1 requires a BCH decoder for τ errors over
the finite field GF(8), Construction 2 only needs to correct τ
binary errors in C2, and in the worst case only τ/2 errors
over GF(4) in C4. Moreover, in typical decoding instances,
the code C4 will mostly need to deal with erasures, because
in most error patterns very few copies of W suffer errors in
both symbols.

B. Improved EC-WOM construction for mag-1 errors

While Construction 2 offered an improvement of the EC-
rate over the basic concatenation, the improvement is quite
small, and in particular the difference 3

8
log8N
N does not grow

with τ . In this sub-section we aim at improving the EC-rate
further, and more significantly. To get the desired improvement
in EC-rate we need two ingredients: 1) a new suitably designed
(2, 8, 4, 8) WOM code, and 2) a slight refinement of the error
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Figure 5: A more suitably designed WOM code:
W2 (2, 8, 4, 8). The numbers as usual specify the decoding
function and the colors represent at which write(s) the
physical state can be reached. Solid color represents a single
write and mixed color represents two consecutive writes.

model to distinguish between mag-1 errors not in the same
W pair (more common) and those falling in the same pair
(less common). Also, from now on we will rely on the fact
that the decoder knows the current write count, that is, how
many times (out of the t) the WOM has been written so
far. This assumption is standard in the WOM literature, and
does not incur redundancy or complexity costs when N is at
least moderately large (storing the write counter is amortized
over many parallel WOM blocks). The following construction
can be extended from q = 8, t = 4 to any q, t = 4b(q −
1)/7c by stacking more copies of the WOM code (Figure 5)
diagonally with period 7. Extending the code properties below
to additional parameters is possible, but for terseness we omit
these extensions here.

1) 3-Manhattan WOM: In order to improve the EC-rate, we
now show a more suitably designed
(n = 2, q = 8, t = 4,M = 8) WOM code. The decoding func-
tion of the WOM code is shown in Figure 5. The physical
states are colored according to which write(s) reach them:
magenta, green, red, blue for writes 1-4, respectively. The
physical states with mixed colors are shared between two adja-
cent writes; for example physical state (0, 7) is shared between
writes 3 and 4. With the colors of the states provided, the
update function can be specified in a straightforward manner. It
can be verified that from any physical state in one write’s color
it is possible to reach any logical state in the next write’s color.
This property of restricting the physical state to belong to the
corresponding write’s color will be useful for later proving the
error-correction properties of the construction.

2) Mapping 8-ary to a product of 4-ary and binary: We
use an 8-ary to a product of 4-ary and binary mapping, like in
Construction 2 (Section IV-A.2) to map the 8-ary alphabet to
a product of 4-ary and binary alphabets. This mapping gives
the WOM the following property: two physical states in the
same write that have the same 4-ary symbol and opposite
binary bit are at Manhattan distance at least 3, where the
Manhattan distance between two dimension-n vectors x,y is∑n
i=1 |xi−yi|. This property can be seen in Figure 6 showing

the WOM code with the product alphabet. For example, in
write 2 physical state (3, 1) with value b0 and physical state
(5, 0) with value b1 are at Manhattan distance 3, and no b1
state is closer to (3, 1) in write 2 (there is a closer b1 state in
(1, 1), but it does not belong to write 2.)

Figure 6: The code of Figure 5 after mapping 8-ary to 4-
ary+binary. The code+mapping have the 3-Manhattan property
used for error correction.

3) Outer 4-ary and binary EC codes: For the 4-ary symbols
we take the C4[N,N − r] BCH code with design distance
2τ +1; the binary bits are left uncoded (i.e., we use the trivial
code C2[N,N ]). These choices will allow us to correct up to
τ errors in the 4-ary symbols and recover the binary bit.

4) The construction:

Construction 3. Given the (2, 8, 4, 8) WOM codeW2 specified
with its logical mapping in Figure 6 and EC codes C4[N,N −
r], C2[N,N ] specified in Section IV-B.3, the concatenated code
is the

(
2N, 8, 4, 4N−r · 2N

)
WOM code obtained by taking N

copies ofW2 and inputing to each a symbol of C4 to its upper
symbol and a symbol of C2 to its lower symbol.

The concatenated EC-WOM code specified in Construc-
tion 3 has the following properties. The proof includes the
decoding algorithm.

Proposition 3. For any N and τ , a
(
2N, 8, 4, 4N−r · 2N

)
the

code obtained by Construction 3 is τ mag-1 error correcting,
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assuming no copy of W2 suffers two mag-1 errors. Moreover,
the code has EC-rate

1− 3

4
· (2τ − 1) · log8N

N
. (7)

Proof: Suppose τ copies of W2 suffered a mag-1 error
in exactly one of their two cells. Assuming the decoder knows
the current write number, a mag-1 error resulting in a physical
state outside this write’s color can be detected by the decoder,
and mapped to a 4-ary erasure in C4. Other mag-1 errors map
to 4-ary errors in C4, because adjacent physical states within
the same write’s color have different 4-ary symbols (check in
Figure 6). Thus all τ 4-ary symbols in the erroneous cells can
be recovered since C4 is designed with distance 2τ + 1. To
recover the lower bits of the cells with mag-1 errors we use
the Manhattan-distance-3 property shown in Section IV-B.2
that guarantees that not both x0 and x1 states are adjacent to
the read cell state, where x is the 4-ary symbol recovered by
C4.

To prove the EC-rate, we note that 4N−r · 2N = 8N−
2
3 r,

hence in Definition 5 we need to substitute reff = 2
3r. We

calculate the BCH redundancy r for C4 from Definition 6 and
get r = 3

4 (2τ − 1) log4N . Substituting into reff we obtain (7).

Examining the EC-rate attained for the improved Construc-
tion 3, we see a significant improvement over both Construc-
tion 1 and Construction 2. The new EC-rate is higher than
Construction 1 by 1

8
(2τ−1) log8N

N , now an improvement that
grows with τ . This advantage comes at the cost of excluding
error patterns with both cells in error at the same copy of W2

(most errors of this type are still correctable, but not all; see
Figure 6 c1 in state (3, 3) changing to d1 in state (4, 4): the
decoder will miscorrect to c0 in state (5, 4)). The uncorrectable
error combinations are unlikely in a random error pattern,
because when τ � N hitting two cells of the same W2

copy has a very small probability. That said, we next extend
Construction 3 to also guarantee a specified number of double
mag-1 errors in the same W2 copy. The extension is done in
3’ and 4’ below by adding an EC-code to the binary symbols
as well, instead of the trivial C2[N,N ] used previously in
Section IV-B.3.

3’) Refined outer 4-ary and binary EC codes: For correcting
τ1 single mag-1 errors (one in aW2 copy) and τ2 double mag-
1 errors (both in theW2 copy), use for the 4-ary upper symbols
the code C4 [N,N − r1] with design distance 2(τ1 + τ2) + 1.
For the lower binary symbols use the code C2 [N,N − r2]
designed with distance 2τ2 + 1.

4’) The refined construction:

Construction 4. This construction is the same as Construction 3,
but with its EC-codes changed to C4[N,N −r1], C2[N,N −r2]
specified in Section IV-B.3’.

Now with the refined EC-codes we have the following correc-
tion capabilities. The proof includes the decoding algorithm
modified accordingly.

Proposition 4. For anyN and τ1, τ2, a
(
2N, 8, 4, 4N−r1 · 2N−r2

)
the code obtained by Construction 4 corrects any error com-
bination where at most τ2 W2 copies suffered double mag-1

errors and at most τ1 + τ2 W2 copies suffered mag-1 errors
(double or single). Moreover, the code has EC-rate

1− 3

4
·
(
2τ1 +

10
3 τ2 −

5
3

)
· log8N

N
. (8)

Proof: As in Proposition 3, C4 will recover all the 4-ary
symbols in W2 copies that suffered mag-1 errors, single or
double. After setting the bits in the binary symbols according
to the closest physical states to the read outputs, the decoder
of C2 will be able to correct the at most τ2 bit errors from
double-error W2 copies.

To prove the EC-rate, we have reff = 2
3r1 + 1

3r2, and
substituting the BCH redundancy for τ1 + τ2 in C4 and τ2
in C2 we get

r1 =
3

4
(2τ1 + 2τ2 − 1) log4N, r2 =

1

2
(2τ2 − 1) log2N.

From this and some rearrangement (8) follows.
Construction 4 offers the nice compromise of correcting a
number of double errors needed for good error coverage, while
keeping the EC-rate well above that of Construction 2 when
this number is not too high. Furthermore, it can be shown that
the refined Construction 3 can correct τ2 arbitrary errors in
W2 copies, not just double mag-1 errors.

In an effort to further increase the EC-rate and reduce com-
plexity, we next construct EC-WOM codes that correct the
weaker but similarly motivated Amag-1 errors.

C. EC-WOM construction for Amag-1 errors

In the following construction we endow a WOM code with
guaranteed error correction while exclusively using binary codes
in the concatenation. This is a major implementation advantage
in practice, as binary codes (in particular BCH codes) are
much easier to implement. We present the construction for the
specific parameters q = 8 and t = 4, but the same construction
can be extended to any q and t = b4(q − 1)/7c, from the
periodicity of the tiling construction and of the mapping below.

1) Tiling WOM code: The inner WOM code we use in this
construction is the known tiling-based
(n = 2, q = 8, t = 4,M = 8) code from [5], same as in Sec-
tion IV-A. We use a different mapping as specified next.

2) Mapping 8-ary to three bits: We map the 8-ary sym-
bols to a 3-bit binary representation as specified in Figure 7
showing the decoding function. Note that this representation
is not the standard 8-ary-to-binary mapping of Figure 3. We
order the bits’ significance from right to left (the LSB is the
right bit), and note the following properties of this mapping. 1)
Between two physical states adjacent horizontally or vertically,
exactly one of the two higher bits is flipped, and between
two physical states adjacent on the main diagonal (bottom-
left to top-right), both high bits are flipped. 2) The LSB flips
along the secondary diagonal (top-left to bottom-right). These
properties will be used later on for decoding.

3) Outer binary EC codes: We use the code C2 [2N, 2N − r1]
with design distance 2τ + 1 for the two upper bits, and for
the lower bit we use the code C2 [N,N − r2] designed with
distance τ + 1.
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Figure 7: Mapping the 8-ary logical symbols of the tiling-
based WOM code to three binary symbols.

4) The construction:

Construction 5. Given the (2, 8, 4, 8) WOM codeW specified
with the logical mapping in Figure 7 and EC codes specified in
Section IV-C.3, the concatenated code is the(
2N, 8, 4, 22N−r1 · 2N−r2

)
WOM code obtained by taking N

copies ofW and inputing to each two bits of C2 [2N, 2N − r1]
as the higher bits and a bit of C2 [N,N − r2] to its lower bit.

The properties of Construction 5 result in the following propo-
sition. The proof includes the decoding algorithm.

Proposition 5. For any N and τ , a
(
2N, 8, 4, 23N−r1−r2

)
code

obtained by Construction 5 is τ Amag-1 error correcting. More-
over, the code has EC-rate

1− 3

4
·
(
2τ − 4

3

)
log8N + 4

9τ −
2
9

N
. (9)

Proof: Let τ1 denote the number of copies of W that
suffered an Amag-1 error in exactly one of their two cells, and
τ2 denote the number of copies of W that suffered Amag-1
errors in both their cells. We show that any combination with
τ1 + 2τ2 6 τ is correctable. We first decode the binary code
C2 [2N, 2N − r1] of the two higher bits. From the mapping
seen in Figure 7, each Amag-1 error results in an error in the
two upper bits, thus the 2N upper bits suffer at most τ1+2τ2
errors. Since τ1 + 2τ2 6 τ , the decoder of C2 [2N, 2N − r1]
can correct all these errors. Next we decode C2 [N,N − r2]
of the lower bit. For each copy of W that suffered a single
Amag-1 error we input an erasure to the lower bit’s decoder.
All other lower bits are correct. Since the decoder sees at most
τ1 6 τ erasures, it can recover the lower bits successfully.

To prove the EC-rate, we observe that

23N−r1−r2 = 8N−
1
3 (r1+r2). (10)

Hence in Definition 5 we have reff =
1
3 (r1+r2) 8-ary symbols.

Substituting in reff the binary BCH redundancies from (2)

r1 =
1

2
(2τ − 1) log2 2N, r2 =

1

2
(τ − 1) log2N,

and after some rearrangement we get (9) for the EC-rate.
As N grows, reff of Construction 5 tends to

(
3
2τ − 1

)
log8N

(see (9)), which is the lowest redundancy among all the con-
structions given so far in the paper. The closest redundancy to
this is achieved by Construction 3, but without guarantee to
correct double errors in the same WOM copy. Another benefit
of using Construction 5 in the presence of Amag-1 errors
is that both codes are binary codes, which implies simpler
implementation with BCH codes, and also greater flexibility
to use alternative lower complexity binary codes like LDPC
codes. A summary and comparison of the constructions in this
section is given in table I. In the right column we write the EC-
rate difference (gap) between each construction and the basic
Construction 1. Construction 2 has a gap that is constant in τ ,
while the improvement is more significant with Construction 3
as it grows with τ , albeit with a slight restriction of the error
model. Construction 4 has a less restrictive error model than
Construction 3, and still offers EC-rate gap that grows with
τ = τ1 + τ2, so long that τ2 < τ/4. Finally, Construction 5
offers the largest EC-rate advantage (for Amag-1 errors) when
N is large enough to make the term −8τ negligible.

V. EC-WOM CODES FOR RANDOM ERRORS

After constructing EC-WOM codes for guaranteed worst-
case errors in Section IV, we now move to study EC-WOM
codes for random errors. Our objective is to improve and
analyze the WOM error correction over realistic memory chan-
nel models. To keep implementation complexity low, we only
use binary EC-codes throughout the section, and use multiple
codes through the concept of multi-level coding [22]. To not
confuse the levels in the multi-level coding hierarchy with cell
levels, we call the former ”bit-levels” instead of just ”levels”.
As in the previous parts of the paper, in its remainder too we
assume a basic readout of cells returning a ”hard” estimate
in {0, . . . , q − 1} for each cell level. Soft decoding of our
constructions is possible without finer readout by extracting
reliability information from the decoder of the inner WOM
code.

A. Multi-level coding

In multi-level coding, one maps each high-order symbol
(e.g., a modulation symbol in communications, a q-ary cell
level in standard Flash, or a M -ary WOM logical symbol in
this paper) to multiple bits, each coded by a separate binary
EC-code. Each individual EC-code is designed for the channel
induced on its bit-level by the high-order channel. Multi-level
coding orders the bit-levels in a hierarchy, and applies multi-
stage decoding, whereby the decoder outputs of a bit-level
are supplied to the decoders of the bit-levels above it in the
hierarchy. We now define the specific variant of multi-stage
decoding we use in this section, first without taking into ac-
count the WOM code feeding the multi-stage decoder.
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TABLE I: Comparison of EC-WOM constructions

Const. Error type EC-rate EC alphabets Gap from Construction 1

1 any 1− 7
8 ·

(2τ−1) log8N
N GF (8) −

2 mag-1 1− ( 3
4 (τ−1)+

1
2 (2τ−1)) log8N

N GF (4), GF (2) 3
8 ·

log8N
N

3 single mag-1 1− 3
4 ·

(2τ−1) log8N
N GF (4) 1

8 ·
(2τ−1) log8N

N

4 single mag-1, any 1− 3
4 ·

(2τ1+ 10
3 τ2−

5
3 ) log8N

N GF (4), GF (2) 1
8 ·

(14τ−12τ1−20τ2+3) log8N
N

5 Amag-1 1− 3
4 ·

(2τ− 4
3 ) log8N+ 4

9 τ−
2
9

N GF (2), GF (2) 1
24 ·

(6τ+3) log8N−8τ+4
N

The multi-stage decoder: The inputs to the multi-stage de-
coder are m bit-levels ordered 1, . . . ,m, each having N inputs
from the alphabet {0, 1,⊥}. Each bit-level code with some
minimum distance di is decoded by an error+erasure (hard-
decision) bounded-distance decoder. In bit-level 1, the inputs
to the decoder are equal to the inputs to the multi-stage decoder
in coordinates that have 0 or 1, and are erasures in coordinates
that have ⊥. For each bit level i > 1, we in addition input
erasures in coordinates that have 0 or 1 and at least one bit-
level in {1, . . . , i− 1} corrected an error in this coordinate.

The most distinctive feature of the multi-stage decoder here
compared to prior multi-stage decoder definitions is that it gets
⊥ (erasure) inputs despite using only hard estimates from the
physical readout. Previously (e.g. in M-PSK/QAM communi-
cations) erasure inputs were only possible with soft channel
outputs, but here the ⊥s coming from the inner WOM code
offer a significant decoding-performance boost even with hard
channel outputs. The multi-stage decoder used here is a hybrid
between the ”hard” and ”soft” decision variants [22], in that it
uses hard-decision decoding but propagates bit errors upwards
as a soft indication of an unreliable coordinate. Our choice to
erase bits with a corrected error in any lower bit-level is a
simple special case of a more complex erasing problem [7].
We justify this simple choice in the next sub-section discussing
the WOM constructions for multi-level coding. We now move
to introduce the WOM codes into the multi-level coding frame-
work. For this we first revisit and refine the definition of the
WOM decoding function from Section II.

Definition 10. The WOM decoding function is redefined as ψ :
{0, . . . , q − 1}n × {1, . . . , t} → {0, . . . ,M − 1}∪ ⊥, where
the second argument k∈ {1, . . . , t} is the write number, and
the output ⊥ represents a hole (invalid state). In addition, let
m = log2M and a M -ary to binary mapping be given. Define
the WOM binary decoding function as ψb : {0, . . . , q − 1}n ×
{1, . . . , t} → {0, 1}m ∪ ⊥m.

Note that the addition of the k∈{1, . . . , t} argument to the
decoding function is done for the purpose of error detection, so
as usual in WOM any physical state is mapped to at most one
(non ⊥) logical state. As an example for Definition 10 we look
at the WOM code of Figure 5 and the physical state x = (2, 0).
We get ψ (x, 1) = 5, and ψb (x, 1) = 101 according to the
standard 8-ary to binary mapping. Alternatively, ψ (x, 2) =⊥
and ψb (x, 2) =⊥⊥⊥, because x is not possible in write
number 2. We also use the convention of ψ(x, k) =⊥ ∀x /∈
{0, . . . , q − 1}n (in case the physical readout returns a value
outside the q legal levels).

Our focus in this paper is on WOM codes with logical
alphabet size M = 8, translating to log2 8 = 3 bit-levels
in the multi-level coding hierarchy (but the same techniques
can be extended to more bit-levels for higher M values). We
start our discussion of WOM multi-level coding by listing
the concatenation components, as done in each sub-section
of Section IV.

1) Low error-propagation WOM codes: The WOM codes
used in this section are suitably designed to minimize the
propagation of errors from the q-ary memory alphabet to the
binary EC-code alphabet. That is, memory read/write noise
induces wrong q-ary values in the read physical states, and
we wish these errors to be expressed in few bit errors seen
by the binary EC decoders. Lower error propagation can be
achieved by introducing invalid physical states in the decoding
function, which are physical states not corresponding to any
logical state (and thus will never be reached by the update
function). These invalid states are called in the sequel holes.
To ease the design of such WOM codes, we later define the
WOM code’s propagation index as a single-letter measure of
its error-propagation performance.

2) Mapping 8-ary to three bits: The 8-ary logical alphabet
of the WOM code is mapped to 3 bits with the following prop-
erty: physical states adjacent horizontally or vertically have
the opposite binary value in their lowest bit (LSB). Thanks to
this property, a successful decoding of the LSB will result in
decoding the upper two bits from physical states separated by
Manhattan distance at least 2 (see Figure 8b for LSB=0). The
upper two bits are mapped such that physical states adjacent
diagonally have on average a small number of bits difference.
Manhattan distance 1 and diagonal errors are, respectively, the
first and second dominant errors in memory channels such as
those with additive Gaussian-distributed noise. An example
of such a mapping is shown in Figure 8 for the case of the
tiling WOM code: (a) shows the tiling-based (2, 8, 4, 8) WOM
decoding function and its mapping, while (b) shows the subset
of the physical states with LSB equal to 0. Assuming that
the LSB was correctly decoded to 0 by bit-level 1’s decoder,
(b) shows that a physical error with Manhattan distance 2 is
necessary to introduce an error in any of the upper two bits
(recall that according to the specification of the multi-stage
decoder, a Manhattan distance 1 error will be found by bit-
level 1 and result in erasures and not errors in the upper bits.)

3) Multi-level binary EC codes: Each bit-level is encoded
with a different length-N binary code according to the relia-



10

Figure 8: Multi-level coding WOM decoding function and
mapping (tiling WOM). (a) The full decoding function and
mapping, and (b) the residual decoding function after the LSB
was decoded to 0 by bit-level 1.

Figure 9: The MLcode1 construction.

bility of the bit determined by the noise and by the WOM code
and its 8-ary to binary mapping. Bit-level i is encoded with
an EC code with minimum distance di. We later explore how
to divide a total redundancy budget among the bit-levels to
get the best overall error correction. The multi-stage decoder
specified earlier in the sub-section is used, and its m = 3
inputs in coordinate l are ψb (xl, k), where xl is the WOM
read physical state in that coordinate and k is the write number.
Recall from Definition 10 that the inputs at coordinate l will
be ⊥⊥⊥ in the following cases: 1) a physical state that is a
hole in the WOM decoding function, and 2) a physical state
that is outside the region reachable at the current write k.

B. WOM constructions

In addition to the tiling WOM code and its mapping shown
in Figure 8, we construct three additional WOM codes – all
with parameters (n, q, t,M) = (2, 8, 4, 8) – to work better in
the multi-level coding setting. The codes are specified in Fig-
ures 9, 10, and 11. As before, the decoding functions are given
explicitly, while the update functions can be readily inferred
from the colors representing the regions of the t = 4 writes.
The codes are specified with their binary mappings. We name
the constructions MLcode1 (Figure 9), MLcode2 (Figure 10),
and MLcode3 (Figure 11). MLcode1 is based on [14] but
with injected holes, and MLcode3 is based on Construction 3
but with more holes. Examining the WOM constructions in
Figures 8,9,10,11 justifies the specification of the multi-stage
decoder in Section V-A: any bit corrected 0 → 1 or 1 → 0
by bit-level i = 1 (LSB) or i = 2 implies that the readout is
mostly useless for bit-levels j > i, because we can find in most
cases two physical states at the same Manhattan distance from
the read physical state with opposite binary values at bit-level
j. For example, in Figure 9 if we read physical state (4, 4)
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Figure 10: The MLcode2 construction.

Figure 11: The MLcode3 construction.

and bit-level 1 corrects the LSB 0 → 1, then in Manhattan
distance 1 from (4, 4) we have all possibilities for the upper
two bits. Hence erasing bit-levels j > i by the multi-stage
decoder is a justified decision. Better correction performance
can be obtained if the multi-stage decoder uses the knowledge
of the WOM code to decide what bits to erase. For example,
in Figure 11 if we read physical state (1, 1) and bit-level 1
corrects the LSB 0 → 1, then the only two valid physical
states at Manhattan distance 1 from (1, 1) have 0 in the second
bit, and thus may not be erased by the decoder of bit-level 2.
While this may offer improvement in practice, in the analysis
we assume the basic ”WOM-independent” multi-stage decoder

defined in Section V-A.
Our goal is to analyze the error-correcting performance of

the different WOM constructions under multi-level coding with
multi-stage decoding. Such an analysis tool will help in choos-
ing the best WOM code and in designing the EC codes used
in each bit-level.

C. Bounding the decoding-error probability

Our main tool to analyze multi-level coding of WOM codes
is through the calculation of the decoding-error probability. In
multi-level coding, a decoding-error event happens when at
least one of the bit-level decoders either returns the wrong
codeword or declares failure. We denote the decoding-error
probability by PE . In addition, we define the following.

Definition 11. Let pi,qi denote the probability that a bit input to
the i-th bit-level decoder is an error, erasure, respectively. pi and
qi correspond to a given write k, but we keep this dependence
implicit. Let pEi

be the probability of decoding error at bit-
level i, conditioned that all bit-levels 1, . . . , i− 1 were decoded
correctly.

Since calculating the exact decoding-error probability is dif-
ficult, we instead calculate an upper bound that will offer a
performance guarantee. We calculate an upper bound on PE
using the well-known union-bound technique [22]

PE 6
m∑
i=1

pEi
.

Given the input error,erasure probabilities pi,qi to an error+erasure
bounded-distance decoder of a code with minimum distance
di, the bit-level’s decoding-error probability is obtained through
the standard trinomial formula

pEi = 1−
∑

l,j:2l+j6di−1

N !

l!j!(N − l − j)!
pliq

j
i (1−pi−qi)

N−l−j .

We now need to calculate pi and qi for each bit-level i, and
they will depend on the chosen WOM code. Moreover, in the
input erasure probability qi we need to include erasures due
to errors in lower bit-levels, hence the required conditioning
in Definition 11 on correct decoding of the lower bit-levels.
Calculating pi and qi for bit-level i is now explained. For a
binary string a we use in the sequel ai to denote its i-th bit,
and aji to denote its sub-string ai, . . . , aj , for any i < j 6 m.
To calculate pi we marginalize it over the correct bits in the
bit-levels up to i

pi , Pi(error) =
1

2i

∑
(b1,...,bi)∈{0,1}i

Pi(error|b1, . . . , bi),

where this expression assumes that written logical states follow
the uniform distribution. A similar calculation is done for
qi , Pi(erasure), but we skip it to avoid duplicity. Then each
probability in the sum is further marginalized over the correct
physical state of the WOM code feeding the bit-level decoder

Pi(error|b1, . . . , bi) =∑
x∈{0,...,q−1}n

Pi(error|b1, . . . , bi,x) · P(x|b1, . . . , bi). (11)
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The first term in the sum are the probabilities
Pi(error|b1, . . . , bi,x) that can be calculated from the WOM
decoding function and the channel distribution governing the
physical-state transitions. Note that b1, . . . , bi are fully deter-
mined given x from the WOM decoding function and map-
ping, so we may also write this probability simply as Pi(error|x).
The second term in the sum are the probabilities P(x|b1, . . . , bi)
that can be calculated from the WOM update function: there
may be multiple physical states in write k with bit values
b1, . . . , bi, and to know the distribution of x one needs to
enumerate all combinations of logical values written in the
write sequences 1, . . . , k that end with these i bit values in the
k-th write. This distribution is in general not uniform (even
though logical values are uniform), as one x may be reached
by the update function in more write sequences than another
with the same logical value. We clarify that P(x|b1, . . . , bi)
does not depend on the channel, only on the WOM code.
To calculate Pi(error|b1, . . . , bi,x) we sum the channel’s tran-
sition probabilities from x to all states x′ such that
(ψb(x

′, k))i−11 = (ψb(x, k))
i−1
1 and

(ψb(x
′, k))i = 1 − (ψb(x, k))i. Similarly, to calculate

Pi(erasure|b1, . . . , bi,x) we sum the transition probabilities
from x to all states x′ such that
ψ(x′, k) =⊥, or that (ψb(x′, k))i−11 6= (ψb(x, k))

i−1
1 , where

two strings are not equal if at least one bit differs between
them. These conditions on x′ imply that as we go up in the
bit-level hierarchy, qi grows while pi diminishes.
Example 3. Suppose cells are read with additive zero-mean white
Gaussian noise (AWGN) with standard deviation σ. Define
Q(s) , 1√

2π

∫∞
s

exp(−u2/2)du as the usual Gaussian tail
function. For the WOM code in Figure 10, if x = (1, 1) is
written in the first write (k = 1), then in bit-level i = 1 we have

P1(error|0, (1, 1)) =4

[
Q

(
0.5

σ

)
−Q

(
1.5

σ

)]
·[

Q

(
−0.5
σ

)
−Q

(
0.5

σ

)] (12)

This is the probability that the channel takes us from x = (1, 1)
to one of its 4 horizontal/vertical neighbors. Similarly,

P1(erasure|0, (1, 1)) =1− P1(error|0, (1, 1))

−
[
Q

(
−0.5
σ

)
−Q

(
0.5

σ

)]2
− 3

[
Q

(
0.5

σ

)
−Q

(
1.5

σ

)]2 (13)

Erasure is the outcome for x = (1, 1) in all x′ states except
(negative terms from left to right): states that give an error out-
come, when x′ = x, and the three diagonal neighbors of x =
(1, 1) that are within the region reachable at write number k =
1. Moreover, in the code of Figure 10 the distribution
P(x|b1, . . . , bi) is uniform for any i in write k = 1 because
in that write there is a 1-1 mapping between the logical and
physical states. However, in write k = 4 we expect to have

P(x = (2, 7)|1, 0, 0) < P(x = (6, 5)|1, 0, 0),

because (2, 7) is reachable from only three states of write k = 3
while (6, 5) is reachable from all states except one.

D. Decoding-error probability results for 4 WOM codes

We now use the analysis of Section V-C to calculate and
plot the decoding-error performance of the 4 WOM codes
in Figures 8,9,10,11. Recall that all the codes have WOM
parameters (n, q,M, t) = (2, 8, 8, 4); in this sub-section we
take the block length (number of parallel WOM-code copies)
to be N = 255. The channel noise is AWGN with σ values
between 0.22 and 0.26, and the distance profile (d1, d2, d3)
of the bit-level codes was optimized empirically to get the
best performance for a given total redundancy budget. The
results are plotted in Figures 12,13,14,15, each one showing
the same upper-bound calculation for a different write number
k∈{1, 2, 3, 4} (recall from Section V-C that pi and qi depend
on the WOM code and the write number k). Each figure shows
the decoding-error probability upper bound for the 4 WOM
codes, and in comparison to non WOM-coded information
stored on the same 255 × 2 cells with the same total EC
redundancy (the non-WOM redundancy allocation to bit-levels
was optimized separately). It is observable that different WOM
codes differ considerably in error probability even though they
have the same parameters and redundancy. It is also observed
that WOM-coded memory enjoys higher reliability than non-
WOM, meaning that the same redundancy that is invested in
the re-writing feature also serves us in improving reliability.
An interesting property is that the ordering of WOM codes in
reliability is not absolute but depends on the write number k:
for example MLCode3 is the best in k = 3 but MLCode2 is the
best in k = 4. The tiling construction has the worst reliability
in all writes, hence it is not recommended for use. We next
show in Figures 16-19 a comparison of the error probability
bound of MLCode3 between a decoder that knows the write
number and a decoder that does not know the write number. A
decoder that does not know the write number cannot use the
k-aware WOM decoding function of Definition 10, and thus
misses opportunities to supply the EC-decoder with ⊥ inputs
when errors occur. The plots reveal a significant performance
gap in favor of knowing the write number. The smaller gap for
k = 4 (Figure 19) can be explained by looking at MLCode3’s
specification in Figure 11, and observing that at the 4-th write
there are few Manhattan-1 neighbors belonging to the 3-rd
write.

We next look for a simpler characterization of the WOM
code’s reliability without the complexity of (11) that requires
the enumeration of all pairs of physical states x,x′. For that
we define the propagation index in the next sub-section.

E. Propagation index of a WOM code

In the realistic scenario where noise and inter-cell inter-
ference are not too severe, we expect mag-1 errors to be
the dominant error type. For that case we propose a simpler
characterization of the WOM code’s reliability – one that only
enumerates the physical states’ close neighborhoods in the
WOM decoding function.

Definition 12. Given a valid physical state x and another phys-
ical state y of a (n, q, t,M) WOM code we define the error
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Figure 12: Error probability bound, k = 1.

Figure 13: Error probability bound, k = 2.

Figure 14: Error probability bound, k = 3.

Figure 15: Error probability bound, k = 4.

Figure 16: Error probability bound for two decoders, ML-
Code3, k = 1.

Figure 17: Error probability bound for two decoders, ML-
Code3, k = 2.
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Figure 18: Error probability bound for two decoders, ML-
Code3, k = 3.

Figure 19: Error probability bound for two decoders, ML-
Code3, k = 4.

function between x and y in the k-th write as

ν(x,y; k) =


1 ψ(x, k) 6= ψ(y, k) 6=⊥
0.5 ψ(y, k) =⊥
0 ψ(x, k) = ψ(y, k) 6=⊥

We define the average error of x in the k-th write as

ε (x, k) =
1

2n

∑
l∈{1,...,n},j ∈{−1,1}

ν (x,x+ j · el; k) ,

where el is the unit vector that is equal to 1 in coordinate l and
to 0 in the other n− 1 coordinates.

The average error measures the average ”damage” a mag-
1 error causes to a physical state x. Note that the above
definition of error uses the M -ary WOM alphabet and thus is
independent of the binary mapping. The WOM code’s propa-
gation index is next defined as an expectation of the average
error over the physical states x.

Figure 20: Sample WOM code decoding and update function.
When there are multiple choices to update to a given logical
value in the same write, the physical state marked with a circle
is chosen. For example: when writing in the second write,
µ (x, 1) = (1, 3) if x∈ {(0, 2) , (1, 2)}, and (3, 1) otherwise.

Definition 13. Given a (n, q, t,M) WOM code we define the
propagation index (PI) in the k-th write as

ηk =
∑

x∈{0,...,q−1}n
px,k · ε (x, k) ,

where px,k is the probability to be in physical state x at the
k-th write. We define the geometric propagation index (GPI)
as the propagation index when px,k is the uniform distribution
among the physical states of the k-th write. We define the prob-
abilistic propagation index (PPI) as the propagation index
when px,k is the distribution on the physical states induced by
the uniform distribution on the logical states in the sequence of
k writes.

While PPI better captures the behavior of the WOM code in
real write sequences, GPI is easier to calculate and does not
depend on the update function of the WOM code.

These definitions are demonstrated in the following exam-
ple.

Example 4. We are given the WOM code in Figure 20 and wish
to calculate its propagation indexes. The GPI and PPI of the
WOM code in Figure 20 are

GPI =


0.8125 k = 1

0.8 k = 2

0.833 k = 3

,

and

PPI =


0.8125 k = 1

0.8125 k = 2

0.8633 k = 3

.
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Figure 21: GPI (a) and PPI (b) of the 4 WOM codes analyzed
in Section V-D.

To calculate the PPI we need a precise specification of the up-
date function without ambiguity when there are multiple update
choices, which is included in Figure 20.

We plot in Figure 21 the GPI in (a) and PPI in (b) of the 4
WOM codes analyzed in Section V-D. We see that both GPI
and PPI predict for writes k = 1, 2, 3 the relative order of the
WOM codes in terms of decoding-error probability bound. But
only the more refined PPI manages to predict the correct order
in write k = 4. That means that the advantage of MLCode2
in the 4-th write originates from its update function giving
preference to more reliable physical states.

F. EC-WOM decoding with reliability information

So far in the paper we only used hard-decision error-and-
erasure decoders for the EC-codes in the EC-WOM construc-

tions. Toward implementing soft-decision decoders, we next
show how to use the inner WOM code to provide symbol
reliability (likelihood) information to be used as inputs to soft-
decision decoders. This is an attractive source of soft inputs
because it comes without need to obtain additional informa-
tion from the memory channel beyond the quantized levels
{0, . . . , q − 1}. This can be done based on the observation
that the reliability of a read physical state x∈ {0, . . . , q − 1}n
depends on its neighborhood in the WOM code’s decoding
function. While in hard decision x is only characterized by
whether ψ (x, k) =⊥ or not, in soft decision we can charac-
terize the reliability of x based also on ψ (x′, k) of its neigh-
boring physical states x′. For example, a bit (ψb (x, k))i = b
is more reliable if three of its Manhattan-1 neighbors have
(ψb (x

′, k))i =⊥, than if all four neighbors have (ψb (x′, k))i =
1 − b. Our characterization of the reliability of read physical
states relies on the following natural definition of reliability.

Definition 14. Let x be some (not necessarily valid) WOM phys-
ical state. We define the reliability of the i-th bit of x in the k-th
write as

ri (x, k) =

∣∣∣∑y λ (y, k)P (y → x)
∣∣∣∑

y |λ (y, k)|P (y → x)
, (14)

where

λ (y, k) =


1 (ψb (y, k))i = 0

−1 (ψb (y, k))i = 1

0 (ψb (y, k))i =⊥
,

and P (y → x) is the probability that the channel takes the
input physical state y to the output physical state x.

Note that the sums in (14) are over all physical states y, in-
cluding y = x. In practice we will only sum over y ∈Ne (x),
that is, physical states in the neighborhood of x which is
defined as the physical states with non-negligible P (y → x).
In that case x is called the center of the neighborhood Ne (x).
Definition 14 for reliability is natural because the numera-
tor adds transition probabilities with their sign reflecting the
logical bit values, while the denominator normalizes with the
sum of absolute values of the same probabilities. In general
0 6 ri (x, k) 6 1; in particular ri (x, k) = 1 if and only if all
valid physical states in Ne (x) have the same logical bit.

Example 5. Consider the WOM code shown in Figure 10, and
let x = (6, 1). x is not valid, in particular in the third write,
i.e., ψ (x, 3) =⊥. Suppose the channel is defined to cause a
mag-1 error with probability p in a uniformly selected direction,
and no error with probability 1 − p. Then because x has only
one valid physical state y = (6, 2) in Ne (x), we have that
ri (x, 3) = 1,∀i∈ {1, 2, 3}. This means that x gives certain bit
values, even though it is itself an invalid state.

To obtain simple and robust soft-decision decoders, we fo-
cus next on decoders that only require the ordering of the
symbol reliabilities at the decoder input, without assigning nu-
merical values to individual-symbol reliabilities. Order-based
soft-decision decoders based on GMD [9], such as Ordered
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Statistics [10] are known to offer very good decoding per-
formance. To capture the more significant behaviors of EC-
WOM codes with respect to reliability ordering, we next as-
sume the channel is AWGN with a small σ. With small σ
we can take as a good approximation the neighborhood of x
to be x and its 4 Manhattan-1 neighbors (2 horizontal and
2 vertical). Formally, from now on we assume Ne (x) =
{y : |x1 − y1|+ |x2 − y2| 6 1}. Now we can define the fol-
lowing.

Definition 15. Let x be some (not necessarily valid) WOM phys-
ical state. We define the neighborhood profile of the i-th bit of
x in the k-th write as the tuple gi(x, k) = [l0, l1], where l0 is the
number of zeros, l1 is the number of ones, and 4− l0− l1 is the
number of ⊥s in the multiset {(ψb (y, k))i : y ∈Ne (x) \ x}.

Clearly if we know both (ψb (x, k))i and gi(x, k) we can
calculate the reliability ri(x, k). In Figure 22 we plot the
reliability values as a function of the neighborhood profile
[l0, l1] for x with (ψb (x, k))i = 0 in (a), and for x with
(ψb (x, k))i =⊥ in (b). The values for x with (ψb (x, k))i = 1
are symmetric to (a), only exchanging the roles of l0 and
l1. With a neighborhood center of ⊥ the roles of l0, l1 are
symmetric, so the profiles missing from (b) can be completed
by exchanging l0, l1. In the plots the reliabilities are sorted
from highest to lowest.

Looking at the x-axis of Figure 22 we have a way to order
decoder inputs by reliability for soft-decision decoding: the
most reliable neighborhood profiles are those with reliability
1 in Figure 22 (a),(b); then the other profiles in decreasing
order in (a), and lastly those with lowest reliability in (b).
While Figure 22 is specific for σ = 0.3, the next results show
that the ordering of neighborhood profiles is the same for all
values of σ below some threshold. Let [l0, l1]0 be the reliability
of neighborhood profile [l0, l1] when the neighborhood center’s
logical bit is 0, and [l0, l1]⊥ be the reliability when the center
is ⊥. Then we have the following two propositions.

Proposition 6. For any σ 6 0.519 we have the following

[4, 0]0 = [3, 0]0 = [2, 0]0 = [1, 0]0 = [0, 0]0 = (15)
[4, 0]⊥ = [3, 0]⊥ = [2, 0]⊥ = [1, 0]⊥ = 1, (16)

[3, 1]0 > [2, 1]0 > [1, 1]0 > [0, 1]0, (17)

[2, 2]0 > [1, 2]0 > [0, 2]0, (18)

[1, 3]0 > [0, 3]0 > [0, 4]0, (19)

and

[3, 1]⊥ > [2, 1]⊥ > [2, 2]⊥ = [1, 1]⊥ = [0, 0]⊥ = 0. (20)

The proof of Proposition 6 is straightforward: the equalities
are implied directly from (14) and the inequalities follow from
the monotonicity in one of l0 or l1 while the other is fixed.
The condition on σ ensures that in the entire neighborhood the
most reliable binary value equals to the value in the center of
the neighborhood (and thus in (17)-(19) a higher l0 or lower l1,
while the other in fixed, implies higher reliability). The cutoff

Figure 22: Reliability as a function of neighborhood profiles
for σ = 0.3, when the center of the neighborhood is 0 (a), and
⊥ (b). Symmetric cases are omitted from (b).

value of σ = 0.519 is when [0, 4]0 (the lowest reliability of a
neighborhood profile) becomes negative.

Let z1 denote the probability that a particular cell is read
with a mag-1 error (recall Definition 7), and let z0 denote
the probability that the cell is read with no error. With the
AWGN noise model we have z1 = Q (0.5/σ) − Q (1.5/σ)
and z0 = Q (−0.5/σ)−Q (0.5/σ). For y that is a particular
Manhattan-1 neighbor of x we have P (y → x) = z1z0. We
also have P (x→ x) = z20 . We can now prove a less obvious
ordering relation among the neighborhood reliabilities.

Proposition 7. For any σ 6 0.795 we have

[0, 1]0 > [2, 2]0, (21)

and
[0, 2]0 > [1, 3]0. (22)
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Moreover, for any σ 6 0.341 we have,

[0, 4]0 > [3, 1]⊥. (23)

Proof: Recall that P (y → x) = z1z0, P (x→ x) = z20 .
Substituting these probabilities in (14) we get the reliabilities
[0, 2]0 =

z20−2z0z1
z20+2z0z1

and [1, 3]0 =
z20−2z0z1
z20+4z0z1

. This readily es-
tablishes (22) for any σ. To show (21) we calculate [0, 1]0 =
z0−z1
z0+z1

and [2, 2]0 = z0
z0+4z1

. Then we get that [0, 1]0 > [2, 2]0
so long that z0 > 2z1, or equivalently when σ 6 0.795. Lastly,
to prove (23) we calculate [0, 4]0 = z0−4z1

z0+4z1
and [3, 1]⊥ = 1

2 ,
and get the inequality so long that σ 6 0.341.
The following corollary is a useful tool for order-based soft-
decision decoders such as GMD and Ordered Statistics, be-
cause it establishes a universal ordering of neighborhood pro-
files for noise levels that are below a reasonable threshold.

Corollary 8. For any σ 6 0.341 the order of neighborhood
profiles in non-increasing reliability is

[4, 0]0, [3, 0]0, [2, 0]0, [1, 0]0, [0, 0]0,

[4, 0]⊥, [3, 0]⊥, [2, 0]⊥, [1, 0]⊥,

[3, 1]0, [2, 1]0, [1, 1]0, [0, 1]0, [2, 2]0,

[1, 2]0, [0, 2]0, [1, 3]0, [0, 3]0, [0, 4]0,

[3, 1]⊥, [2, 1]⊥, [2, 2]⊥, [1, 1]⊥, [0, 0]⊥.

and recall that [l0, l1]1 can be entered in that order by the
symmetry [l0, l1]1 = [l1, l0]0.

VI. CONCLUSION

The key message to take from this study of EC-WOM codes
is the interesting inter-relations between the WOM and error-
correction features of the memory. When WOM and error cor-
rection are considered jointly, some of the WOM redundancy
can be directed for better error correction, reducing the overall
cost of obtaining both features. Concrete examples of this are
given in the constructions and analyses of this paper. Another
benefit of concatenating WOM and EC codes is studied in the
second part of the paper: obtaining soft information for EC
decoding from the WOM decoder, without need to increase
the raw measurement precision of the memory cells. There
are many interesting problems left open by this paper: 1)
improving the constructions of this paper for the same WOM
parameters, 2) extending the constructions to additional WOM
parameters (also beyond n = 2, which looks non-trivial) and
other error models, 3) concatenating WOM codes with other
types of codes like LDPC or polar codes, 4) developing soft-
decision decoders using the WOM reliability information, and
5) studying the fundamental limits of WOM+EC combination
with low complexity. Even further, an interesting direction
beyond the scope of the current scheme is how to design the
EC+WOM code to ”recover” from a write error detected in
an intermediate write, so that subsequent writes can still be
served.
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