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Abstract— The massive growth in high-rate streams (mostly
video) over the Internet warranted the establishment of content
distribution networks (CDNs), which bring the content closer
to the consumer and hence reduce delays and congestion in
the network. In this paper we address the setup of multiple
Internet service providers (ISPs) sharing a federated cache. When
multiple ISPs with different demands share a cache, storage
cost can be reduced when the cache is coded. We address the
problem of constructing the coded cache to fulfill all demands
from all ISPs, where the constructions simultaneously optimize
the cache’s three main operational costs: storage, communication,
and computation (to encode and decode requested objects). When
only the storage needs to be minimized, the code-design problem
can be formulated as an index coding problem, and solved by
known tools in network coding. However, in practical setups
the cache needs to respond efficiently (in communication and
computation) to individual content-object requests, which renders
known index/network-coding solutions non-applicable and non-
scalable. We first show constructively that when the number of
ISPs is less than or equal to 4, there is an efficient algorithm
that achieves optimal storage with only bit-wise XOR operations,
and with guaranteed low computation cost for serving requests.
For larger numbers of ISPs, we present randomized algorithms
that achieve optimal storage with XOR-only coding and low
computation complexity per requested objects.

I. INTRODUCTION

The constant growth of video traffic is burdening the net-
work infrastructure at every network deployment point, and in
all layers. A key observation toward mitigating this problem
is that a significant portion of video traffic is transmitting the
same popular content. This property has motivated the intro-
duction of caching and content-distribution networks (CDNs),
which save network resources by bringing the popular content
closer to its likely consumers.

A. Caching and CDNs

In data networking, caching is a means to trade off commu-
nication and storage costs while meeting the users’ demands
for content. The population of the (limited-size) cache with
data is done in a way to optimize the performance given
the system structure and the data access patterns. There has
been a vast body of work optimizing network caching in a
variety of setups (see, e.g., [1], [2], [3], [4], [5]). Caching at
premises of the Internet service provider (ISP) is the most
natural and effective choice for operating a network cache.
An ISP bridges between the broad Internet and a large body
of users in a local proprietary network. The communication
costs in the local network are orders of magnitude lower than
in the links to the Internet backbone – thus an ISP cache saves
by serving repeating popular content locally. The next natural

step beyond local ISP caching is a federation of multiple ISPs
jointly deploying a shared cache. The rationale behind a multi-
ISP cache is that the same content objects are watched by
customers of different ISPs, so sharing a cache means sharing
the cost.

By our setup in this paper the ISPs decide which objects
they demand from the shared cache, and the cache is designed
such that it can fulfill all demands by all ISPs with minimal
implementation cost. Our study shows that a coded shared
cache can have substantially lower storage costs compared
to a standard (uncoded) cache, while the extra complexity of
coding is controlled by new code-design algorithms.

B. Coded caching

While there is clearly some overlap between the demands
of different ISPs, they each have distinct caching needs
due to differences in their user demands. In our model for
the shared cache (Section II), a set of N content objects
are agreed upon by the M ISPs to be handled by the
cache (N � M ). Then each ISP is allowed to choose
independently which subset of content objects it expects to
request from the cache, and stores the rest of the objects
locally. The agreed set of content objects reflects a mild
level of demand commonality, while the independent sub-
set choices give high flexibility to accommodate ISP differ-
ences. The cache needs then to be populated with coded
objects such that all ISP demands can be fulfilled upon re-
quest, and with low cost of serving each object request. Note
that ISPs store only uncoded content objects.

Our contributions. Our results in the paper show how to
design the coded cache such that its storage cost meets the
fundamental lower bounds achieved by known network-coding
algorithms, but with the additional constraint that fulfilling
a content-object request will require a small number of bit-
wise XOR operations on the coded objects. The rest of the
paper is organized as follows. Section II introduces the model,
definitions and notations that will be used throughout the
paper. Section III shows constructively that for up to M = 4
ISPs the storage lower bound can be attained with simple
bit-wise XOR coding, and with per-request complexity that
is a small constant (independent of N ). In contrast, existing
results in network coding only guarantee binary coding for
up to M = 2, and they also have per-request complexity
that in general grows with N . The results of Section III
take the approach of efficiently and optimally partitioning an
arbitrary demand matrix for M = 3, 4, while for general
M optimal partitioning is a known hard problem. Section



Figure 1: The network model.

IV extends code construction to more than 4 ISPs. For an
arbitrary number of ISPs, we propose randomized algorithms
that partition the demand matrix to sub-matrices with optimal-
storage coding, and save running time by considering the
distribution of the demand matrix. The two main contributions
of Section IV that drive the proposed algorithms are: 1)
analysis of random sequential object-selection processes, and
2) a sufficient+necessary condition for binary coding based on
3-colorability of small graphs. Finally, Section V concludes the
paper and suggests directions for future work.

We believe the results of this paper, thanks to our focus
on low complexity, bring coded caching closer to practical
realization in content distribution networks. The model of
a coded shared cache with uncoded ISP storage allows a
smoother transition from current ISP caching, and for small
numbers of ISPs the proposed code-design algorithms are
practical.

II. THE MODEL

A. The network model

Consider a content distribution network model as depicted
in Fig. 1. At the top lies a remote content provider that stores
the content consumed by the network client users. Opposite in
the bottom lie M ISPs, each locally serving its clients with the
requested content. In addition to local storage at each ISP, the
network model adds a caching layer in between the content
provider and ISPs. This is a shared cache jointly serving all
ISPs, whose objective is to offer caching capability to the ISPs
beyond what each can afford to store locally.

B. The shared-cache model

The model we assume for the shared cache is now described.
In the remainder of this paper we refer to the shared cache
simply as the cache. In the scope of the cache are N popular
content objects agreed by the M ISPs sharing it. Each ISP
chooses a subset of the N objects to be demanded from the
cache, and the remaining subset it makes available in its own
local storage. The partition of the objects to available and
demanded sets is done independently by each ISP, according
to the popularity of the objects its clients exhibit. We will
mostly assume that the size of the demanded set is fixed and
equal for all ISPs. For example, an ISP may choose to put its

K most popular objects in the available set, and the remaining
N −K objects (which are also popular, but less than the first
K) in the demanded set. Note that throughout this paper we
assume that objects have the same size. We do so for clarity,
noting that in a real implementation variable-size objects can
be handled by simple techniques like chunking and padding.
After the demanded sets of the M ISPs have been specified,
the system invokes a placement phase for populating the cache
with objects. Then in the request phase the cache is used to
fulfill requests from the ISPs for content in their demanded set
they need to deliver upon their clients’ requests. Note that the
placement phase can be a recurring event and an opportunity
to change the agreed upon universe of N objects.

Coded shared cache: Without coding, the cache simply
stores the content objects in the union of the demanded sets
of the M ISPs. To reduce the storage cost, we allow the cache
to store coded objects, which herein means bit-wise XOR
combinations of content objects. The main operational change
when moving to a coded cache is in the processing of ISP
requests by the cache, and in processing the cache responses
by the ISP. We discuss these in detail later in this section,
paying special attention to reducing the complexity of these
operations.

C. Definitions and notations

We now put the cache model in more formal terms. The
demanded sets of the ISPs are represented by the M × N
matrix D, which we call demand matrix. Entry i, j of D
(denoted di,j) is 1 if object j is in the demanded set of
ISP i, and 0 otherwise. Recall from Section II-B that a 0
entry means that object j is available locally to ISP i. Let
di be the i-th row of D. The number of objects demanded
by ISP i equals the number of 1s in row di, which we call
the weight of di and denote di. It will be useful to define the
weight W of the demand matrix D as its maximal row weight:
W = maxidi. An important sub-class of demand matrices is
balanced matrices, for which di =W for all i.

When the M ISPs share the cost of the cache equally, it
is natural to assume that demand matrices are balanced (each
ISP is allocated the same “budget” W of demanded objects).
In addition, any D can be made balanced without increasing
W by changes of 0s to 1s in low-weight rows. We now turn
to formulate the algebraic setup for the coded cache. Let
{v1, . . . , vN} be the N content objects. In a coded cache the
stored objects are coded objects of the form r=

∑N
j=1 cjvj ,

where cj are scalar coefficients over some finite field F. In all
the coding schemes proposed in this paper, the coefficients cj
are 0 or 1 (F is the binary field, GF(2)), and summation of
objects is performed as bit-wise exclusive-or (XOR) operations
between objects. Overall the cache stores Nc coded objects
{r1, . . . , rNC

}, where we refer to Nc as the cache size, or
storage cost (in general Nc ≤ N ). A convenient representation
of the coded objects is through coding vectors and the coding
matrix.

Definition 1. A cache coding matrix C is an Nc × N matrix
holding the coefficients of the stored coded objects. Each row



of C is a coding vector rl holding the coefficients of the coded
object rl. That is, the element cl,j of C is the j-th coefficient of
rl.

To properly design the coding matrix C to have low storage
cost and low per-request complexity, we need to define the
request service model of the cache. The operation of the
cache is done via content requests from ISPs and responses
by the cache as follows. Request ISP→cache: ISP i sends
to the cache a request for object j in its demanded set.
Response cache→ISP: the cache sends to ISP i a packet
with the size of a single object, such that after receiving it
ISP i can recover object j. The task of the cache is to store
sufficient and minimal information such that it can deliver, at
low complexity, successful responses to any pair i, j of ISP and
demanded object. The following is a simple characterization
of the coded objects sent by the cache in response to ISP
requests, which applies when ISP storage is uncoded. Let
E = {e1, . . . , eN} be the set of unit vectors in the vector
space FN . Define Ei to be the subset of E indexed by the
objects in the available set of ISP i.

Proposition 1. A coded object ui,j sent by the cache in re-
sponse to a request of vj by ISP i has a coding vector ui,j that
lies in the affine space ej + span(Ei).

The affine space ej+span(Ei) contains all translations of the
unit vector ej by vectors of the linear subspace spanned by
the vectors of Ei. This means that for ISP i to recover vj it
needs to receive from the cache a coded object that is a linear
combination of vj and (possibly) other content objects in its
available set. Since there is at least one ISP i demanding W
objects not in span(Ei), Proposition 1 implies the following
size lower bound.

Proposition 2. The number Nc of coded objects stored by the
cache is at least W .

When a coding matrix C has Nc = W , we refer to it as
an optimal-storage coding matrix. In general, for C to fulfill
all requests, a necessary and sufficient condition is that ∀i :
rank (C;Ei) = N , where ; represents vertical concatenation
and rank (·) is the rank of the matrix over the binary field.

Our main concern in this work is to find matrices C that
imply low complexity of serving content requests, where low
complexity means that both the cache and the ISPs need to
perform few operations to recover the requested object. We
formalize this in the following. Enumeration of complexity is
done using a basic unit called operation, which amounts to
the complexity of bit-wise XORing a pair of objects. In these
definitions we ignore the complexity of finding which coding
objects need to be used to decode a request (this complexity
is negligible when the objects are large, and can also be
calculated once and stored in a lookup table). Then the cache
and total complexity are given in the following two definitions.

Definition 2. The number of operations the cache needs to
perform to compute a coded object for ISP i requesting content
object vj is denoted CCi,j (C).

Definition 3. The total number of operations the cache and ISP
need to perform to recover a content object vj at ISP i is denoted
TCi,j (C).

The number of operations performed by the ISP is the differ-
ence TCi,j (C) − CCi,j (C). Note that CC and TC depend
on the coding matrix C, and may differ between i, j pairs. In
the sequel, we will look for coding matrices C that given the
demand matrix D guarantee low CC and TC for all i, j pairs.

Example 1. Consider the following demand matrix

D =


1 0 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 1 0 0 1

 .
The weight of this matrix is W = 2, and one optimal-storage
coding matrix for it is

C =

[
1 1 1 0 0 0
0 1 0 1 1 1

]
.

When i = 2, j = 4 is the request, the cache needs to compute
the coded object r1 + r2 that has the coding vector r1 + r2 =
[1, 0, 1, 1, 1, 1]. When ISP i = 2 receives this coded object, it
computes r1 + r2 − v1 − v3 − v5 − v6 = v4. Thus this coding
matrix has CC2,4 (C) = 1 and TC2,4 (C) = 5. In contrast,
another optimal-storage matrix

C′ =

[
1 1 0 0 0 1
0 0 1 1 1 0

]
has CCi,j (C

′) = 0 and TCi,j (C
′) = 2 for any i, j.

D. The model as multicast network/index coding

When not considering the CC and TC complexities at the
request phase, the problem of designing an optimal-storage
coded cache can be posed as an index coding problem [6],[7]:
the ISPs are clients demanding content objects, and having
their available objects as side information. Moreover, because
for each ISP the union of the available and demanded sets is
the entire N -set, the index coding problem is a special case of
multicast network coding [8],[9] with N sources and M sinks.
Known results in multicast network coding give that achieving
the lower bound Nc = W is possible by linear coding over
finite fields of size q ≥ M [10]. While there are many
results reducing the required field sizes for special networks
and parameters (see for example [11],[12]), no existing result
implies our constructive result showing that the finite field of
size q = 2 is sufficient for M ≤ 4 and any N . Even more
crucial than lowering the field size, our code-design algorithms
offer significant reduction in the CC and TC complexities
over using known code-design tools in index and multicast
network coding. Since both index and network coding address
the problem of recovering all N source objects simultaneously,
no care is taken to reduce the CC and TC complexities for
individual object requests. That means algorithms like the
linear information flow (LIF) [10] may return solutions with
CC and TC complexities that are significant fractions of N ,



which are clearly not applicable for designing a scalable cache
for large numbers of objects.

The particular branch of network coding with the highest
relevance to this work consists of schemes that consider
the decoding delay in the code design. Both in low-delay
communications and here in caching one needs to mitigate
the adverse effect coding has on access to small subsets of the
N objects. One coding approach for low-delay is immediately-
decodable network coding (IDNC) [13],[14], where all coded
objects are XORs of full and disjoint subsets of the N
content objects. Restricting the coding solution to be IDNC
results in sub-optimality, because even without this property
the cache can fulfill individual object requests by sending a
single coded object to the requesting ISP. A less restrictive
approach is generation-based network coding [15],[16], where
the N objects are partitioned to small subsets (generations),
but a coded object is not necessarily a XOR of the full
subset. Results in [16] imply that for general M (which grows
with N ) our code-design problem is NP-hard; but luckily, for
fixed values of M and for demand matrices coming from a
distribution our algorithms can still be efficient and practical
(more details on the relation of the results to [15],[16] are
provided in the next sections).

While discussing prior work we also mention the recent line
of work on wireless coded caching that started in [17],[18].
Despite the similar name, the results there are not directly
applicable to our problem because these results divide the
content objects into small pieces, and distribute them among
multiple caching nodes.

III. CODE DESIGN FOR M = 3, 4

A. Formal problem definition

Given a demand matrix D, we now define formally the
problem of designing a binary coding matrix C which, in
addition to being optimal-storage, has low CC and TC com-
plexities. The key step is decomposing the matrix D into
smaller submatrices with the property that each submatrix has
a low-complexity binary coding matrix, while the decomposed
code is still optimal-storage.

Let S ⊂ {1, . . . , N} be a size-t subset of the N content-
object indices. Define DS to be the M × t submatrix of D
taken as the subset S of the columns of D. DS specifies the
ISP demands for content objects in the set S. We denote
the weight of DS by WS (recall the definition of weight
from Section II-C). If coding of content objects in S is done
separately from content objects outside S, then we have the
following.

Proposition 3. For a request of vj with j ∈ S by ISP i we have
CCi,j (CS) ≤WS − 1 and TCi,j (CS) ≤ t− 1.

Proof: Follows from elementary linear algebra. ISP i has
w ≤WS demanded content objects in S. Thus w stored coding
vectors are sufficient for the cache to produce a coding vector
with contribution of vj and only objects in the available set
of ISP i. A set of w vectors requires at most w−1 ≤WS −1
operations, hence CCi,j (CS) ≤WS−1. To get the bound on

the total complexity, we observe that the coding vector in the
cache response has contributions from at most t − w objects
in ISP i’s available set, hence this many operations are needed
to cancel them from the response coding vector. Summing the
cache and ISP operations gives t − w + w − 1 = t − 1, and
the bound on TCi,j (CS) follows.
In addition to the bounds of Proposition 3, the proof reveals
that a larger demand-set size w of an ISP means higher
complexity to the cache, while a smaller demand set means
higher complexity to the ISP, with the total complexity being
bounded by t − 1 operations regardless of w. We can now
formulate the problem of optimal-storage, low-complexity
coded caching.

Problem 1. Given D, find a decomposition of {1, . . . , N} to
a collection S of disjoint subsets such that ∪(S ∈ S) =
{1, . . . , N}, with the resulting submatrices DS having the
following properties

1) Low total complexity: ∀S ∈ S, |S| ≤ t for some given
parameter t.

2) Low cache complexity: ∀S ∈ S, WS ≤ ` for some given
parameter `.

3) Optimal storage cost:
∑

S∈SWS =W .
4) XOR-only coding: ∀S ∈ S, DS has a binary coding

matrix CS with WS coding vectors.
The challenge of Problem 1 is that in general for a de-
composition S, property 3 is only true as a lower bound:∑

S∈SWS ≥W . In particular, when the input demand matrix
D is balanced, equality in property 3 requires that all the
submatrices DS are balanced as well. Solving Problem 1 in
general is difficult even with only requiring properties 1-3.
Hence we restrict our attention to small values of M = 3, 4,
which turn out to be efficiently solvable with all properties
1-4.

B. Optimal-storage low-complexity coding for M=3 ISPs

In this subsection we prove the existence of a solution to
Problem 1 for any D with M = 3. After proving existence
in the following theorem, an efficient greedy algorithm to find
the solution is explained.

Theorem 4. For any demand matrix D with M = 3 and weight
W , there exists a decomposition S that satisfies properties 1-4
of Problem 1 with t = 3 and ` = 2.

The main ingredient in the proof of Theorem 4 is the following
lemma.

Lemma 5. Any balanced demand matrix D with M = 3 and
weight W can be decomposed to balanced matrices DS , each
with at most t = 3 columns and weight at most ` = 2.

First note that assuming a balanced D is without loss of
generality, since we can always add 1s to balance a non-
balanced D without changing W . Before proving the lemma,
let us explore the structure of D for the special case of M = 3.
Since there are 3 rows in D, the demand of each content object
can be represented by one of 8 length-3 column vectors. An
object with the vector (0, 0, 0)T is not demanded by any ISP,



and at the other extreme an object with the vector (1, 1, 1)T

is demanded by all 3 ISPs. Objects with (0, 0, 0)T can be
discarded from D because they are not needed in the cache.
Objects with (1, 1, 1)T are themselves balanced DS matrices
with 1 column and weight 1, satisfying the t and ` constraints
of Lemma 5. Hence they can be extracted from the input
D and leave us with the same problem only on a smaller
balanced matrix and with smaller weight. In between there
are 6 intermediate options, where the type of each vector is
set as the decimal value of the vector in binary representation:
(0, 0, 1)T is type 1, (0, 1, 0)T is type 2, (0, 1, 1)T is type 3,
and so on. We denote by bi the number of type i objects in
D.
Proof: (of Lemma 5) From the weight of the bottom row of
D (the least significant bit of the vector) we get the following
equation

b1 + b3 + b5 + b7 =W. (1)

Similar equations for the other two rows give

b2 + b3 + b6 + b7 = b4 + b5 + b6 + b7 =W, (2)

and rearranging the equations, one gets

b1 − b6 = b2 − b5 = b4 − b3 = σ, (3)

for some integer σ. If σ = 0 and not all bi are 0, it means
that we can find a pair of vectors with types 1,6 or types 2,5
or types 4,3. In either case we can extract from D a balanced
DS matrix with 2 columns and weight 1. If σ > 0, there is a
triple of vectors with types 1,2,4. In this case we can extract
from D a balanced DS matrix with 3 columns and weight 1.
Similarly, if σ < 0, there is a triple of vectors with types 6,5,3.
In this case we can extract from D a balanced DS matrix with
3 columns and weight 2. After extracting the DS as above,
we iterate with a smaller (balanced) D. It is readily observed
that the process is guaranteed to fully decompose D with each
DS having at most t = 3 columns and weight at most ` = 2.

The balanced decomposition shown in Lemma 5 guarantees
property 3, because the weight of the demand matrix decreases
by WS after extracting DS from it. To complete the proof
of Theorem 4, we need to show property 4, i.e., that each
matrix DS in the decomposition of Lemma 5 has a binary
coding matrix with WS coding vectors. For S = {j1, j2}
combining types 1,6, or types 2,5, or types 4,3, the cache
stores vj1+vj2 ; for S = {j1, j2, j3} combining types 1,2,4 the
cache stores vj1 + vj2 + vj3 ; for S = {j1, j2, j3} combining
types 6,5,3 the cache stores vj1 + vj2 and vj2 + vj3 . Also,
for S = {j1} with type 7 the cache stores vj1 uncoded.
In summary, Theorem 4 implies that for M = 3 and arbi-
trary demands, one can implement a XOR-only coded cache
with optimal storage, cache complexity at most 1, and total
complexity at most 2 (for any request).

Decomposing D efficiently to the type combinations in the
proof of Lemma 5 is simple, and we skip its formal algorithm
specification. Each balanced matrix DS can be found in time
at most linear in N (usually much less), and for any order of

extracting these DS the algorithm is guaranteed to complete
with all-balanced matrices. This implies a polynomial-time de-
composition algorithm, and close to linear average complexity
when D is random.

C. Optimal-storage low-complexity coding for M=4 ISPs

Our main result in this section is extending optimal-storage
low-complexity coded caching to M = 4 ISPs. This case is
more involved, since now demand column vectors fall into 16
types, twice as many as in the case M = 3. In the following we
develop a storage-optimal decomposition algorithm, and bound
the per-request cache and total complexities it guarantees.

Theorem 6. For any demand matrix D with M = 4 and weight
W , there exists a decomposition S that satisfies properties 1-4
of Problem 1 with t = 5 and ` = 3.

Here too the main proof ingredient is a decomposition lemma.

Lemma 7. Any balanced demand matrix D with M = 4 and
weight W can be decomposed to balanced matrices DS , each
with at most t = 5 columns and weight at most ` = 3.

Proof: As in Section III-B, b1, ..., b14 are the counts
of objects in D of types 1-14, respectively. To simplify the
enumeration, we pair together types whose corresponding
column vectors sum to (1, 1, 1, 1)T . For example type 1
(0, 0, 0, 1)T is paired with type 14 (1, 1, 1, 0)T . The 7 pairs
define 7 variables as follows: x1 = b1 − b14, x2 = b2 − b13,
x3 = b4−b11 and x4 = b8−b7 are variables tracking pairs with
1 and 3 ones in the binary representation, and y1 = b3 − b12,
y2 = b5 − b10 and y3 = b6 − b9 are variables tracking pairs
with 2 ones each in the binary representation. We choose to
differentiate between x and y variables to better accommodate
for symmetries in the sequel. Note that all the x and y variables
are integers (possibly negative or zero). From the fact that D
is balanced we can obtain the following equations

x1 + y2 − x2 − y3 = 0

x1 + y1 − x3 − y3 = 0 (4)
x1 + y1 + y2 − x4 = 0

Since there are 7 variables and only 3 equations, we write
the general solution for the y variables depending on the x
variables

y1 =
x3 + x4 − x1 − x2

2
, y2 =

x2 + x4 − x1 − x3
2

,

y3 =
x1 + x4 − x3 − x2

2
. (5)

We now show that for any values of x1, x2, x3, x4 that
correspond to a D matrix, an invariant is maintained that we
can extract a balanced DS matrix with at most t = 5 columns.
In the following we use the symmetry between the different
xi’s to reduce the number of cases. Case 1: a single non-zero
xi (wlog1 x1) gives a variable vector (x1, x2, x3, x4, y1, y2, y3)
of the form (2X, 0, 0, 0,−X,−X,X), from which we can
extract a balanced DS with 5 vectors of types 1,1,12,10,6

1without loss of generality.



(if X > 0), and types 14,14,3,5,9 (if X < 0). Case 2: two
non-zero xi (wlog x1, x2) give a variable vector of the form
(X1, X2, 0, 0, Y1, Y2, Y3). If both X1, X2 are positive then Y1
is negative and we can extract DS with 3 vectors of types
1,2,12. Other balanced DS matrices can be extracted when
X1, X2 are both negative (types 14,13,3) and when they
have opposite signs (types 1,13,10,6 or types 14,2,5,9). We
summarize all cases (up to symmetries) in Table I. Case 3:
three or more non-zero xi. Consider the two xi variables with
the largest absolute values (wlog x1, x2). If the sum of absolute
values of x1, x2 is strictly larger than the sum of absolute
values of x3, x4, then we are back to Case 2, because the yi
that were non-zero in Case 2 remain non-zero here and with
the same signs. If the sum of absolute values of x3, x4 is the
same, we need to consider (up to symmetries) the following
options on the signs of the xi’s: (X,X,X,X, 0, 0, 0),
(X,X,X,−X,−X,−X,−X),(X,X,−X,−X,−2X, 0, 0).
The first option can extract a balanced DS with 4 vectors
with types 1,2,4,8 (if X > 0) or types 14,13,11,7 (if X < 0).
We observe that the other two options subsume Case 2 with
y1 having the correct sign to balance x1,x2. We complete
the proof by pointing to the DS matrix with the largest
weight: types 14,14,3,5,9 with WS = 3 = `. After getting to
the state where all xi, yi are zero, we are left with pairs of
matching vectors that can be coded together separately with
t = 2, l = 1.
To complete the proof of Theorem 6, we need to show property
4. Table I presents the binary coding vectors that solve each
of the type combinations extracted from D in Lemma 7. One
can check that the binary coding vectors in the center column
indeed solve the demand matrix represented by the types in the
left column. The indices of the object numbers vj are ordered
to match the type order on the left. The entries of the table
are given up to symmetries. For other type combinations not
listed in the table, one should look for the numbers of ones in
the |S| columns of DS , find the table row with these numbers
on the right column, and then map the object numbers vj to
the types to match the numbers of ones. For example, the
type combination 2,14,9,5 is symmetric with 1,13,10,6 (row
5 in the table) in the numbers of ones in each column from
left to right, and thus will have the same coding vectors. Not
showing in the table are coding vectors for 2-column balanced
matrices composed of paired types, e.g. types 1,14 and types
3,12. These are solved simply by storing v1 + v2.

In summary, Theorem 6 implies that for M = 4 and
arbitrary demands, one can implement a XOR-only coded
cache with optimal storage, cache complexity at most 2, and
total complexity at most 4 (for any request). As in Section III-
B for M = 3, the successive decomposition of D can be done
efficiently: in polynomial time in the worst case, and close to
linear when D is random.

IV. RANDOMIZED CODE DESIGN FOR LARGER M

Continuing to solve Problem 1 beyond M = 4 becomes
increasingly difficult, as the number of types needed in a de-
composition lemma (like Lemmas 5,7) increases exponentially

types in DS coding vectors symmetries

1,1,12,10,6 v1 + v3 + v4 , v1,v2: 1 one,
v2 + v3 + v5 v3,v4,v5: 2 ones

14,14,3,5,9
v1 + v3 , v1,v2: 3 ones,
v2 + v4 , v3,v4,v5: 2 ones

v1 + v2 + v5

1,2,12 v1 + v2 + v3 v1,v2: 1 one,
v3: 2 ones

14,13,3 v1 + v3 , v1,v2: 3 ones,
v2 + v3 v3: 2 ones

1,13,10,6
v2 + v3 , v1: 1 one,

v1 + v3 + v4 v2: 3 ones,
v3,v4: 2 ones

1,2,4,8 v1 + v2 + v3 + v4 v1,v2, v3, v4: 1 one

14,13,11,7
v1 + v2 , v1,v2, v3, v4: 3 ones
v1 + v3 ,
v1 + v4

TABLE I: Translation between binary coding vectors and type
combinations.

with M . In fact, when M is not bounded (grows with N ), a
problem similar to Problem 1 properties 1-3 has been shown to
be NP-hard [16] (in their problem only the bound WS ≤ ` was
given and the number of the matrices DS minimized, while
in this paper the additional bound |S| ≤ t also yields a bound
on total complexity). Another issue with increasing M is the
requirement to have binary (XOR-only) coding: already when
M = 6 there exist demand matrices that do not admit optimal-
storage binary coding matrices. Our approach for general M
is thus the following:

1) Partition the matrix D to balanced sub-matrices DS of
weight WS ≤ 2.

2) For each DS find a binary coding matrix (when one
exists) using a simple colorability condition.

In the first item we fix ` = 2 to have low cache complexity and
a more tractable partition problem, and in the second item we
characterize a condition that will conveniently find a binary
coding matrix CS for the DS found in item 1, when a binary
coding matrix exists. Note that with this approach to general
M we are still seeking optimal-storage coding matrices, up to
having some DS matrices that do not admit a binary coding
matrix, and thus need to be repartitioned or encoded with more
than 2 code symbols. We start our discussion of general M
with a condition on binary-codable weight-2 matrices.

A. A colorability condition for binary-coded weight-2 matri-
ces

Given a demand sub-matrix DS of weight 2 and arbitrary
number of columns, we look for a condition to determine if
DS can be binary coded using 2 coding vectors. For simplicity
we assume that all M rows of DS have weight 2 (exactly 2
ones in each row), but an immediate extension addresses the
case where some rows have smaller weight. Toward such a
condition, we define the induced graph of the matrix DS .

Definition 4. Given a balanced weight-2 matrix, the induced
graph of the matrix is one whose vertices correspond to the
matrix columns, and each row defines an edge between the two
vertices (columns) where this row has ones.



Figure 2: The induced graph of a sample demand matrix.
Vertices represent the columns, and edges the (weight-2) rows.

Example 2.
Consider the demand matrix

D′ =


1 1 0 0 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1

 .
There are n = 5 objects (columns) and M = 4 ISPs (rows)

mapped to |V | = 5 vertices and |E| = 4 edges in the induced
graph. Numbering the objects from left to right we draw an edge
between vertices 1 and 2 (row 1), and a clique of 3 vertices
3, 4, 5 (rows 2, 3, 4). Fig. 2 shows the resulting graph.

A necessary and sufficient condition for binary coding is given
in the following proposition.

Proposition 8. A balanced weight-2 demand matrix has a 2-
vector binary coding matrix if and only if its induced graph is
3-colorable.

Recall from classical graph theory that a graph is 3-colorable
if we can assign to each vertex one of 3 colors such that no
pair of vertices with an incident edge shares the same color.
Proof: Positive direction (3-coloring → binary coding): as-
sume the induced graph has a coloring with 3 colors (named
A,B,C). Given such a coloring we explicitly construct the 2
coding vectors r1, r2: a vertex j colored A has 1 in the j-th
coordinate of r1 and 0 in the j-th coordinate of r2. Similarly,
a vertex colored B has 0 in r1 and 1 in r2, and a vertex
colored C has 1 in both r1 and r2. It can be seen that for any
combination of two distinct colors incident on a demand edge,
the two demanded objects can be recovered: from r1, r2 (if A
and B), or from r1, r1 + r2 (if B and C), or from r2, r1 + r2
(if A and C).
Converse direction (binary coding → 3-coloring): we apply
essentially the same mapping in reverse from r1, r2 to A,B,C.
If r1, r2 are working coding vectors then it cannot happen
that the j-th coordinate of both is 0, unless vertex j has no
edges (object not demanded). A vertex with no edges can be
colored arbitrarily without affecting the coloring constraint.
Thus we can apply the reverse mapping of the one in the
positive direction. Then a similar argument to the first half
of the proof shows that no pair of vertices with an edge can
have the same color, otherwise the corresponding 2 demands
cannot be recovered by r1, r2.

While determining 3-colorability is a hard problem for
general graphs (3-coloring is a well-known NP-complete prob-
lem), our graphs here are quite small – only M edges and the
number of vertices that cannot be much larger than M , unless
the problem is trivialized by a very sparse demand matrix.
In practice, in the empirical study shown in Section IV-C the
coloring instances were indeed easy to solve.

B. Partitioning the demand matrix to weight-2 sub-matrices

Once we know how to find optimal-storage binary coding
vectors for weight-2 demand sub-matrices of arbitrary number
of columns, we are motivated to partition the matrix D to
such sub-matrices. We recall from [16] that for general M it
is NP-hard to partition D to a minimal number of matrices
DS with bounded weight `, even if ` = 2. Furthermore,
since typical N (number of objects) is extremely large, even
polynomial-time complexity is not sufficient, and we need
near-linear complexity. Our approach to optimal partitioning
will thus be based on randomized algorithms, whose low
running times will be shown assuming that D comes from
a known distribution. The distribution we assume here for D
is the i.i.d. Bernoulli distribution on its elements; but the same
algorithms can be applied for other distributions (in fact, due
to the large size of D, the algorithms are seen empirically
to work well even when D does not follow any synthetic
distribution). In the remainder of the section we treat D as a
random demand matrix, according to the following definition.

Definition 5. A demand matrix D is called random with load p
if each entry di,j in it is an i.i.d. Bernoulli random variable with
Pr(di,j = 1) = 1− Pr(di,j = 0) = p.

The basic method of randomized partitioning algorithms is
to randomly draw columns from D until balanced matrices
DS are found with weight 1 or 2. This gives low-complexity
partition algorithms because the number of iterations needed
on average to find a balanced sub-matrix is a constant inde-
pendent of N (but dependent on M , p, and the sophistication
of the algorithm), which results in overall linear average
complexity. The simplest manifestation of this method is given
in Algorithm 1.

Algorithm 1. Full-stroke balanced weight 1 or 2
1) initialize an empty column set S = ∅
2) while the columns in S do not form a balanced weight 1

or 2 matrix
3) choose a random column index and add to S
4) go to 1 if some row exceeded weight 2
5) return balanced weight 1 or 2 matrix DS

After each completed run of Algorithm 1 we re-run it on
the matrix remaining after removing DS . Algorithm 1 finds
only balanced sub-matrices, so it guarantees optimal storage
(subject to weight-2 DS being 3-colorable for binary coding).
We next want to analyze the running time of Algorithm 1.
Toward that we give the following two definitions.

Definition 6. Given p and M (kept implicit for convenience),
denote by Q(m), m ≤ M , the probability that starting from a



matrix corresponding to a column set with m rows of weight
0 and M − m rows of weight 1, successive column drawing
will reach a balanced weight-1 matrix DS without any row
exceeding weight 1 before.

Clearly Q(M) is the probability that Algorithm 1 returns a
weight-1 matrix DS in a single execution of the while loop.
A similar definition for weight-2 now follows.

Definition 7. Given p and M (kept implicit for convenience),
denote by Q(m1,m2), m1 ≤ m2 ≤ M , the probability that
starting from a matrix corresponding to a column set with m1

rows of weight 0, m2 rows of weight < 2, and M − m2

rows of weight 2, successive column drawing will reach a bal-
anced weight-2 matrix DS without before reaching a balanced
weight-1 matrix or exceeding weight 2 in any row.

Note the dependence between m1 and m2 requiring m1 ≤ m2.
Clearly Q(M,M) is the probability that Algorithm 1 returns
a weight-2 matrix DS in a single execution of the while loop.
Moreover, Q(M) +Q(M,M) is the probability that a single
while loop of Algorithm 1 is successful, i.e., it returns a
weight 1 or 2 matrix without re-initializing S to the empty
set. Knowing Q(M),Q(M,M) is thus crucial for obtaining
the expected runtime of Algorithm 1, which is the reciprocal
of Q(M) + Q(M,M) by the geometric distribution. The
following propositions derive Q(m) and Q(m1,m2) and give
Q(M) and Q(M,M) as special cases.

Proposition 9. Given p and M , Q (m) from Definition 6 can
be calculated by the following recursive expression, with base
case Q (0) = 1.

Q (m) = [1− P0 (M)]
−1
P0 (M −m)

m∑
i=1

P1 (m, i)Q (m− i) ,

(6)
where P0 (n) , (1− p)n and P1 (n, i) ,

(
n
i

)
pi (1− p)n−i.

Proof: For the base case m = 0, Q (0) = 1 because
by definition the matrix is balanced weight 1. To succeed in
reaching balanced weight 1 from m > 0 weight-0 rows, we
need a column that has ones in i of these m rows and zeros
elsewhere (happens with probability P0 (M −m)P1 (m, i)),
and then succeed from m − i weight-0 rows (happens with
probability Q(m− i)). The sum in (6) adds products of these
probabilities for i = 1, . . . ,m. The first term in the right-hand
side accounts for the possibility to have i = 0 (drawing the
all-zero column).

Proposition 10. Given p andM ,Q (m1,m2) from Definition 7
can be calculated by the following recursive expression, with
base cases Q (0, 0) = 1 and Q (0,M) = 0.

Q (m1,m2) = [1− P0 (M)]
−1
P0 (M −m2) ·

m1∑
i=0

m2−m1∑
j=0

i,j 6=0,0

P1 (m1, i)P1 (m2 −m1, j)Q (m1 − i,m2 − j) ,

(7)

where as before P0 (n) , (1− p)n and P1 (n, i) ,(
n
i

)
pi (1− p)n−i.

Proof: For the base case m1 = m2 = 0, Q (0, 0) = 1
because by definition the matrix is balanced weight 2. For
the base case m1 = 0,m2 = M , Q (0,M) = 0 because by
definition the matrix is balanced weight 1, and the algorithm
returns a weight-1 and not weight-2 matrix. Similarly to
Proposition 9, the probability to succeed from state m1,m2

is a sum over i, j of the recurrence while hitting with the new
column i rows of weight 0, j rows of weight 1, and no rows
with weight 2. The sum in (7) adds all these probabilities, and
the first term in the right-hand side accounts for the possibility
to have i = j = 0 (drawing the all-zero column).

Having the analytical tools of Q(m) and Q(m1,m2) now
allows us to define a better partition algorithm which, instead
of starting from an empty set S after failure, “back tracks”
to the optimal previous subset in terms of success probability.
We present this as Algorithm 2.

Algorithm 2. Back-tracking balanced weight 1 or 2
1) initialize an empty column set S = ∅
2) while the columns in S do not form a balanced weight 1

or 2 matrix
3) choose a random column index and add to S
4) if some row exceeded weight 2, remove the l ≥ 1

last added columns such that the resulting matrix has
maximal P (m1,m2), where

P (m1,m2) =

{
Q(m1) +Q(m1,M) if m2 =M
Q(m1,m2) otherwise

5) return balanced weight 1 or 2 matrix DS

Algorithm 2 is a generalization of Algorithm 1 in the sense
that instead of always re-initializing S to the empty set, it
removes from S only the last l added columns, where l is
determined to maximize the probability to reach a balanced
matrix from the state corresponding to the columns remaining
in S. It is shown in the next subsection that Algorithm 2 offers
a significant improvement over its special case Algorithm 1.

Next we want to again improve over the basic Algorithm
1, but this time without the search required for back-tracking
in Algorithm 2. Observe from the definitions of Q(m) and
Q(m1,m2) that we are so far fixed to the special case of an
algorithm aiming at reaching a balanced-matrix state m1 =
m2 = 0 (weight 2) or m1 = 0,m2 = M (weight 1). For
many values of M and p, the algorithm will perform better if
first aiming to some intermediate state m1,m2, and only from
there to the balanced states (returning to m1,m2 if failing to
reach a balanced matrix). We call this the 2-stroke approach,
where our objective is to find analytically the intermediate state
m1,m2 that gives the lowest expected number of iterations
before reaching a balanced matrix, and in particular lower than
the 1-stroke approach of Algorithm 1. For this task we will
need the following definition.

Definition 8. Given p and M (kept implicit for convenience),
denote by F (m1,m2), m1 ≤ m2 ≤ M , the probability that
starting from a matrix corresponding to an empty column set
S, successive column drawing will reach a column set with m1

rows of weight 0, m2 rows of weight < 2, and M −m2 rows



of weight 2 before reaching a column set with either 1) < m1

rows of weight 0, or 2) < m2 rows of weight < 2, or 3) any
row with weight > 2.

The interpretation of Definition 8 is that an algorithm that
starts from an empty S and aims at state m1,m2 will succeed
to reach it with probability F (m1,m2). Such 2-stroke algo-
rithm will re-initialize S to empty when clear that m1,m2

cannot be reached, happening in the three cases specified in
Definition 8. The formal definition of the 2-stroke algorithm
is given as Algorithm 3. An important step of the algorithm is
to find the optimal intermediate state aimed in the first stroke.
For this step we need the following proposition.

Proposition 11. Given p andM , F (m1,m2) from Definition 8
can be calculated by the following recursive expression, with
base case F (M,M) = 1.

F (m1,m2) =

m2−m1∑
i=0

M−m2∑
j=0

i,j 6=0,0

P0 (M −m2 − j)P1 (m1 + i, i) ·

P1 (m2 −m1 + j − i, j) F (m1 + i,m2 + j)

1− P0 (M)
, (8)

where as before P0 (n) , (1− p)n and P1 (n, i) ,(
n
i

)
pi (1− p)n−i.

Proof: For the base case m1 = m2 =M , F (M,M) = 1
because by definition the initial empty matrix satisfies m1 =
m2 =M . The recursion step works similarly to Proposition 10
but in the reverse direction of decreasing m1,m2. The prob-
ability to reach state m1,m2 is a sum over i, j of reaching
m1 + i,m2 + j first, and then hitting with the new column
i rows of weight 0 (out of m1 + i), j rows of weight 1 (out
of m2 + j − (m1 + i)), and no rows of weight 2 (out of
M − (m2 + j)). The sum in (8) adds all these probabilities,
and the denominator accounts for the possibility to have an
arbitrary number of all-zero columns drawn before moving
from m1 + i,m2 + j to m1,m2.

In the 2-stroke algorithm the expected running time will
consist of the iterations needed to reach m1,m2 plus the iter-
ations needed to reach a balanced matrix when starting from
m1,m2. Assuming independence of drawing as before we get
from the geometric distribution that the expected number of
iterations in 2-stroke is 1/F (m1,m2) + 1/Q(m1,m2). Thus
the intermediate state sought in the first stroke will be chosen
as the m1,m2 that minimizes this sum.

Algorithm 3. 2-stroke balanced weight 1 or 2
1) Find m∗1,m

∗
2 that minimize 1/F (m1,m2) +

1/Q(m1,m2)
2) initialize an empty column set S′ = ∅
3) while the columns in S′ do not form a matrix with state

m∗1,m
∗
2

4) choose a random column index and add to S′

5) go to 2 if for new S′: m1 < m∗1, or m2 < m∗2, or
some row exceeds weight 2

6) initialize S = S′

7) while the columns in S do not form a balanced weight 1
or 2 matrix

8) choose a random column index and add to S
9) go to 6 if some row exceeded weight 2

10) return balanced weight 1 or 2 matrix DS

Note that Algorithm 3 does not require a search in the
drawing phase as is the case for Algorithm 2. Rather, the
optimal m∗1,m

∗
2 is calculated once and remains static so

long that p does not change significantly. Optimal first-stroke
states can also be stored in a lookup table for different
values of p. An important consideration for Algorithm 3 is
to compare the best expected number of 2-stroke iterations
1/F (m∗1,m

∗
2) + 1/Q(m∗1,m

∗
2) to the best expected number

of 1-stroke iterations 1/(Q(M) + Q(M,M)); if the latter is
smaller, one should prefer Algorithm 1 over Algorithm 3.

C. Evaluation of randomized partitioning algorithms

We now move to examine and compare the performance
of Algorithms 1-3. Recall that all three algorithms reach a
balanced weight 1 or 2 matrix in each round of drawings.
Hence they all maintain the optimal-storage property, and
only differing in their running times due to the different
expected numbers of iterations in their main loop. Fig. 3
shows the results. It can be seen that as expected Algorithm 2
(backtracking) gives the best performance, and that Algorithm
3 improves significantly over the basic Algorithm 1. When the
load gets to about 0.4, Algorithms 1,3 give essentially the same
performance. Only close to load 0.5 does Algorithm 2 lose its
advantage over the other searchless two. The overall average
complexity of the randomized partition algorithm is the value
in the y-axis of Fig. 3 times the number of objects N (by
elementary counting the average number of times a column is
chosen by the algorithm equals the average number of while
iterations per matrix DS). Our results also show the percentage
of balanced weight-2 matrices that correspond to 3-colorable
induced graphs and thus have binary coding with optimal
storage. Fig. 4 plots the percentage of successful coloring (3
or less colors) as a function of load, and for different numbers
of ISPs (i.e. rows in D). 3-colorability was tested by a greedy
(sub-optimal) coloring algorithm on submatrices obtained by
Algorithm 1. Even with this simple algorithm the percentage
of 3-colorable induced graphs is shown to be very close to
1 (the numbers in the plot are in general only lower bounds
on the 3-colorability success probability, and the exact values
may be even higher).

V. CONCLUSIONS AND FUTURE WORK

This paper studies the code-design problem for shared
caches with a strong emphasis on low per-request complexity.
It shows that when the number of ISPs is much smaller
than the number of objects, efficient coded caches can be
constructed either deterministically or probabilistically. In the
following we suggest interesting directions for future work.

1) Limits of binary coding. The most direct theoretical
open problem from this paper is to find the limit of
binary coding in the setup of caching with uncoded ISP



Figure 3: The average number of iterations per matrix DS of
the three randomized partitioning algorithms.

Figure 4: A lower bound on the probability that a submatrix
from a randomized partition algorithm (specifically, Algorithm
1) be 3-colorable.

storage. This paper shows that binary coding is optimal-
storage sufficient for any demand matrix with M = 4
ISPs, and for M = 6 there are examples of demand
matrices that cannot be solved with binary coding.
Answering whether (and how) M = 5 is solvable with
binary coding is an open problem of prime interest.

2) Real-valued demand matrices. The assumption made
in this paper is that the ISPs are those that make the
decisions of which objects the cache needs to store for
them. In reality it may be the case that ISPs prefer to
submit “softer” preferences to the cache, not necessarily
hard 0/1 decisions. Such softer preferences can greatly
improve the cache efficiency, as they will add flexibility
to populate the cache for better joint performance. It
is an interesting future direction to adapt the present
algorithms and propose new ones for soft demands given
in real-valued D matrices.

3) Game theory and mechanism design. Continuing on
item 2 above, it will be interesting to develop coding
schemes that ensure good caching performance under
different models of (non) cooperation between the ISPs.
Since ISPs are simultaneously in cooperation and in
competition, solving such problems is necessary to en-
sure robust joint operation of the cache.

4) Real-system implementation. An extremely important
future work is to see the performance of coded-caching
schemes within a real system serving real video content.
In that environment, many new issues will have to be
studied. For example, objects of variable size, priorities
between objects and between ISPs, richer network ar-
chitectures, and many more.
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