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ABSTRACT
Emerging memory technologies are offering unprecedented storage
densities, alongside significant new reliability issues. One such
issue this paper addresses is inter-cell interference between coupled
pairs of cells. In the studied model there is strong interference
between cells, in the sense that programming one cell to a high
level changes the level of a second cell significantly. The particular
type of interference we study is pair-wise coupling interference:
where interference happens between disjoint pairs of cells, so every
cell is affected by exactly one other cell.

Our results show that strong coupling interference can be effec-
tively mitigated without need to add large amounts of redundancy
beyond the simple Hamming codes common in low-latency memo-
ries. One of our techniques is using a soft decoder that can correct
many more error combinations thanks to its knowledge of the in-
terference model and parameters. Another technique introduces
controlled intentional coupling between the cells at the write path,
such that the undesired coupling can be neutralized at the read
path with a clever choice of read levels. Overall the two schemes
show promising reliability results compared to using the accepted
read/write and decoding schemes. The schemes are applicable to a
very general class of memories, and thus can help in the deployment
of extremely dense emerging storage-class memory technologies
that suffer from poor isolation between cells.
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•Hardware→Non-volatile memory; Error detection and er-
ror correction; Hardware reliability; Analysis and design of emerg-
ing devices and systems; Memory and dense storage; • Information
systems → Storage class memory;
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1 INTRODUCTION
Non-Volatile Memories (NVM) suffer from a multitude of reliability
impediments such as: noise, inter-cell interference, read/write dis-
turbs, leakage mechanisms etc. These issues significantly reduce
the storage reliability of NVMs. The reliability issues are expected
to grow in severity as technology continues to scale aggressively,
in particular inter-cell interference will likely become a limiting
factor as cells are getting closer together with density.

In mature memory technologies like NAND-flash, inter-cell in-
terference is well understood in the established array architecture.
But the emergence of new extremely dense memory technologies
calls for studying new and more severe interference regimes. For
example, resistive memory technologies (also known as reRAM or
RRAM) come in array architectures that provide much poorer iso-
lation between cells than current technologies. This happens while
low-latency requirements (in the storage-class memory paradigm)
prevent throwing in powerful error-correcting codes (ECC) to solve
the problem. When density is pushed to the physical limits, a first
likely effect is introduction of strong coupling interference between
pairs of adjacent cells. If the strong interference affects all pairs of
adjacent cells, it is extremely challenging to achieve reliability at
acceptable storage cost and complexity [1]. However, with careful
design it is often possible to ensure that interference affects disjoint
pairs of cells. That is, each cellC has one adjacent cellC ′ with which
it interferes. In one plausible such setup we aggressively reduce the
width of half of the inter-column (or inter-row) spaces, and gain
significant density advantage with only this limited interference.
A proof for the importance of the disjoint-pair coupling interfer-
ence is its applicability to the existing and ubiquitous memory
technology of mirror-bit NOR Flash [2]. In this technology density
advantage is gained by packing two bits in (two sites of) a single
cell, which causes these bits to suffer coupling interference, while
bits of adjacent cells remain well isolated.

The results of this paper show that interference in the form of
coupled pairs of cells can be managed effectively, and with low
associated overheads. Our focus is schemes that use only simple
low-order ECC, because the relevant memory technologies need to
support small-block access that cannot afford much stronger ECC.
Our first scheme uses the technique of soft-decision decoding (SDD),
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in which our knowledge of the interference model and parameters
translates the binary-measurement outcomes to likelihood func-
tions. These likelihoods are then used by an SDD decoder of a
standard Hamming code, and are shown to improve bit-error rate
(BER) without adding code redundancy. Section 4 shows the SDD
results for two setups: a simple one (Section 4.1), where a single
static read level is used without shifting it according to the interfer-
ence parameters, and a realistic one (Section 4.2), where the read
level adapts to the interference parameter, and a second read level
is added. In the latter more realistic setup the BER improvement of
our scheme is more significant. Our second scheme, described and
investigated in Section 5, uses intentional (but harmless) coupling
in the write process that allows effective mitigation of the interfer-
ence at read time. The scheme then cleverly uses three read levels,
and improves the BER significantly over both the baseline and the
previous scheme from Section 4. Here, thanks to the change in the
write process we are able to reduce the BER by orders of magni-
tude compared to schemes that do not use this technique. Toward
presenting these schemes we provide in Section 2 the interference
model, and detail the SDD algorithm and likelihood calculations
in Section 3. These calculations use probability theory to extract
from the measurements likelihoods on individual code bits to be
used by a SDD, given our knowledge on both cells in the pair and
the coupling between them. Our results are general and can ap-
ply to any memory technology whose readout is done by binary
measurements comparing the cell level to a chosen read level.

The novelty of this study is in being first to apply soft decod-
ing and advanced read/write algorithms to the problem of strong
pair-wise coupling interference, and proving that the problem can
be mitigated with low-complexity and low-latency ECC schemes
required in storage-class/embedded memories. From the circuit
and device perspective the schemes only require implementing
established techniques in memory design. For example, design
of multiple read levels allowing instantaneous read operations is
straightforward and known in the literature. By adding each sense
amplifier a comparator per read level, chip area and chip power
consumption are mildly affected. Similar techniques have been ap-
plied in the literature to other interference models in NVMs, most
commonly in NAND-flash, but building upon much more powerful
ECC schemes than afforded in our application of interest [3–8]
(partial list).

2 MODELING STRONG BIT-COUPLING
INTERFERENCE

In the scope of this work are memory technologies that suffer from
strong bit-coupling interference, that is, the programmed level of
one cell has a strong dependence on the bit written to a second
cell. The models we propose for strong bit-coupling interference
are general, and can be applied to multiple memory technologies
and different methods of programming the cell levels. Two models
are considered: 1) the linear model where the cell level is shifted by
a constant α times the level programmed to the second cell, and 2)
the shift model where the level shifts by a constant a if the second
bit is written to ′1′ (we choose the convention that logical bit ′1′
is represented by the higher programmed level, but everything
works identically if reversed.) The linear model is more physical

Figure 1: Programming levels as Gaussian distributions (log
scale).

as it captures the electric properties of the program process; the
shift model is a simplification that allows a clearer mathematical
analysis. Before specifying the interference models, we discuss cell
programming distributions without coupling interference.

2.1 Program-level distributions without
coupling

Due to cell variability, a logical bit value written to a cell does not
result in a precise program level, but in a distribution around a
target level. The canonical representation of such a distribution is
as a Gaussian random variable with mean µ that equals to the target
level, and variance σ 2 that depends on the programming accuracy.
To first order the Gaussian model of (1) captures the distributions
well.

fµ,σ (v) =
1

σ
√
2π

e
−

(v−µ )2

2σ 2 (1)

A graphical illustration of the Gaussian model is given in Fig. 1 with
two distributions of meansV0,V1, and equal variance σ 2 (marked on
the distribution graph as the standard deviation σ ). The Gaussians
in Fig. 1 are shown in logarithmic scale, and normalized by the
number of cells in the sampled population.

Throughout the paper we assume a read model whereby a read
level is applied somewhere on thev axis, e.g. in the interval [V0,V1],
and a bit is returned per each measured cell telling whether the
cell level is above or below the read level. This is the simplest and
most common way to sense the programmed levels of non-volatile
memories. The natural (and in this simple case optimal) way to
choose the read level is as the center point between the two target
levels: (V0 + V1)/2. Then an "above" read leads to the hypothesis
of a ′1′ bit and a "below" read leads to the ′0′ bit hypothesis. The
reliability of the read process depends on the margin D , V1 −V0
between the target levels, and on the varianceσ 2 of the distributions.
If either D is too small or σ is too large, a cell programmed as a
bit ′0′ (resp. ′1′) may cross the read level to the right (resp. left),
and be read erroneously as a ′1′ (resp. ′0′). Our knowledge of



Memory Reliability for Cells with Strong Bit-Coupling Interference MEMSYS US 2017, October 2017, Washington DC

Figure 2: Level distribution with coupling interference in
the linearmodel.

the program-level distributions (e.g. by sampling cells from the
population) allows us to extract soft information from the above
read-level measurements, i.e., not just a 1-bit hypothesis of whether
the cell was written to ′0′ or ′1′, but also the posterior1 probabilities
that the cell is in each of these states.

2.2 Program-level distributions with coupling
interference

When each cell is coupled to a second cell, the distributions change
accordingly. In essence, the level of a cell with bit ′0′ is shifted to
the right if its second cell is written as bit ′1′. The way the level
shifts depends on whether we assume the linear or shift model
described in the beginning of Section 2. Suppose v0 and v1 are the
levels drawn for the ′0′-bit and ′1′-bit cells, respectively, in the
plain Gaussian model without interference, and define ∆v = v1−v0.
Then in the linear model we have the level of the ′0′-bit cell

v0′ = v0 + α∆v, (2)

and in the shift model we simply have

v0′ = v0 + a. (3)

The level of the ′1′-bit cell is unchanged as v1 from the model
without interference. Each model implies a different distribution of
the ′0′-bit cells, which are depicted in Figs. 2 and 3, respectively.
We denote by V ′

0 the center of the distribution of ′0′ bits interfered
by a second cell written to the bit ′1′. In Figs. 2,3 we normalized
the distributions around V0 (′0′ bits not interfered) and V ′

0 (′0′ bits
interfered) to be the same height as the distribution around V1 (′1′
bits) for visual appeal – in reality they should be each about half
its height, as the ′0′ population splits roughly half-way between
interfered and not interfered. It can be seen that the linear and shift
distributions are very similar, only that the linear model gives a
slightly wider distribution due to the variance of ∆v . We denote by
D ′ the difference between the center of the ′1′ level and the center
of the interfered-′0′ level, that is

D ′ = V1 −V ′
0 = V1 −V0 − αD = V1 −V0 − a.

1posterior=after knowing the measurement outcome.

Figure 3: Level distribution with coupling interference in
the shift model.

3 SOFT LEVEL MEASUREMENTS AND SOFT
DECODING

To deal with strong bit-coupling interference without adding re-
dundancy, a key tool we use is soft information extracted from the
read measurements, and its use by the ECC decoder. By soft in-
formation we mainly refer to likelihood functions: probabilities to
observe the read outcome given each of the hypotheses of the cell
having been programmed to ′0′/′1′. Computing the soft informa-
tion uses the value of the read level, the measurement outcome
(above/below), and our knowledge of the level-distributions and
coupling-interference parameters. We show in this section how to
extract this soft information, and how to use it in decoding the
error-correcting code.

3.1 Soft-information probabilities
First let us consider the case without coupling interference. Given
Gaussian cell-level distributionsv0 ∼ N (V0,σ 2) andv1 ∼ N (V1,σ 2),
a read level VRD induces the following probabilities

P0 =

∫ VRD

−∞

f0(v)dv, P1 =

∫ ∞

VRD
f1(v)dv,

where f0 and f1 are the probability density functions (pdf) of
the distributions of v0 and v1, respectively. We use the function
normcd f (v, µ,σ ) to denote the probability that the Gaussian ran-
dom variable with parameters µ,σ has a value at most v . Then
P0 = normcd f (VRD ,V0,σ ) and P1 = 1 − normcd f (VRD ,V1,σ ).
An example for such P0 and P1 is given in Fig. 4 for the case
VRD = (V0 +V1)/2. Definew = 0 (resp.w = 1) as the event that the
cell is programmed to logical bit-value ′0′ (resp. ′1′). Also, define
r = 0 (resp. r = 1) as the event that the read outcome is below (resp.
above) VRD . Then we have

P(r = 0|w = 0) = P0, P(r = 1|w = 1) = P1,

and their complements

P(r = 1|w = 0) = 1 − P0, P(r = 0|w = 1) = 1 − P1.

As our soft information we calculate for each cell the likelihood
function as the pair

P(r |w = 0), P(r |w = 1), (4)
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Figure 4: Pictorial illustration of the probabilities P0, P1, P2.

where for r we substitute the binary value (above/below) obtained
from that cell’s measurement. We refer as a soft-decision decoder
(SDD) to any decoding algorithm whose inputs are pairs P(r |w =
0), P(r |w = 1) provided for all codeword bits (note that P(r |w =
0), P(r |w = 1) in general do not sum to 1). If we have the pairs of
likelihoods on the codeword bits we can easily get the binary inputs
for a hard-decision decoder (HDD) as follows: given r , if P(r |w = 0)
is greater than P(r |w = 1), then the input is taken as ′0′ because
it is the more likely written value given the read outcome, and if
otherwise the input is taken as ′1′.

Now let us add the strong-coupling interference. Our objective
is to get to likelihoods on the individual code bits similar to (4) (so
we can use any existing SDD with these inputs), but now taking
into account our knowledge of the coupling between the pairs
of cells. Throughout the derivations, we assume the simpler shift
interference model, where a cell with the logical-′0′ bit value has
its level shifted upward by a constant a when its second cell has the
logical-′1′ value. Cells with the logical-′1′ value are not affected
by the second cell. This shift interference introduces another level
distribution for cells that are at logical ′0′ and whose second cell
is programmed to logical ′1′. The level of these cells is distributed
according to N (V0 + a,σ 2), which was shown in Fig. 3. For this
distribution we define

P2 = normcd f (VRD ,V0 + a,σ ),

and note that P2 < P0 whena > 0, due to the shift of the distribution
rightwards. The three probabilities P0, P1, P2 used in the calculation
of soft information are illustrated pictorially in Fig. 4.

Table 1: Dependence of read value onwrite value and second-
cell’s write value.

rf
Written values

P(rf |wf ,ws )wf ws
0 0 0 P0
1 0 0 1 − P0
0 0 1 P2
1 0 1 1 − P2
1 1 * P1
0 1 * 1 − P1

It is clear that with the coupling interference the probability to
read a cell at outcome r depends on the logical write value of both
that cell and the interfering second cell. Denote bywf the logical bit
value of the first cell, and by rf the binary measurement outcome of
that cell. We similarly definews and rs to be these respective values
for the second cell. It is immediate to obtain the dependence of rf
onwf andws , which is given in Table 1. The symbol * represents
either 0 or 1.

The interesting part now with respect to calculating the soft
information is that the likelihood function for a logical bit valuewf
is no longer just a function of rf ,wf as in (4), but it also depends
on the value of rs , which we also have after the read. Explicitly, for
soft decoding with coupling interference we need to calculate

P(rf |rs ,wf = 1), P(rf |rs ,wf = 0), (5)

where we substitute for rf and rs the binary read values for the
first and second cell, respectively.

3.2 Calculating likelihoods with coupling
interference

The technical but important calculation of the likelihoods in (5)
now follows. In Table 2 we list the values of the likelihood function
for all combinations of rf , rs ,wf . We explain here how to derive
these values. First it will be convenient to express the likelihood
function with additional conditioning on the write valuews

P(rf |rs ,wf ) = P(rf |wf ,ws = 0)P(ws = 0|rs ,wf )+

P(rf |wf ,ws = 1)P(ws = 1|rs ,wf ),
(6)

where we used the fact that rf is independent of rs givenwf and
ws . The first term in each product at the right-hand side of (6) can
be extracted from Table 1 for any combination of rf ,wf ,ws . Now
to get the second terms, we use elementary probability theory, with
the assumption that written logical values are equiprobable ′0′/′1′,
and get

P(ws = z |rs ,wf ) =

P(rs |ws = z,wf )

P(rs |ws = z,wf ) + P(rs |ws = 1 − z,wf )
.

(7)

We notice that all terms on the right-hand side of (7) can be ex-
tracted from Table 1 by exchanging the roles of the first and second
cell. From this we get the likelihoods with coupling interference,
shown in Table 2.
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Table 2: Likelihood values with coupling interference.

rf rs wf P(rf |rs ,wf )

0 0 0 (P20 + P2 − P1P2)/(1 + P0 − P1)
1 0 0 (P0 − P20 + (1 − P1)(1 − P2))/(1 + P0 − P1)
0 1 0 (P0 − P20 + P1P2)/(1 − P0 + P1)
1 1 0 (1 − 2P0 + P20 + P1 − P1P2)/(1 − P0 + P1)
1 * 1 P1
0 * 1 1 − P1

3.3 Implementing soft decoding
For simplicity and clarity we take the Hamming code as our test case
for soft decoding with coupling interference. However, the same
techniques can be extended to stronger ECCs. Let c = (c0, . . . , cn−1)
be a binary codeword programmed to a block of n cells. The code
dimension (the number of information bits) is denoted k . Let r =
(r0, . . . , rn−1) be the received vector output from the binary read
values of the n cells. r may differ from c due to noise and interfer-
ence, and define the error vector e by r = c + e , where summation
is element-wise over the binary field (bit-wise exclusive or). For
the HDD it is required to estimate the stored bits from the poten-
tially corrupted vector r . The first step of HDD is to calculate the
syndrome s as follows

s = rHT = (c + e)HT = eHT , (8)

whereH is the parity-check matrix of the code, and the arithmetic is
carried outmodulo 2.We then find themost likely (lowest Hamming
weight) error vector ê that gives the syndrome s , and estimate c as
ĉ = r +ê . HDD does not take into account the coupling interference
and will correct only one bit error.

In contrast, SDD factors in the coupling interference through the
input likelihoods, and can correct the errors even in cases where
more than one bit is flipped in the read values. An SDDwith optimal
BER is most efficiently implemented with the BCJR algorithm [9]
over the code’s trellis, but a more succinct (and practical for low-rate
codes) specification of the optimal-BER SDD is given by [10]

ĉm = 0 iff
2n−k∑
j=1

n−1∏
l=0

(
1 − Φl
1 + Φl

)x jl ⊕δml

> 0

and ĉm = 1 otherwise,

(9)

where x jl denotes the l-th bit of the j-th word in the dual code; δml
is 1 iff l =m, and Φl is the likelihood ratio of the l-th bit. For SDD
with coupling interference we substitute

Φl =
P(rl |rl ′ ,wl = 1)
P(rl |rl ′ ,wl = 0)

, (10)

where in the right-hand side we take the likelihoods from (5) and
replace rf by rl and rs by rl ′ , and l ′ is taken as the index of the cell
interfering with cell l .

4 DECODING PERFORMANCEWITH SOFT
INFORMATION

After laying out the method to extract soft information and decode
with it, in this section we realize this in two realistic scenarios of

Table 3: Likelihood values with static read levelVRD =
V0+V1

2 .

rf rs wf P(rf |rs ,wf )

0 0 0 P2(1 − P1) + P21
1 0 0 (1 − P1)(1 − P2 + P1)
0 1 0 P1(1 − P1 + P2)
1 1 0 1 − P1(1 − P1 + P2)
1 * 1 P1
0 * 1 1 − P1

strong bit-coupling interference: 1) where the read levelVRD is stat-
ically fixed to the mid-point (V0 +V1)/2, and 2) with dynamic read
level that is shifted given the interference parameter. In both cases
we use the (fixed) shift model of coupling interference described
by (3).

4.1 Soft decoding with static read level
Static read level is the simplest setup to show the benefits of soft de-
coding for correcting coupling interference errors. In that it serves
as a good introduction for the more realistic dynamic read level
setup following next. It is also interesting in its own right for mem-
ory technologies that do not allow easy adjustment of read levels.
In that setup the read level is set at

VRD =
V0 +V1

2
,

which introduces the symmetry P0 = P1. This gives the likelihoods
in Table 3. We take the [127, 120] single-error correcting Hamming
code, and shorten it to carry k = 64 information bits. 64 bits give
a word size that fits fine-access low-latency applications, which
are likely to use emerging non-volatile memories. Hence we get
a [n,k] = [71, 64] code. For each of the n code bits we calculate
the likelihoods in the numerator and denominator of (10). For each
likelihood we use the row in Table 3 whose (rf , rs ) entry equals
(rl , rl ′). We decode the resulting likelihood ratios with the SDD
algorithm, and compare to the standard HDD for Hamming code.
We plot the results in Fig. 5 for a range of the parameter D ′/σ (σ is
fixed at 0.3 and D ′ is the independent variable). The results show
the BER at the decoder output for both the SDD and HDD, also
showing the raw BER without ECC. The SDD is able to improve the
BER by significant percentages: at the lowest BER point (D ′/σ = 10)
we get improvement from 4.7 · 10−4 to 3.2 · 10−4, which amounts
to 32% reduction.

Even in this simple setup significant BER improvements were
attained simply by invoking a more powerful soft decoder, without
increasing the redundancy or the complexity of the read process
(no additional read levels were used). This motivates the use of soft
decoders in the more realistic setups we study next, aiming at BER
values that are more suitable to practical applications.

4.2 Soft decoding with dynamic read level and
an auxiliary level

In a more realistic setup, we know the interference parameter a, and
are allowed to shift the read level VRD to the mid-point between
V1 and the shifted distribution of level ′0′: V0 + a; VRD is set as the
level (V ′

0 +V1)/2 in Fig. 3. This choice of read level saves many of
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Figure 5: BER of SDD (star markers) with static read level
in comparison to HDD (circle markers) and RAW/uncoded
(triangle markers).

the interferred first cells from crossing over to be read as logical ′1′.
This can reduce the BER significantly compared to the static read
level in Section 4.1. Our method to reduce the BER further with soft
decoding is given in Algorithm 1, and described in the following.
The key idea is to introduce a second read level for the SDD inputs,
but do so only in instances where the HDD cannot correct the
errors. For that we now take our ECC to be the [128, 120] extended
Hamming code, which is single-error correcting and double-error
detecting (SEC/DED); we similarly shorten it to [n,k] = [72, 64].
We fix the second read level to beVRD2 < VRD , and invoke it on all
the cells in instances when the HDD of the SEC/DED code detects
two bit errors. The rationale behind measuring the cells at a lower
VRD2 is that knowing that the cell level is further to the left below
VRD2 helps the soft decoder identify the cell as less likely to have
crossed over from ′1′ to ′0′. The second read level VRD2 is used
in instances where the HDD detects a 2-bit error (which it cannot
correct). In these cases we invoke the soft decoder with likelihoods
given in Table 4. The entries rf , rs in the table are obtained from the
measurements of the first and second cell, respectively, according
to the rule

r =


0, if v < VRD2
1, if v > VRD
2, otherwise

The likelihoods in Table 4 are calculated by a straightforward ex-
tension of the analysis in Section 3.2 to ternary read values. We
use Qi to denote the probability corresponding to Pi , but withVRD
replaced by VRD2.

We plot the results in Fig. 6 for a range of the parameter D ′/σ (σ
is fixed at 0.3 and D ′ the independent variable). The results show
the BER at the decoder output for both Algorithm 1 and HDD, also
showing the raw BER without ECC. Algorithm 1 improves the BER
significantly, more so than in the previous setup in Section 4.1.
At the lowest BER point (D ′/σ = 7) we get improvement from
2.14 · 10−6 to 3.89 · 10−7, close to an order of magnitude. This
improvement is much more significant than in Section 4.1, and it is
achieved for absolute BER values that are much lower.

Even more impressive than the BER improvement is that the
SDD in Algorithm 1 succeeds in correcting the vast majority of

2-bit errors (recall that the extended Hamming code with HDD
cannot correct any combination of 2-bit errors). The correction
percentages for different values of D ′/σ are shown in Fig. 7.

To better understand the performance of Algorithm 1, we want
to examine how the BER is affected by the spacing between the
read levels: VRD − VRD2. For that we vary the spacing between
the read levels in the interval [0.1, 0.5], and plot the resulting BER
improvement (over HDD) in Fig. 8. It can be seen that the BER
improvement reaches its peak at VRD − VRD2 = 0.3, but also at
other choices the BER savings are significant. In general the value
that peaks the BER improvement depends on the value of σ .

We note that our choice in Algorithm 1 to run the SDD with
two read levels only upon 2-bit error detection is for the purpose
of saving the read complexity in the majority of reads that have
< 2 errors. We have simulated a variant of Algorithm 1 that runs

Algorithm 1: Soft Decoding with Dynamic Read Levels
input :n cells with coupling interference
output :k estimated information bits
read with VRD and hard-decision decoding:
read n cells with VRD : ri = 0 if vi < VRD and ri = 1
otherwise
decode (r0, . . . , rn−1) with HDD
if not detected 2-bit error then
return HDD output
else
read with VRD2 and soft-decision decoding:
read n cells with VRD2: ri = 0 if vi < VRD2, ri = 1 if
vi > VRD , and ri = 2 otherwise
decode (r0, . . . , rn−1) with SDD using likelihoods in Table 4
return SDD output
end

Table 4: Likelihood function of read bit givenwritten bit and
read values obtained from two read levels.

rf
Given data Probability to read this data
rs wf

0 0 0 Q2
0+(1−Q1)Q2
1+Q0−Q1

1 0 0 1 − P2 −
(P0−P2)Q0
1+Q0−Q1

2 0 0 (P0−Q0)Q0+(1−Q1)(P2−Q2)
1+Q0−Q1

0 1 0 P1Q2+(1−P0)Q0
1−P0+P1

1 1 0 (1−P0)2+P1(1−P2)
1−P0+P1

2 1 0 (1−P0)(P0−Q0)+P1(P2−Q2)
1−P0+P1

0 2 0 (P0−Q0)Q0+(−P1+Q1)Q2
P0−P1−Q0+Q1

1 2 0 1 − P2 −
(P0−P2)(P0−Q0)
P0−P1−Q0+Q1

2 2 0 (P0−Q0)
2+(−P1+Q1)(P2−Q2)
P0−P1−Q0+Q1

0 * 1 1 −Q1
1 * 1 P1
2 * 1 Q1 − P1
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Figure 6: BER of Algorithm 1 (star markers) with VRD2 =
VRD − 0.3 in comparison to HDD (circle markers) and
RAW/uncoded (triangle markers).

Figure 7: Percentage of correcting 2-bit error combinations
by the SDD in Algorithm 1. With the HDD we get 0% for ev-
ery D ′/σ .

Figure 8: Algorithm 1 BER improvement vs. the difference
VRD −VRD2.

the SDD in every instance (without first running the HDD for 1-bit
correction), and the results are similar and in cases better.

Figure 9: Level distribution with the linear interference
model plus intentional shift coupling of ′1′-bit cells.

5 IMPROVED PERFORMANCE BY COUPLED
WRITING AND 3 READ LEVELS

In the fight against coupling interference, we showed in the previous
section the power of soft decoding to reduce error rates. Now we
propose the ultimative method to combat this type of interference.
The key of this method is to add one simple ingredient: intentional
coupling of cell pairs written to ′1′. To the undesired coupling we
have by the linear/shift models (2)/(3), we add intentional coupling
in the form of shifting the level of ′1′-bit cells when their second
cell is also a ′1′-bit cell. If v1 is the level drawn for the cell by the
standard distribution N (V1,σ 2), then this shifting results in the
level

v1′ = v1 + b,
where b is some known design constant. In addition to this shift
of v1 we assume the linear2 interference model for v0 as in (2).
The resulting cell-level distributions are plotted in Fig. 9. We first
observe that this shifting does not add additional interference, be-
cause only pairs of cells of both ′1′-bit are affected. As we show in
the remainder of this section, this added coupling leads to effective
mitigation of the undesired coupling, reaching extremely low BER
levels.

5.1 Decoupled reading with 3 read levels
We now show how to read a cell distributed as in Fig. 9 such that the
coupling interference is minimized. Looking at the distributions in
Fig. 9 it is not clear howwe can read the cell more reliably, and what
good it added to couple the ′1′ cells. However, when seeing the
distributions in two dimensions, things become clearer. In Fig. 10
we plot the same distributions of Fig. 9 but adding the second cell
in the y-axis. The plot then shows the joint distributions of the two
coupled cells according to their logical values:wf = 0,ws = 0 (left
lower), wf = 1,ws = 0 (right lower), wf = 0,ws = 1 (left upper),
andwf = 1,ws = 1 (right upper).

Distinguishing between levels originating fromwf = 0 and from
wf = 1 can be done by using the three read levels marked on Fig. 10.
By measuring the first cell with read levelsVRDa andVRDb , and the
second cell with VRDc , we can dissect the two-dimensional plane
2The linear model is more physical than the shift model, so we prefer it when there is
no analytic treatment to benefit from the simplicity of the latter.
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Figure 10: Two-dimensional view of the distributions of cou-
pled cells with shifting the distribution of (′1′,′ 1′) cell pairs.

Table 5: Read rule with 3 read levels VRDa ,VRDb ,VRDc .

vs < VRDc vs ≥ VRDc
vf < VRDa 0 0
VRDa ≤ vf < VRDb 1 0
vf ≥ VRDb 1 1

with minimal cross over due to interference. Now it becomes clear
why the intentional coupling we introduced is useful: it allows
to distance cells with wf = 1 (and ws = 1) from the separating
line of VRDb , and thus better distinguishing them from cells with
wf = 0 (andws = 1). Formally, denote by (vf ,vs ) the pair of levels
of the (first,second) cells. Then the read rule is taken as specified
in Table 5. Note that every cell can be read this way by applying
two read levels on it, plus one on its second cell. If the first and
second cells are both read in the same memory word, we need
total of three measurements of every cell. However, this method
has the advantage that it can read the first cells only with the
same total number of measurements even in setups when the second
cells belong to a different memory word. That is, reading the two
cells requires in total 6 read levels, whether they are read together
(VRDa ,VRDb ,VRDc in each), or separately (VRDa ,VRDb in the read
cell and VRDc in its second cell; then reversed for the other word-
read).

5.2 BER performance
We now plot the BER results of the decoupled reading scheme with
3 read levels. In Fig. 11 we show the BER results of the proposed
scheme in comparison to the standard scheme that shifts the read
level to the mid-point ofV ′

0 andV1 without changing the write. The
results of the new scheme without and with (HDD) ECC are shown
in the lower two plots. The single read level scheme without and

Figure 11: BER of proposed read scheme with shifted write
and 3 read levels (two lower curves). Upper curves show the
baseline of the standard read/write scheme.

Figure 12: BER improvement factor as a function of thewrite
shifting parameter b applied when the two cells are written
to ′1′, for D ′/σ = 5.28.

with (HDD) ECC is plotted in the upper two curves. It can be seen
that the advantage of the new scheme is huge. In particular, even
with the simple Hamming code it succeeds in lowering the BER to
orders that can be used in commercial products.

5.3 Setting design parameters
To get the best results in this scheme, there are two interesting
parameters we should set when we design the memory. Here we
want to examine and better understand them. The first parameter
is b: the amount of shift we write to the pairs of cells at the ′1′
value. b has cost ramifications, because a high shift implies higher
delay/power/wear in the write path. Clearly we want to minimize
these costs in a real device. In Fig. 12 we plot the dependence of the
BER multiplicative improvement factor (without ECC) as a function
of b, for the value D ′/σ = 5.28. We can see that up to about 0.8[V]
we gain by increasing b, but from that point further there is no
point for higher values. Other values of D ′/σ give similar behavior.

The second parameter we examine is the spacing VRDb −VRDa .
Its value needs to balance between two properties that are useful for
low BER. We can see in Fig. 10 that shifting VRDa to the right will
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Figure 13: BER improvement factor as a function of the
parameter γ setting the spacing between the read levels
VRDa ,VRDb .

cause cells from the right lower (′1′,′ 0′) distribution to cross to the
left. On the flip side, shifting VRDa to the left will cause cells from
the left upper (′0′,′ 1′) distribution to cross to the right (near the
corner VRDa ⊥ VRDc ). The dependence of the BER improvement
on the spacingVRDb −VRDa is shown in Fig. 13. We set the baseline
values of the read levels as BRDa = (V0 +V1)/2 (the mid-point of
the non-shifted levels), and BRDb = V

′
0 + (V1 −V0)/2 (symmetric

to BRDa with respect to the mid-point (V ′
0 +V1)/2). Then we vary

the spacing between the read levels as VRDa = BRDa + γ and
VRDb = BRDb − γ , where γ is the independent variable in Fig. 13.
(This implies that the mid-point between VRDa and VRDb is fixed
at (V ′

0 +V1)/2). The value that maximizes the BER improvement
is γ = 0.1, which corresponds to VRDa = 3.6 and VRDb = 4.6.
These values are marked in Fig. 10. Most importantly, the same γ is
optimal for all tested values of D ′/σ .

6 CONCLUSION
In this paper we proposed two techniques to reduce the BER with
strong cell-coupling interference. The advantage of these tech-
niques is that they work with the accepted architecture and ECC for
low-latency memories, and manage to get significant BER reduction
by changing the ECC decoder and read/write algorithms. Applying
the new techniques in commercial memories does not entail any
prohibitive implementation cost. For the first scheme one needs
to implement a SDD, which for low-order ECC like Hamming or
BCH codes is quite straightforward. For the second scheme one
needs to change the cell-program algorithm to shift the levels by b
in case both cells are ′1′. This technique is standard, and has been
implemented in commercial technologies like NAND-flash (for dif-
ferent purposes). The cost of this scheme in extra time/power grows
gracefully with the parameter b, which can be set as a compromise
between performance and cost.

Clearly the results shown here are just the starting point for
these schemes showing their promise. In realistic setups involving
emerging storage-class memories they will need to be enhanced by
complementary techniques to get to the desired BER levels in the
target applications. Themost interesting future-research direction is

how to design a stronger ECC to best combat coupling interference.
It is not clear that going the standard direction of correcting more
hard errors (e.g. by BCH codes) is the optimal route.
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