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ABSTRACT
We study the inherent space requirements of reliable storage
algorithms in asynchronous distributed systems. A number
of recent works have used codes in order to achieve a bet-
ter storage cost than the well-known replication approach.
However, a closer look reveals that they incur extra costs
in certain scenarios. Specifically, if multiple clients access
the storage concurrently, then existing asynchronous code-
based algorithms may store a number of copies of the data
that grows linearly with the number of concurrent clients.
We prove here that this is inherent. Given three parameters,
(1) the data size – D bits, (2) the concurrency level – c, and
(3) the number of storage node failures that need to be tol-
erated – f , we show a lower bound of Ω(min(f, c) ·D) bits
on the space complexity of asynchronous distributed stor-
age algorithms. Intuitively, this implies that the asymptotic
storage cost is either as high as with replication, namely
O(fD), or as high under concurrency as with the aforemen-
tioned code-based algorithms, i.e., O(cD).

We further present a technique for combining erasure codes
with replication so as to obtain the best of both. We present
an adaptive f − tolerant storage algorithm whose storage
cost is O(min(f, c) · D). Together, our results show that
the space complexity of providing reliable storage in asyn-
chronous distributed systems is Θ(min(f, c) ·D).
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1. INTRODUCTION
In recent years we have seen an exponential increase in

storage capacity demands, creating a need for big data stor-
age solutions. In this era, distributed storage plays a key
role. Data is typically stored on a collection of nodes ac-
cessed asynchronously by clients over a network. By stor-
ing redundant information, data remains available following
failures. The most common approach to achieve this is via
replication [4]; in asynchronous settings, 2f + 1 replicas are
needed in order to tolerate f failures [4]. Given the immense
size of data, the storage cost of replication is significant. Pre-
vious works have attempted to mitigate this cost via the use
of erasure codes [3, 5, 11, 7, 18, 10].

Indeed, codes can reduce the storage cost as long as data
is not accessed concurrently by multiple clients. For ex-
ample, if the data size is D bits and a single failure needs
to be tolerated, erasure-coded storage ideally requires (k +
2)D/k bits for some parameter k > 1 instead of the 3D bits
needed for replication. But as concurrency grows, the cost
of erasure-coded storage grows with it: when c clients access
the storage concurrently, existing asynchronous code-based
algorithms [5, 11, 7, 10] store O(cD) bits in storage nodes
or communication channels. Intuitively, this occurs because
coded data cannot be reconstructed from a single storage
node. Therefore, writing coded data requires coordination
– old values cannot be deleted before ensuring that suffi-
ciently many blocks of the new value are in place. This is in
contrast to replication, where written values can always be
read coherently from a single copy, and so old values may
be safely overwritten without coordination.

In this work we prove that this extra cost is inherent:
Given three problem parameters: f, c, and D, where f is the
number of storage node failures tolerated (client failures are
unrestricted), c is the concurrency allowed by the algorithm,
and D is the data size, we prove that the storage complexity
is Θ(min(f, c) · D). Asymptotically, this means either a
storage cost as high as that of replication, or as high as
keeping as many versions of the data as the concurrency
level.

Lower bound.
Our results are proven for emulations of a lock-free multi-

reader multi-writer regular register [14, 16]; see Section 2



for definitions. (Interestingly, the lower bound does not
hold for the weaker safe register semantics; see our techni-
cal report [17] for details). We consider algorithms that use
(arbitrary) black-box encoding schemes, i.e., produce and
manipulate code blocks of a given value independently of
other values and meta-data; as formalized in Section 3. The
storage consists of such code blocks, in addition to possibly
unbounded data-independent meta-data, (e.g., timestamps),
which we do not count as part of the storage cost. Our
black-box assumption excludes storage-reduction techniques
like de-duplication, which do require data-dependent meta-
data. In Section 4 we survey how this assumption holds
in related work on popular storage algorithms [3, 5, 11, 7,
10, 12], and compare it with assumptions made in proving
other lower bounds [6]. Yet, the question whether there is a
more storage-efficient algorithm that circumvents our result
by taking stored values into consideration remains open; see
further discussion in Section 7.

We prove the bound in Section 5: we first use a fundamen-
tal pigeonhole argument to show that as long as no ongoing
write operation contributes code blocks consisting of D or
more bits to the storage, no write operation can complete.
We then define a parameter 0 < ` ≤ D. For a given `, we de-
vise a particular adversary behavior, which we prove drives
the storage to a state where either (1) f + 1 storage nodes
hold at least ` bits each, or (2) the storage holds more than
D − `+ 1 bits in distinct code blocks for each of c different
operations. Now, picking ` = D/2 implies our lower bound.

Algorithm.
To prove our bound tight, we present in Section 6 a reliable

storage algorithm whose storage cost is O(min(f, c)·D). We
achieve this by combining the advantages of replication and
erasure coding. Our algorithm does not assume any a priori
bound on concurrency; rather, it uses erasure codes when
concurrency is low and adaptively switches to replication
when it is high.

2. COMPUTATION MODEL
We consider an asynchronous fault-prone shared memory

system [2, 1, 13] consisting of set B = {boi, . . . , bon} of n
base objects (typically residing at distinct storage nodes)
supporting arbitrary atomic read-modify-write (RMW) ac-
cess by clients from some infinite set Π (see Figure 1). Any
f out of n base objects and any number of clients may fail
by crashing, for some predefined f < n/2.

Figure 1: Clients and base objects.

We study algorithms that emulate a shared register [14],
which stores a value v from some domain V, where D =
log2 |V|. Initially, the register holds some initial value v0 ∈
V. Clients interact with the emulated register via high-level
read and write operations. A client that performs a write
operation is called a writer, and a client performing a read
is a reader.

To distinguish the high-level emulated operations from
low-level base object access, we refer to the latter as RMWs.
We say that RMWs are triggered and respond, whereas op-
erations are invoked and return. A (high-level) operation is
emulated via a series of trigger and respond actions on base
objects, starting with the operation’s invocation and ending
with its return. In the course of an operation, a client trig-
gers RMWs separately on each boi ∈ B. The state of each
boi ∈ B changes atomically, according to the RMW trig-
gered on it, at some point after the time when the RMW is
triggered but no later than the time when the matching re-
sponse occurs. To distinguish incomplete invocations to the
emulated register from incomplete RMWs triggered on base
objects, we refer to the former as outstanding operations and
to the latter as pending RMWs.

A parameter c defines the write concurrency level, that
is, at most c write operations are outstanding at a given
time. We assume that c < |V|/2 = 2D−1. We use standard
definitions of algorithms, runs, etc, which, for completeness,
appear in Appendix A. The emulated register must satisfy
the following two properties:

Lock-freedom If at some point in a fair run there is an
outstanding operation of a correct client, then some opera-
tion eventually returns.

Regularity Our safety requirement is regularity, which
is weaker than atomicity. There are a number of ways to
extend Lamport’s notion of regularity [14] to multi-writer
registers [16]; we use the weakest one for our lower bound
and the strongest for our algorithm, (called MWRegWeak
and MWRegWO in [16], resp.), as defined in Appendix A.
Intuitively, regularity means that a read rd returns a value
written by either (1) the last write w that completes before
rd is invoked, or (2) some write that is concurrent to rd or
to w, or (3) v0 if no value is written before rd.

3. STORAGE ALGORITHM MODEL AND
ASSUMPTIONS

We first give a formal model for coded storage algorithms,
then define the notion of storage cost in this model, and
finally state our assumptions that the encoding is symmetric
and algorithms use it as a black-box.

We consider algorithms that use (arbitrary) encoding schemes,
which produce code blocks in some domain E , so that each
value is coded independently of other values. The coding
scheme is based on two functions: The encoding function
E : V × N → E maps value/natural number pairs to code
blocks. We denote the number of bits in block e ∈ E as
|e|. The decoding function D : 2E → V ∪ {⊥} takes as a
parameter a set of code blocks and returns a value in V,
or ⊥ in case no value can be decoded. For example, in a
replication approach, each block e can be a full value v, so
D({e}) simply returns v. Another example is k-of-n erasure
codes, where for any value v and any subset S of size k of
the set {ei | ei = E(v, i), 1 ≤ i ≤ n}, D(S) = v. We cap-
ture rateless codes [15], in which an encoder can generate a



(a) A writer and its oracle.

(b) A reader and its oracle.

Figure 2: A model for code-based storage. Encoding and
decoding are captured by oracles.

limit-less sequence of blocks, by using N as the domain for
block numbers.

We encapsulate the encoder and decoder into two oracles,
oracleE and oracleD as illustrated in Figure 2. The interac-
tion with these oracles is as follows:

Definition 1 (Encoding/Decoding Oracles). A w=write(v)
(read()) invocation at a client ck initializes an oracleE(ck, w)
(oracleD(ck, w), resp.), which expires when w completes.
oracleE(ck, w) exposes a get(i) operation, which returns
E(v, i) for i ∈ N; and oracleD(ck, w) exposes two opera-
tions, push(e, i) and done(i), such that for all i ∈ N, if ci
calls done(i), then its read operation completes and returns
D({e | push(e, i) previously occurred}). We omit the pa-
rameters ck, w when they are clear from the context.

Writers produce code blocks via oracleE and store them in
the storage, whereas readers try to obtain enough blocks to
decode legal values via oracleD. In addition to code blocks,
clients and base objects can store unbounded meta-data,
e.g., program counters and timestamps. But to avoid trivial-
izing the problem, the meta-data must be data-independent,
as formally defined below.

Information is represented as list of code blocks and meta-
data, 〈e1, e2, . . . , ek;m〉, where ∀i, ei ∈ E and the meta-data
m is from some arbitrary domain. The state of a client
that has an outstanding operation consists of the informa-
tion stored at the client as well the parameters of its pending
RMWs that have not yet taken effect. The state of a client
with no outstanding operation is empty. A base object’s state
consists of the information stored at the base object and all
the responses of pending RMWs that took effect on it. For a
base object boi (client ci), we denote the list of code blocks
in boi’s (ci’s) state at time t in run r as bori (t) (resp. cri (t)).

Let S be an ordered set including all base objects and
clients, i.e., B ∪ Π ordered in some arbitrary way. For
S = {bo1, . . . , bok, c1, . . .} ⊆ S, Sr(t) is the list of lists
bor1(t), . . . , bork(t), cr1(t), . . . sorted according to their order in
S. A block instance b ∈ Sr(t) is a triple 〈i, j, e〉 so that e is
stored in the jth position in the ith list in S. We refer to the
block contents as b.e.

Storage cost.
We count the number of bits stored in blocks in base

objects as well as in clients, and neglect meta-data size. Note
that oracle states are not counted as part of the storage
cost, since we wish to measure the additional space required
for making the data available for shared access, beyond its
(trivial) existence at its sources and readers.

Definition 2 (Storage Cost). The storage cost at time t in
a run r is Σb∈Sr(t)|b.e|. The storage cost of an algorithm
A is the maximum storage cost at any point t in any run r
of A.

Assumptions.
To make sure that the encoding does not leak information

using block sizes, we assume symmetry, in the sense that
output block sizes do not depend on input values. (Other-
wise, we could for example, represent three values 0, 1, and
10 using a single coded block e1 of size at most 1 bit by
having |e1| = 0 encode 10). Formally:

Definition 3 (Symmetric Encoding). An encoding function
E is symmetric if for every v, v′ ∈ V and for all i ∈ N,
|E(v, i)| = |E(v′, i)|. We denote size(i) , |E(v, i)|.

Note that different block numbers (of all values) may have
different sizes.

We next state our assumption that the storage treats the
coding as a black-box. First, we define the notion of a source
function, which we shall use to prohibit generation of code
blocks by any source other than oracleE:

Definition 4 (Source Function). A function is a source
function for a run r if it maps every (b, t) s.t. b ∈ Sr(t)
to a pair 〈w, i〉 s.t. b.e was returned by get(i) in oracleE(w).

We use a source function to trace blocks in the storage to
operations that produced them. To capture the restriction
that the algorithm’s decision what to store does not rely on
block contents, we stipulate that we can replace the value
written by a write operation w in a run r by an arbitrary
value v, yielding the same sequence of states and actions, ex-
cept that all stored block instances whose source is 〈w, i〉 are
replaced with E(v, i). For clarity, we refer to the operation
as w in both runs (see Figure 3).

Definition 5 (Black-Box Coding). An algorithm A is black-
box coding if for every run r there is a source function sourcer

s.t. for every w = write(u) operation in r, ∀u ∈ V, there is
run rv satisfying the following:

1. rv has the same sequences of invocations and returns as
r except that w = write(v) (possibly with no change)
and return values of read operations may be different;
and

2. client and base object states at every time t in rv are
the same as at time t in r except that the contents of
every b ∈ Sr(t) s.t. sourcer(b, t) = 〈w, i〉 for some i is
replaced by e′ = E(v, i).

In the following, we will only consider source functions sat-
isfying Definition 5. In case multiple such source functions
for r exist, we fix an arbitrary one and refer to it as sourcer.



(a) Run r

(b) Run rv

Figure 3: Black-box coding. Runs r and rv have the same
trace except that write w is invoked with u in r and with
v in rv; and each base object boi’s state (blocks and meta-
data) is identical at all times in both runs, except that blocks
produced by w’s oracle in r are replaced in rv by the corre-
sponding blocks of v.

4. RELATED WORK
Our model captures numerous existing distributed stor-

age algorithms, including ones that use replication [4], and
erasure codes [3, 5, 11, 7, 10, 12]. We note that some of
them report a storage cost below O(cD) [3, 5, 18, 10]. This
is sometimes achieved by assuming periods of synchrony [3].
Other works shift the cost from storage nodes to the net-
work and keep unbounded information in channels [10, 5].
However, since we define parameters and responses of pend-
ing RMWs to be part of clients’ and base objects’ states,
information in channels is counted in our storage cost model
and hence these algorithms are subject to our bound. The
only non-black-box storage algorithm we are aware of is [18],
where multiple values are encoded jointly, saving space, but
also forfeiting regular register semantics. It is as of now
unclear whether lifting the black-box assumption suffices in
order to circumvent our result.

An earlier version of this work [17] showed a special case of
the result in this paper for infinite concurrency. Cadambe et
al. [6] prove closely related lower bounds for coded storage al-
gorithms. First, they show that asynchronous fault-tolerant
storage algorithms require strictly more storage than syn-
chronous erasure-coded algorithms. Second, similarly to this
paper, they extend the result given in our earlier version to
show that the storage cost must grow linearly with min(f, c),
but their result is proven under a different set of assumptions
than ours. In particular, while both papers make certain
“black box” assumptions about the storage, [6] does not rule
out joint coding as we do, but instead restricts protocol ac-
tions in a way that forbids them from depending on a written
value in more than one communication round; this affords
the protocol more freedom than our model in one communi-
cation round, and less freedom in all other rounds. On the
face of it, the two sets of assumptions appear to be incompa-
rable, though they both achieve the same end result, as we
discuss in Section 7 below. Additionally, our bound allows
algorithms to use unbounded (data-independent) meta-data

and is proven for lock-free register emulations, whereas the
bound in [6] includes meta-data and is shown for wait-free
registers.

Another tradeoff between the number of writers and space
complexity of reliable register emulations has been recently
studied in [8]. Inspired by our adversary structure, they
show that the number of fault-prone read/write registers
needed to emulate a reliable multi-writer register grows lin-
early with the number of clients that can write to the reg-
ister (even in sequential runs). Here, on the other hand, we
consider storage nodes supporting fully general read-modify-
write, for which that lower bound does not apply.

The challenge of providing a lower bound on stored data
when meta-data is potentially unbounded was also previ-
ously addressed in the context of byzantine storage [9]. That
paper has shown that certain storage algorithms cannot be
“amnesic”, i.e., cannot “forget” values written to them. Like
our black-box assumption, the notion of amnesia was defined
in terms of runs. However, it did not yield explicit bound
on storage cost.

5. STORAGE LOWER BOUND
We now show a lower bound of O(min(f, c)·D) bits on the

storage cost of any lock-free algorithm that uses symmetric
black-box coding to simulate a regular register:

Theorem 1. Consider a lock-free algorithm A that uses
symmetric black-box coding to simulate a regular register.
The storage cost of A is Ω(min(f, c) ·D).

For the sake of our proof, we quantify the number of bits in
blocks contributed by client ci’s operation w to base objects
and clients other than ci.

Definition 6. Let S ⊂ S, and consider a time t and an
operation w by client cj in a run r. We define Sr(t, w) ,
{i ∈ N | ∃b ∈ (S \ {cj})r(t): sourcer(b, t) = 〈w, i〉}, and

||Sr(t, w)|| , Σi∈Sr(t,w)size(i).

For I ⊆ N, we say that two values v′ 6= v′′ in V are I-colliding
if ∀i ∈ I, E(v′, i) = E(v′′, i). We next use the pigeonhole ar-
gument and the assumption of symmetric black-box coding
in order to show that write operations cannot return until
some write stores enough bits in different blocks in every set
of n− f base objects.

Claim 1. Let w be a write operation invoked in a run r of A,
and t be a point in r. Consider a set of values U ⊂ V, |U | <
2D−1, and a set of base objects S ⊂ S. If ||Sr(t, w)|| < D,
then there are two Sr(t, w)-colliding values u 6= u′ in V \U .

Proof. Since |V \ U | > 2D−1 and ||Sr(t, w)|| < D, the claim
follows from the pigeonhole argument.

Lemma 1. Consider a run r of algorithm A that begins with
the invocation of c concurrent write operations. Let S be a
set of at least n − f base objects and assume that at every
time t in r for every operation w in r, ||Sr(t, w)|| < D.
Then no write operation returns in r.

Proof. Let Wops = {w1, . . . , wc} be the set of c concurrent
writes invoked in r. Assume by contradiction that there
exists a complete write inWops. Let w be the first such write,
and t be the time when it returns. Next we inductively build
a sequence of sets of values U0, U1, . . . , Uc, where |Ui| = i:



• U0 = {}

• ∀i ∈ {0, . . . , c − 1}, we use Ui to build Ui+1. By
the lemma premise, ||Sr(t, wi+1)|| < D. Now since
|Ui| < c < 2D−1, by Claim 1, there are two Sr(t, wi+1)-
colliding values uwi+1 6= u′wi+1

in V \ Ui. We let
Ui+1 = Ui ∪ {uwi+1}.

The set Uc contains exactly c (different) values s.t. for
every operation wi ∈Wops there is a value uwi ∈ Uc that has
a Sr(t, wi)-colliding value u′wi

∈ V. By applying Definition 5
(c times), there is a run r′ that begins with the invocation
of c concurrent write operations, in which every operation
wi ∈Wops writes uwi s.t. w returns at time t, and for every

operation wi ∈Wops, Sr(t, wi) = Sr′(t, wi). Next, let clients
with outstanding operations and all base objects in B \ S
fail at time t in r′ (note that by assumption |S| ≥ n − f ,
so |B \ S| ≤ f), and let some client cj invoke a solo read
operation at time t+1. By lock-freedom, cj ’s read operation
completes, and by regularity, it returns a value u ∈ Uc at
some time t′ > t.

Let w′ be the operation that writes u in r′. Since u has a

Sr(t, w′)-colliding value u′ and since Sr(t, w′) = Sr′(t, w′),

u and u′ are Sr′(t, w′)-colliding. By Definition 5, there is
a run r′′ with the same operations as in r′ except that w′

writes u′ (instead of u) s.t. every client’s and base object’s
state at time t in r′ is identical to its state at time t in
r′′ (note that clients with outstanding operations and all
base objects in B \ S fail at time t) except that for every

block instance b ∈ Sr′(t) s.t. sourcer
′
(b, t) = 〈w′, i〉, b.e is

replaced with a block E(u′, i). In particular, states of base
objects in S at time t are identical to their states at time

t in r′ except that for every block instance b ∈ Sr′(t) s.t.

sourcer
′
(b, t) = 〈w′, i〉, b.e is replaced with a block E(u′, i).

Now since u and u′ are Sr′(t, w
′)-colliding, states of base

objects in S at time t in r′′ are identical to their states
at time t in r′. In addition, since clients with outstanding
operations and all base objects in B\S fail at time t, the solo
reader cj cannot distinguish between r′ and r′′, and thus, it
pushes the same blocks to its oracle and calls done with the
same number in r′′ as in r′, and therefore, its read operation
returns u at time t′′ in run r′′. However, since the clients
invoke write operations with different values in r′, u is not
written in r′′. A contradiction to regularity.

Having shown a condition under which write operations can-
not complete, we define an (unfair) adversary behavior that
takes advantage of this in order to prevent progress. We
introduce some notation, and then use it in order to define
the adversary. We define a parameter 0 < ` ≤ D, and for
any time t in a run r of algorithm A we define the following
sets, as illustrated in Figure 4. For convenience, from now
on we omit the superscript r.

• C(t): the set of outstanding write operations at time
t.

• C−` (t) = {w ∈ C(t) | ||S(t, w)|| ≤ D − `}: The set of
write operations each of which has at most D−` bits in
blocks, produced by its oracle with different numbers,
in the storage (excluding the client performing it) at
time t.

• C+
` (t) = C(t) \ C−` (t).

• F`(t) = {boi ∈ B | Σb∈{boi}(t)|b.e| ≥ `}. Base objects
that store blocks that consist (together) of more than
` bits at time t. These are base objects that we will
“freeze” in our counter-example because they are al-
ready “full”, i.e., consume enough space for our lower
bound.

We fix the parameter ` throughout the proof and omit sub-
script ` from the notation. The next observation on storage
cost immediately follows from the definitions.

Observation 1. At any point t in every run r of A, the
storage cost is at least |C+(t)|(D − `+ 1).

We next define a particular adversary behavior that sched-
ules actions in a way that prevents progress. Note that the
adversary controls the scheduling of client actions and RMW
responses.

Definition 7. (Ad) At any time t, Ad schedules an action
as follows:

1. If there is a pending RMW on a base object in B\F (t)
by a client performing an operation in C−(t), then
choose the longest pending of these RMWs, allow it
to take effect on the corresponding base object, and
schedule its response.

2. Else, choose in a fair order an operation by a client
ci ∈ Π and schedule its action (trigger RMW, call its
oracle, get response from its oracle, or return), with-
out allowing it to affect the base object yet. By fair
order we mean any order in which every client is chosen
infinitely often (e.g., c1, c1, c2, c1, c2, c3 . . .).

In other words, Ad delays RMWs triggered by operations in
C+(t) (for which the storage already holds D − ` bits) as
well as RMWs on “frozen” base objects in F (t) (which store
at least ` bits), and fairly schedules all other actions. We
demonstrate Ad’s behavior in Figure 4. Though this behav-
ior may be unfair, in every infinite run of Ad, every correct
client gets infinitely many opportunities to take steps. We
use Ad to build an unfair run with no progress (no write
returns), and then build an indistinguishable fair run to
contradict lock-freedom. The following observation imme-
diately follows from the adversary’s freezing of base objects
in F .

Observation 2. Assume run r of algorithm A in which the
environment behaves like Ad. For each base object bo, if
bo ∈ F (t) at some time t, then bo ∈ F (t′) for all t′ > t in r.

Another consequence of Ad’s behavior is captured by the
following:

Lemma 2. Consider a run r of algorithm A. If the adver-
sary behaves like Ad, then for every time t and for every
write operation w in r, ||(S \ F (t))(t, w)|| < D.

Proof. Assume by way of contradiction that there is time
t and write operation w performed by client cj s.t. ||(S \
F (t))(t, w)|| ≥ D. The definition of (S\F (t))(t, w) takes into
account only blocks returned by w’s oracle that are stored
outside of cj(t). Thus, w triggered at least one RMW that
has a matching response before time t in r. Let t′ ≤ t be the



Figure 4: Example scenario in run of a storage algorithm with adversary Ad. In this example, 2D/5 < ` < D. At time t, only
w2 and w4 are in C−(t), where w4 has no pending RMWs and w2 has one triggered RMW on b1 ∈ F (t) and one triggered
RMW on b3 6∈ F (t). Therefore, by the first rule, Ad schedules the response on the RMW triggered by w2 on b3. In this
example w2 overwrites w3’s block in b3, thus w3 moves from C+ to C−. Then, at time t+ 1, no response can be scheduled by
rule 1 (no operation in C−(t+ 1) has a pending RMW on a base object in N \F (t+ 1)), so by rule 2, Ad chooses w2 and lets
it trigger an RMW on base object b2. Now since w2 is the only operation that has a pending RMW on a base object not in
F (t+ 2), Ad schedules the response on the RMW triggered by w2 on b2 at time t+ 2. In this example w2 adds a block with
` bits to b2. Thus, c2 is included in C+(t+ 3). In addition, b2 stores more than ` bits at time t+ 3, so it belongs to F (t+ 3).

time when the last RMW triggered by w responded, and
denote this RMW by rmw and the base object on which
rmw was triggered by bo. By Ad, w ∈ C−(t′ − 1), and
therefore, by definition, ||(S \F (t′− 1))(t′− 1, w)|| ≤ D− `.
Now consider two cases:

• First, rmw adds blocks (possibly overwriting other
blocks) with less than ` bits to bo. In this case, since
bo is the only storage component that changed at time
t′, |(S \ F (t′))(t′, w)| < D.

• Second, rmw adds blocks (possibly overwriting other
blocks) with at least ` bits to bo. In this case, bo ∈
F (t′). Now since ||(S \ F (t′ − 1))(t′ − 1, w)|| ≤ D, by
Observation 2, F (t′ − 1) ⊆ F (t′), and given bo ∈ F (t′)
and it is the only storage component that changed at
time t′, we get ||(S\F (t′))(t′, w)|| ≤ ||(S\F (t′−1))(t′−
1, w)|| < D.

So far we showed that ||(S \ F (t′))(t′, w)|| < D. By Obser-
vation 2, and since no RMW by w takes effect after time t′,
(S \ F (t′′))(t′′, w) ⊆ (S \ F (t′))(t′, w), ∀t′′ ≥ t′. Therefore,
we get ||(S \ F (t))(t, w)|| < D. A contradiction.

The next corollary uses Lemmas 1 and 2 in order to conclude
that Ad can prevent progress of write operations.

Corollary 1. Consider a run r of algorithm A that begins
with the invocation of c concurrent write operations. If the
adversary behaves like Ad and |F (t)| ≤ f for all t in r, then
no write operation returns in r.

Proof. By Lemma 2, for every time t for every write oper-
ation w in r, ||(S \ F (t))(t, w)|| < D. And since B ⊂ S,
for every time t for every write operation w in r, ||(B \

F (t))(t, w)|| < D. Now since |F (t)| ≤ f for every time t
in r, |B \ F (t)| ≥ n − f . Therefore, by Lemma 1, no write
operation returns in r.

We have shown that Ad can prevent completion of write
operations in algorithms that store ` bits in less than f + 1
base objects. However, this does not directly imply a storage
bound, since Ad is not fair. In the next lemma we close this
gap by showing a fair run in which lock-freedom must be
satisfied , i.e., operations invoked by correct clients must
eventually complete, in order to blow up the storage. We
show that for every algorithm, we can build a run where
at some point the algorithm either stores ` bits in each of
f + 1 base objects (namely, ∃t : |F (t)| > f), or there are c
concurrent operations each of which adds at least D− `+ 1
bits to the storage cost (i.e., |C+(t)| = c).

Lemma 3. There is a run r of A and a time t in r when
|C+(t)| = c or |F (t)| > f .

Proof. Assume by way of contradiction that there is no such
run of algorithm A. We first build a run r of A with c clients
that concurrently write different values, in which the envi-
ronment behaves like adversary Ad. By the contradiction
assumption, |C+(t)| < c and |F (t)| ≤ f for all t in r. We
start with the invocation of c concurrent write operations,
and allow the run to proceed indefinitely according to Ad.
We say that a client c, which performs write operation w, is
stuck in r if there is a time t in r s.t. for all t′ ≥ t, w ∈ C+(t′)
(and so no RMWs triggered by c take effect after time t).
By Observation 2 and the assumption that |F (t)| ≤ f for
all t, there is a time t1 in r s.t. for every time t2 ≥ t1,
F (t1) = F (t2).

Now we build a run r′ that is identical to r but every base
object bo ∈ F (t1) fails at time t1 (|F (t1)| ≤ f), and every



stuck client fails after its last RMW takes effect. Since by
Ad, RMWs do not take effect on base objects in F (t1) after
time t1, runs r and r′ are indistinguishable to all correct
clients and base objects. Now notice that by Ad’s behavior,
each correct client in r′ gets infinitely many opportunities to
trigger RMWs. In addition, since (1) for every correct client
ci in r′ there are infinitely many times t when ci ∈ C−(t), (2)
Ad picks responses from base objects not in F (t) in the order
they are triggered, and (3) there are no correct base objects
in F (t′) for all t′ > t1, every RMW triggered by a correct
client on a correct base object has a matching response in
r′. Therefore, run r′ is fair.

By the contradiction assumption |C+(t)| < c for all t in
r. Therefore, there is at least one client that is not stuck in
r, and thus, there is at least one client that is correct in r′.
Hence, by lock-freedom, some client eventually completes its
write operation in r′. Now since r and r′ are indistinguish-
able to all clients that are correct in both, the same is true
in r. However, by Corollary 1, no write operation completes
in r. A contradiction.

So far we have shown that every algorithm has a run where
at some point either ` bits are stored in f + 1 base objects,
or there are c concurrent operations each of which adds at
least D − ` + 1 bits to the storage cost. We now combine
this result with Observation 1 to conclude our lower bound:

Proof (Theorem 1). Let ` = D/2. By Lemma 3, there is a
run r of A and a time t in r when |C+(t)| = c or |F (t)| >
f . If |F (t)| > f , then the storage cost at time t in r is
(f + 1)` = (f + 1)D/2 = Ω(fD). Otherwise, |C+(t)| = c,
and so by Observation 1, the storage cost at time t in r is
at least c(D − `) = cD/2 = Ω(cD). The theorem follows.

By picking ` = D, we get a second conclusion from Lemma 3
and Observation 1. The following corollary proves that any
coding scheme short of full replication must exhibit storage
growth linear in the concurrency.

Corollary 2. The storage cost of any algorithm that uses a
black-box coding scheme to simulate a regular lock-free reg-
ister, and does not store D bits (enough to represent a full
replica) in f+1 base objects, grows linearly with the concur-
rency.

6. ADAPTIVE REGULAR REGISTER
We present a storage algorithm that combines full repli-

cation with erasure coding in order to achieve the advan-
tages of both. A k-of-n erasure code takes a value from
V and produces a set S of n blocks from E s.t. the value
can be restored from any subset of S that contains no less
than k different blocks. We assume that the size of each
block is D/k. OracleE and OracleD are encapsulated by
two functions encode and decode, respectively: encode gets
a value v ∈ V and returns a set of n ordered elements
W = {〈e1, 1〉, . . . , 〈en, n〉}, where e1, . . . , en ∈ E , and decode
gets a set W ′ ⊂ E × N and returns v′ ∈ V s.t. if |W ′| ≥ k
and W ′ ⊆ W , then v = v′. We use k = n − 2f . Note that
when k = 1, we get full replication.

The main idea behind our algorithm is to have base ob-
jects store blocks from at most k different writes, and then
turn to store full replicas. Our algorithm satisfies strong

regularity and FW-termination, which is a stronger liveness
property than lock-freedom (see Appendix A). In the tech-
nical report [17], we prove the following:

Theorem 2. There is an FW-terminating algorithm that
simulates a regular register, whose storage cost is min((c+
1)(2f + k)D/k, (2f + k)2D) bits. Moreover, in a run with
a finite number of writes, if all the writers are correct, the
storage is eventually reduced to (2f + k)D/k bits.

Notice that k is a parameter of the algorithm, and if we pick
k = f , then asymptotically the storage cost of our algorithm
is O(min(cD, fD)) = O(min(c, f) ·D).

The algorithm’s pseudocode appears in Algorithms 1-3.
The algorithm uses a set of n shared base objects bo1, . . . , bon
each of which holds three fields Vp, Vf , and storedTS.

Algorithm 1 Definitions.

1: T imeStamps = N × Π, with selectors num and c, ordered
lexicographically.

2: Pieces = (E × N)
3: Chunks = Pieces× T imeStamps, with selectors val, ts
4: encode : V → 2E×{1,2,...,n}, decode : 2E×{1,2,...,n} → V s.t.
∀v ∈ V, encode(v) = {〈∗, 1〉, . . . , 〈∗, n〉}∧ ∀W ∈ 2E×N, if
W ⊆ encode(v) ∧ |W | ≥ k, then decode(W ) = v

5: base objects:
6: ∀i ∈ {1, . . . , n}, boi = 〈storedTS, Vp, Vf 〉 s.t.

Vf , Vp ⊂ Chunks, and storedTS ∈ TimeStamps,
initially 〈〈0, 0〉, {〈〈0, 0〉, 〈v0i , i〉〉}, {}〉.

The Vp field holds a set of timestamped code blocks so that
the ith block of a value can be stored in the Vp field of
object boi. The Vf field stores a timestamped replica of a
single value, (represented as a set of k code blocks). And
storedTS holds a timestamp, as explained below.

Write operation and storage efficiency.
The write operation (lines 3–14) consists of 3 sequen-

tially executed rounds: read timestamp, update, and garbage
collection; and, the read consists of one or more sequentially
executed read rounds. At each round, the client invokes
RMWs on all base objects in parallel, and awaits responses
from at least n − f base objects. The read rounds of both
write and read rely on the readValue routine (lines 21–28)
to collect the contents of the Vp and Vf , fields from n − f
base objects, as well as to determine the highest storedTS
known to these objects. The implementations of the update
and garbage collection rounds are given by the update (lines
29–36) and GC (lines 37–42) routines, respectively.

The write implementation starts by encoding v into k code
blocks (line 4) and invoking the read round where the client
uses the combined contents of the Vp, Vf and storedTS fields
returned by readValue to determine the timestamp ts to be
stored alongside v’s code blocks on the base object; ts is
set to be higher than all returned timestamps thus ensuring
that the order of the timestamps associated with the stored
values is compatible with the order of their corresponding
writes, (which is essential for regularity).

The client then proceeds to the update round where it at-
tempts to store the ith code block 〈e, i〉 of v in boi.Vp if the
size of boi.Vp is less than k (lines 33), or its full replica in
boi.Vf if ts is higher than the timestamp associated with the



value currently stored in boi.Vf (line 35). Storing 〈e, i〉 in
boi.Vp coincides with an attempt to reduce its size by remov-
ing stale code blocks of values whose timestamps are smaller
than storedTS (line 33). This guarantees that the size of
Vp never exceeds the number of concurrent writes, which is
a key for achieving our adaptive storage bound. Lastly, the
client updates boi.storedTS so as its new value is at least
as high as the one returned by the readValue routine. This
allows the timestamp associated with the latest complete
update to propagate to the base object being written, in
order to prevent future writes of old blocks into this base
object.

In the write’s garbage collection round, the client attempts
to further reduce the storage usage by (1) removing all code
blocks associated with timestamps lower than ts from both
boi.Vp and boi.Vf (lines 38–39), and (2) replacing a full
replica (if it exists) of its written value v in boi.Vf with
its ith code block 〈e, i〉 (line 41). It is safe to remove the full
replica and values with older timestamps at this point, since
once the update round has completed, it is ensured that the
written value or a newer written value is restoreable from
any n − f base objects. This mechanism ensures that all
code blocks except the ones comprising the value written
with the highest timestamp are eventually removed from all
objects’ Vp and Vf sets, which reduces the storage to a min-
imum in runs with finitely many writes, which all complete.
The garbage collection round also updates the boi.storedTS
field to ensure its value is at least as high as ts.

Algorithm 2 regular register emulation. Algorithm for
client cj .

1: local variables:
2: storedTS, ts ∈ T imeStamp, WriteSet ∈ Pieces

3: operation Write(v) do
4: WriteSet← encode(v)

. round 1: read timestamps
5: 〈storedTS, ReadSet〉 ← readValue()
6: tmp← max(storedTS.num,

max{tmp′ | 〈〈tmp′, ∗〉, ∗〉 ∈ ReadSet})
7: ts← 〈n + 1, j〉

. round 2: update
8: || for i = 1 to n
9: update(boi,WriteSet, ts, storedTS, i)

10: wait for n− f responses
. round 3: garbage collect

11: || for i = 1 to n
12: GC(boi,WriteSet, ts, i)
13: wait for n− f responses
14: return “ok”

15: operation Read() do
16: 〈storedTS, ReadSet〉 ← readValue()
17: while @ts ≥ storedTS s.t.

|{〈ts, v〉 | 〈ts, v〉 ∈ ReadSet}| ≥ k do
18: 〈storedTS, ReadSet〉 ← readValue()
19: ts′ ← max

ts≥storedTS
(|{〈ts, v〉 | 〈ts, v〉 ∈ ReadSet}| ≥ k)

20: return decode({v | 〈ts′, v〉 ∈ ReadSet})

Key Invariant and read operation.
The write implementation described above guarantees

the following key invariant: at all times, a value written by
either the latest complete write or a newer write is available
from every set consisting of at least n−f base objects (either

in the form of k code blocks in the objects’ Vp fields, or in full
from one of their Vf fields). Therefore, a read will always
be able to reconstruct the latest completely written or a
newer value provided it can successfully retrieve k matching
blocks of this value. However, a read round may sample
different base objects at different times (that is, it does not
necessarily obtain an atomic snapshot of the base objects),
and the number of blocks stored in Vp is bounded. Thus, the
read may be unable to see k matching blocks of any single
new value, as long as new values continue to be written
concurrently with the read.

Nevertheless, for FW-Termination, the reads are only re-
quired to return in runs where a finite number of writes
are invoked. Our implementation of read (lines 15–20) pro-
ceeds by invoking consecutive rounds of RMWs on the base
objects via the readValue routine. After each round, the
reader examines the collection of returned values and times-
tamps to determine if any value has k code blocks and is
also associated with a timestamp that is at least as high as
storedTS (line 17). If any such value is found, the one as-
sociated with the highest timestamp is returned (line 20).
Otherwise, the reader proceeds to invoke another round of
base object accesses. Note that returning values associated
with older timestamps may violate regularity, since they
may have been written earlier than the write with times-
tamp storedTS, which in turn may have completed before
the read was invoked.

Algorithm 3 Functions used in regular register emulation.

21: procedure readV alue()
22: ReadSet← {}, T ← {}
23: || for i=1 to n
24: tmp← read(boi)
25: ReadSet← ReadSet ∪ tmp.Vf ∪ tmp.Vp

26: T ← T ∪ {tmp.storedTS}
27: wait for n− f responses
28: return 〈max(T ),ReadSet〉

29: update(bo,WriteSet, ts, storedTS, i) ,
30: if ts ≤ bo.storedTS
31: return
32: if |bo.Vp| < k

. write a piece and remove old pieces
33: bo.Vp ← bo.Vp \ {〈ts′, v〉 ∈ bo.Vp | ts′ < storedTS}

∪{〈ts, 〈e, i〉〉 | 〈e, i〉 ∈WriteSet}
34: else if bo.Vf = {} ∨ ∃ts′ < ts : 〈ts′, ∗〉 ∈ bo.Vf

. write a piece and remove old pieces
35: bo.Vf ← {〈ts, 〈e, j〉〉 | 〈e, j〉 ∈WriteSet

∧j ∈ {1, . . . , k}}
36: bo.storedTS← max(bo.storedTS, storedTS)

37: GC(bo,WriteSet, ts, i) ,
. keep only new pieces

38: bo.Vp ← {〈ts′, v〉 ∈ bo.Vp | ts′ ≥ ts}
39: bo.Vf ← {〈ts′, v〉 ∈ bo.Vf | ts′ ≥ ts}
40: if 〈ts, ∗〉 ∈ bo.Vf

. Vf holds a full replica of my write

. Vf keep only one piece of it
41: bo.Vf ← {〈ts, 〈e, i〉〉 | 〈e, i〉 ∈WriteSet}
42: bo.storedTS← max(bo.storedTS, ts)

7. DISCUSSION
We studied the inherent space requirements of reliable

storage in asynchronous distributed settings. We proved an
asymptotic bound of Ω(min(f, c) · D) for any storage al-



gorithm using a symmetric black-box coding scheme, which
produces code blocks of values independently of other values.
We then presented an algorithm that combines replication
and erasure codes, whose storage cost is O(min(f, c) ·D).

Our work leaves open questions for future work. First, it
is unclear whether the same lower bound still applies when
stored bits are allowed to depend on multiple concurrent
write values. The main requirement for extending our proof
to general coding is a model that correctly accounts for the
information stored in the base objects and clients when the
clients code jointly. Our black-box assumption rules out
such joint coding. Whereas in principle, [6] allows stored
information to depend on multiple input values, their as-
sumption that only one round of the protocol depends on the
written value essentially forces clients to “forget” the value
they used in such joint coding. For example, if the algorithm
stores v1 + v2 instead of either v1 or v2, it cannot repro-
duce the original values, rendering such joint coding useless.
Second, while asymptotically optimal, the constants in our
bound are not tight, and it could be interesting to close this
gap. Finally, we believe that our model and adversary defi-
nitions can yield additional lower bounds.
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APPENDIX
A. FORMAL DEFINITIONS

An algorithm defines the behavior of clients as determin-
istic state machines, where state transitions are associated
with actions such as RMW trigger/response. A configura-
tion is a mapping to states from system components, i.e.,
clients and base objects. An initial configuration is one
where all components are in their initial states.

A run of algorithm A is a (finite or infinite) alternating
sequence of configurations and actions, beginning with some
initial configuration, such that configuration transitions oc-
cur according to A. For a run r, trace(r) is the subsequence
of r consisting of all the operation invocation and returns in
r. We use the notion of time t during a run r to refer to
the configuration reached after the tth action in r. A run
fragment is a contiguous subsequence of a run starting and
ending with a configuration. We assume that runs are well-
formed, in that each client’s first action is an invocation, and
a client has at most one outstanding operation at any time.

We say that a base object or client is faulty in a run r if
it fails any time in r, and otherwise, it is correct. A run is



fair if (1) for every RMW triggered by a correct client on a
correct base object, there is eventually a matching response,
(2) every correct client gets infinitely many opportunities to
trigger RMWs.

Liveness There is a range of possible liveness condi-
tions, which need to be satisfied in fair runs. A wait-free
object is one that guarantees that every correct client’s op-
eration completes, regardless of the actions of other clients.
A lock-free object guarantees progress: if at some point in a
run there is an outstanding operation of a correct client,
then some operation eventually completes. An FW-
terminating [1] register is one that has wait-free write op-
erations, and in addition, if there are finitely many write
invocations in a run, then every read operation completes.

Safety In order to define regularity, we first introduce
some terminology: Operation opi precedes operation opj in
a run r, denoted opi ≺r opj , if opi’s return occurs before
opj ’s invoke in r. Operations opi and opj are concurrent in
a run r if neither one precedes the other. A run with no
concurrent operations is sequential. Two runs are equivalent
if every client performs the same sequence of operations in
both, where operations that are outstanding in one can ei-
ther be included in or excluded from the other. A lineariza-
tion of a run r is an equivalent sequential run that preservers
r’s operation precedence relation and the object’s sequential
specification. The sequential specification for a register is as
follows: A read returns the latest written value, or v0 if none

was written. A write w in a run r is relevant to a read rd
in r [16] if rd 6≺r w; rel-writes(r, rd) is the set of all writes
in r that are relevant to rd.

Following Lamport [14], we consider a hierarchy of safety
notions. Lamport [14] defines regular and safe single-writer
registers. Shao et al. [16] extend Lamport’s notion of regu-
larity to MWMR registers, and give four possible definitions.
Here we use two of them. The first is the weakest definition,
and we use it in our lower bound proof. The second, which
we use for our algorithm, is the strongest definition that
is satisfied by ABD [4] in case readers do not change the
storage (no write-back):

A MWMR register is weakly regular, (called MWRegWeak
in [16]), if for every run r and read rd that returns in r, there
exists a linearization of the subsequence of r consisting of rd
and the writes in r. A MWMR register is strongly regular,
(called MWRegWO in [16]), if it satisfies weak regularity
and the following condition: For all reads rd1 and rd2 that
return in r, for all writes w1 and w2 in rel-writes(r, rd1) ∩
rel-writes(r, rd2), it holds that w1 ≺Lrd1

w2 if and only if
w1 ≺Lrd2

w2.
We extend the safe register definition and say that a MWMR

register is strongly safe if there exists a linearization σw of
the subsequence of r consisting of the write operations in
r, and for every read operation rd that has no concurrent
writes in r, it is possible to add rd at some point in σw so as
to obtain a linearization of the subsequence of r consisting


