
1

NAND Flash Architectures Reducing Write
Amplification Through Multi-Write Codes

Saher Odeh and Yuval Cassuto
Technion EE Department

{sahero@tx,ycassuto@ee}.technion.ac.il

Abstract—Multi-write codes hold great promise to reduce
write amplification in flash-based storage devices. In this work
we propose two novel mapping architectures that show clear
advantage over known schemes using multi-write codes, and over
schemes not using such codes. We demonstrate the advantage
of the proposed architectures by evaluating them with industry-
accepted benchmark traces. The results show write amplification
savings of double-digit percentages, for as low as 10% over-
provisioning. In addition to showing the superiority of the new
architectures on real-world workloads, the paper includes a study
of the write-amplification performance on synthetically-generated
workloads with time locality. In addition, some analytical insight
is provided to assist the deployment of the architectures in real
storage devices with varying device parameters.

I. INTRODUCTION

NAND flash memories have become the most attractive
option for solid-state drive (SSD) deployment, owing to their
superior performance over prior mass-storage technologies.
The main caveat of flash storage is the inability to write data
in-place, which requires frequent internal copying of data. This
leads to significant write amplification (WA), i.e., performing
many physical writes on average per user write. High write
amplification causes performance degradation, reduced data
reliability, and accelerated wear. Hence reducing write am-
plification is a primary objective for the solid-state storage
industry. A common remedy to high write amplification is
to increase the storage over-provisioning, which does reduce
write amplification but at the same time adds to the cost per
GB of the device.

A promising approach to mitigating write amplification is
to use multi-write codes. Multi-write codes allow to re-write
a data page in-place t times without erase operations, thereby
consuming less physical storage space for multiple copies of
the same logical-page address. The promise of this approach
stems from the high availability of effective multi-write codes,
which constantly improve as a result of very active research by
the information theory community. In particular, a code that
supports t writes requires a storage expansion factor r, where
r is much smaller than t. In addition to attractive storage
efficiency, multi-write codes also improve in encoding and
decoding complexities, which makes it feasible to deploy them
in SSD controllers.

This work is not the first to identify the promise of multi-
write codes toward reducing the write amplification. A study
by Jagmohan et. al [8] developed an SSD architecture that

978-1-4799-5671-5/14/$31.00 c©2014 IEEE

reduces write amplification with a combination of multi-write
coding and compression. A more recent work by Luojie
et. al [1] studied the effect of multi-write codes on write
amplification through analytic and experimental treatment. The
unique novelty of this present paper is in offering simple-to-
implement mapping architectures that show significant write-
amplification reduction on traces of industry-accepted bench-
marks, with no assumption on the compressibility of the data,
and at very low amounts of over-provisioned storage. This is
in contrast to previously proposed mapping architectures that
offer multi-write benefits only with over-provisioning amounts
that are much higher than a typical storage product can afford
[1].

The key idea driving the proposed mapping architectures
to effectiveness is in fact quite simple. It starts with the
observation that due to the r > 1 expansion factor required
for in-place re-writes, multi-write capabilities should only
be endowed where the potential benefits are high, i.e., to
pages with high likelihood to be re-written in the near future.
Based on that idea we present two mapping architectures that
use t = 2 multi-write codes for part of the stored data,
which are able to cut the write amplification by double-
digit percentages for as low as 10% over-provisioning (or
higher). The performance of the architectures is extensively
studied using industry-accepted benchmarks. This study shows
conclusive advantage for the new architectures over known
schemes using multi-write codes, and over schemes not using
such codes. Because the expansion factors of multi-write
codes depends on the cell-level technology, i.e., the number
of levels a cell can be programmed to, our study examines
the write amplification for all such technologies in common
deployment: SLC, MLC, and TLC. An additional study of
the write-amplification performance using synthetic workloads
explores how the multi-write benefits of the new architectures
grow with the time-locality of the workload.

The results of the paper are organized as follows. In Section
II we discuss previous work on write amplification, multi-
write codes, and their combination. In Section III, after some
background on write amplification in flash storage and on
multi-write codes, we formally state the problem of combining
the two in a mapping architecture. The new mapping archi-
tectures are detailed in Section IV. Then in Section V the
write-amplification performance of the new architectures is
studied in comparison with known architectures, both using
traces of industry-accepted benchmarks and by evaluation on
synthetically generated workloads. Section VI gives some ana-

2

lytical insights on the inner workings of the new architectures,
which can assist their practical deployment with the correct
parameters. Finally, we conclude the paper in Section VII and
VIII with forward-looking ideas toward successful adoption of
our architectures by real-world SSDs.

II. PREVIOUS WORK

The severeness and importance of the write amplification
problem has triggered a large body of work aiming at mitigat-
ing and analyzing it, e.g., [2], [3], [4], [5]. All of these works
(and others) explore and improve the tradeoff between the
write amplification and the storage over-provisioning, hence
offering device architectures with maximal performance and
lifetime per unit of cost. Several of these works, such as
[2], exploit the access non-uniformity in the write workload
partitioning the storage space into hot and cold logical pages.
The outcome from this line of work is that write amplification
in NAND flash is fairly well understood, and a significant set
of algorithmic and analytical tools is available for deployment
in SSD products.

It has also been recognized in prior work that multi-write
codes (also known as re-write codes, WOM codes, and similar
names) offer the most promising tool to improve the write
amplification beyond the current techniques. That is because
the ability to re-write data in place can reduce the number of
invalid pages and the resulting amount of garbage-collection
copying. This high promise of re-write codes has motivated a
number of studies that explore their benefits. In [8], a NAND
device architecture is proposed with multi-write codes, where
the overhead cost of the code redundancy is offset by com-
pression. In [1], the write-amplification is studied analytically
and experimentally when capacity-achieving WOM codes are
employed in the system. This study shows that as the multi-
level order of the NAND increases (i.e., from SLC to MLC
to TLC), the write amplification can be reduced more for
a given amount of storage over-provisioning. This is due to
the fact that WOM codes become more efficient as the code
alphabet size increases. The quantitative outcome from [1] is
that using multi-write codes may improve write amplification,
but only when the amount of over-provisioning is as high as
75% (for SLC), 55% (for MLC), or 40% (for TLC). With
lower over-provisioning, the redundancy of the WOM codes
reduces the effective physical storage space so much that their
benefits succumb to the resulting high frequency of garbage
collections.

Our work presented in the sequel solves the above shortcom-
ing of multi-write codes by endowing multi-write capabilities
selectively to only a part of the writes, such that the utility vs.
cost of the coding is maximized. Similarly to previous works
on write-amplification reduction (without multi-writes), the
time-locality of the workload and the access non-uniformity
will play an important role within our proposed architectures
and their performance.

III. BACKGROUND AND PROBLEM STATEMENT

The main contribution of this paper is a scheme to reduce
write amplification using multi-write codes. In this section we

will first give some background on each of write amplification
and multi-write codes separately. Then we will state the
problem of combining the two in the flash mapping layer.

A. Write Amplification in NAND Flash

A NAND flash memory device is composed of write units
called pages and erase units called blocks. Each block consists
of Np pages. The usable storage capacity of the device is U ·Np

pages, where U denotes the number of logical blocks. A well-
known limitation of the NAND flash technology is that erasure
, i.e., charge removal from cells, is possible only at the block
granularity, and hence it is in general not possible to re-write a
data page in-place. This limitation has significant ramifications
on the performance of flash storage devices and their lifetimes,
as block-erasure operations are costly in terms of time and cell
wear. Therefore, NAND flash storage devices employ elaborate
mapping layers that optimize the physical placement of data
pages to minimize internal copying and block erasures.

The main tool used by the flash mapping layer for reducing
write costs is over-provisioned storage blocks not allocated for
logical pages. The total number of physical blocks (allocated
plus over-provisioned) in the device is denoted by T . The over-
provisioning factor ρ is defined as ρ = T−U

U . Note that ρ ≥ 0
because by definition T ≥ U . Using the T physical blocks, the
mapping layer implements an out-of-place write mechanism as
follows. Upon a write request of a logical page from the user
(the host), the previous version of the page (if exists) is marked
invalid in the meta-data, and the page is written to the frontier
of the device, which is a block that is currently allocated for
incoming writes. When the frontier block becomes full and
there are few available blocks left, the mapping layer invokes
a garbage collection (GC) operation, to clean up used blocks
by copying their valid pages to the frontier and then erasing
them. The number of free blocks below which GC is invoked
is called the watermark. The natural and accepted criterion to
choose a block for clean up is min-valids: choosing the block
with the smallest number of valid pages. This criterion, also
called the greedy GC policy, was widely used and studied in
the literature [2], [3], [5], [19]. The resulting efficiency of the
mapping layer is quantitatively evaluated using the measure of
write amplification (WA), which is defined as the ratio between
the number of physical writes performed by the device and the
number of logical writes requested by the user

WA =
PhysicalWrites

LogicalWrites
. (1)

Since every logical write needs to be written to the media, it
is clear that WA ≥ 1. It is also clear that WA values strictly
greater than 1 imply inefficiency in access-time and wear,
and hence minimizing the write amplification is the premier
objective of the NAND flash mapping layer.

B. Multi-Write Codes

The asymmetry between program and erase in flash storage
has motivated the study of multi-write codes as a potential tool
for improving the flash access efficiency. Multi-write codes
allow unrestricted in-place updates with no need to erase cells

3

to lower charge levels. A typical way to specify a multi-write
code is by the integer number of user writes t it guarantees
before an erase operation is required. Without multi-write
coding, the device supports only t = 1 write before erase,
and multi-write codes give t values larger than 1. The larger
t gets, the more in-place writes the device supports. Thus
the added in-place writing capabilities can improve the write
efficiency over the standard flash write interface. The main
caveat of multi-write codes as a remedy to write-amplification
is that growing t comes at the cost of adding overhead for
the code redundancy. Because of that, we have to consider the
multi-write overhead requirement when we evaluate the write
amplification in comparison with a mapping layer that does
not use multi-write codes. For this purpose, we briefly discuss
the relevant theory of multi-write coding, first proposed by
Rivest and Shamir under the framework of write-once memory
(WOM) coding [6].

1) Multi-write / WOM theory: The starting point of the
theory of multi-write codes is the observation that t writes
can be trivially supported using a factor t larger storage space,
by writing each generation of the data in a distinct physical
location. Starting from there, Rivest and Shamir have proposed
the write-once memory (WOM) coding model [6], including
a simple binary code that gives t = 2 writes using only factor
r = 1.5 larger storage space than a single write. Since then, a
large number of multi-write code constructions were reported,
with smaller overheads and richer parameters than this initial
example. A sample from these contributions can be found in
[6], [9], [10], [11], [12], [13], [14], [15], [16], [17]. The large
body of available constructions offers a comprehensive menu
of codes to choose from, varying in the parameters that they
support and the encoding and decoding complexities that they
require. To aid the deployment of multi-write codes in a real
storage device, we give a brief survey of the available code
families and types. In the WOM model we use the following
parameters to characterize the multi-write capabilities. q is
the alphabet size of the code, which equals the number of
levels supported by the technology. Note that for q > 2 levels
the term write-once memory (WOM) is a misnomer because
the physical cells are not limited to be written only once
as in the original binary (q = 2) case. n is the number of
physical cells used in a single code block, which determines
the minimal unit of physical read and write that the code can
support (longer than n accesses are possible by encoding and
decoding multiple code blocks in parallel). The parameter t
is the number of write generations supported by the code.
Accompanying t is the vector parameter (M1, . . . ,Mt), which
denotes the number of possible values the information input
can take in each of the t write generations. Equivalently,
we may use the alternative vector parameter (k1, . . . , kt) to
designate the number of input bits the encoder takes in each
write generation. Hence ki = log2Mi, but note that in many
known constructions the kis are not necessarily integers. In
a practical realization of a WOM code we will only use
codes with integer numbers of input bits ki, and in addition
we will restrict ourselves to codes with a fixed input size
k1 = k2 = · · · = kt = k. That is because the access between
the storage device and its hosting system is specified as an

interface with a fixed number of bits across the entire sequence
of write generations. Therefore, the most natural WOM codes
for implementation are characterized by the four parameters
(q, n, k, t). Usually WOM codes are constructed as families
of codes that fix all except one of the parameters, leaving one
parameter free to be choosen from a broad set of options to
fit the exact implementation setup. The most common type of
family proposed in the information theory literature fixes the
alphabet size q and the number of writes t, while varying
the block size n with k growing in proportion to n [22],
[24], [23]. Another useful type of family fixes the input/output
parameters n and k, while increasing the number of writes t
as the number of levels q grows [9], [11]. The advantage of
this type is that it allows dynamic tradeoffs between storage
efficiency and multi-write capability without changing the
data layout in the device. An important distinction between
WOM constructions is whether they guarantee the multi-
write capability t, or only provide it with high probability
assuming a uniform distribution on the input bits and long
code blocks (as the codes in [12]). If one wishes to deploy
codes with non-guaranteed multi-write capability, then there
is need to implement a feedback and recovery mechanism in
case the write fails. For codes with multi-write guarantees, a
write counter is sufficient. After choosing a particular WOM
code with desired parameters, it is implemented by adding an
encoder function to the write path and a decoder function to
the read path. In WOM terminology the encoder function is
called the update function. The decoder function is simply
a map from the current physical levels of the n cells to
the k information bits, denoted by ψ : {0, . . . , q − 1}n →
{0, . . . , 2k − 1}. The update function specifies how the n cell
levels need to change as a function of the current cell levels
and the new k information bits at the input, and is denoted by
µ : {0, . . . , q − 1}n × {0, . . . , 2k − 1} → {0, . . . , q − 1}n.

For the sake of evaluating our schemes in this paper we
do not need to discuss specific multi-write constructions, but
only need a bound or estimate on the redundancy overhead
that they will require. To remain agnostic to the particular
code chosen for deployment, we will use known information
theoretic bounds on the redundancy given the code parameters.
In many cases these bounds are achievable by known code
constructions [17]. While the constructions that achieve capac-
ity are not necessarily practical for implementation, in many
cases there are known constructions with low implementation
complexity that are quite close to optimal.
Let a t-write multi-write code be implemented over cells with
q levels. q reflects the cell-level technology of the device,
i.e., q = 2 for single-level cell (SLC), q = 4 for multi-level
cell (MLC), and q = 8 for triple-level cell (TLC). Then the
expansion factor r of the code, defined as the ratio between the
multi-write codeword size n and the data input size (in units
of q-ary symbols, == k/ log2 q), is known to be bounded by

r ≥ t · log2 q

log2

(
q + t− 1

t

) . (2)

In the sequel when we plot write amplification results of our
multi-write architectures we assume for simplicity that there

4

exist codes that meet the bound (2) with equality. We later
validate that our architectures offer significant benefits even
with known practical codes that do not necessarily meet this
bound.

C. Problem Statement

Now that we have reviewed the write-amplification problem
and the multi-write coding tool, we can formally state the
problem of combining the two. Given a q-level flash storage
media that supports physical writes that only increment the
cell levels, implement an architecture, i.e., a combination of
data structures and algorithms, that maps user writes of logical
pages to physical writes, where the mapping may include
encoding of a multi-write code at write time, and decoding at
read time. The primary objective of this mapping architecture
is to minimize the write amplification.

IV. PROPOSED MAPPING ARCHITECTURES

The principal fact underlying this paper is that when using
multi-write codes, many user writes are fulfilled as in-place
updates, thus reducing the rate at which free pages are
consumed at the write frontier. As a result, the frequency
of garbage collection operations is reduced, and this lowers
the write amplification. Keeping in mind the multi-write
redundancy overhead, we need to make sure that the benefit
of in-place writes is not canceled by the reduction in the
storage space available for writes to the frontier. In fact, we
find that consistent reduction in write amplification is only
possible in conjunction with a mapping architecture that makes
clever (and parsimonious) use of multi-write capabilities. Such
mapping architectures are detailed in this section, and analyzed
in the subsequent sections.

A. Partial Multi-Write Architectures

The main idea of our proposed architectures is that multi-
write capabilities are only used for writes with a higher
likelihood of benefiting from them. For other writes, we do
not use multi-write capabilities, and thus save the overhead
that these writes would have consumed. If we succeed in
allocating multi-write capabilities to the “correct” writes, then
we enjoy both multi-write benefits and low total overhead. As
it turns out, a simple and robust multi-write allocation policy
delivers excellent write-amplification performance. This policy
is specified as follows:

1) Allocate pages with t = 2 multi-write to all writes
coming from the user.

2) Allocate pages with t = 1 (no multi-write) to all internal
writes performed during garbage collection.

First notice that the allocation policy we use does not differen-
tiate between writes based on their logical-page address, access
history, hot/cold classification, or any other discriminatory cri-
terion. This uniformity saves the need of maintaining complex
access-history databases, or implementing involved access-
prediction algorithms. Only the type of write – user or internal
– determines its multi-write capabilities. The rationale behind
this policy is that due to time-locality in the workload, logical

�����

���	
���������

�����

�����������

��������������

��������������

��

��!

Figure 1. Double-Fronted architecture employes two frontiers, the first is
for accommodating GC write-backs (dark “cold” pages using the standard no
multi-write code - t = 1), whereas the second is for accommodating user
write requests (light “hot” pages using a multi-write code - t = 2. The t = 2
blocks enter a queue of size hotBlocksCount and are only available for GC
after exiting.

pages written by the user are more likely to be re-written in the
near future, while logical pages copied as internal writes do
not have a similar likelihood. In case a logical page is indeed
re-written close in time to its initial write to the frontier (before
its block is erased), an in-place update is performed, and free
storage space is saved.

We propose two architectures employing the above partial
multi-write policy. The first is called the double-fronted ar-
chitecture, owing its name to the two separate write frontiers
it employs: one for user writes (with t = 2 multi-write) and
one for internal writes (with t = 1). The second is called the
selective architecture, in which a single frontier accommodates
both t = 2 user writes and t = 1 internal writes within the
same block.

B. Double-Fronted Architecture

The double-fronted architecture uses two frontiers, one to
write logical pages incoming from the user with t = 2,
and another with t = 1 to store logical pages that need
to be rewritten to free up a block during a GC operation.
The blocks storing t = 2 writes are entered to a queue of
size hotBlocksCount, where the frontier is the tail of the
queue. Blocks in the queue are not considered for clean-up in
GC events. Each time the queue exceeds its allocated size,
the head block is popped from the queue back to general
pool of blocks, where it becomes a candidate for clean-up
in GC events together with all the blocks storing t = 1 writes
(selection is done according to the usual min-valids criterion).
The number of pages that can be written to a block serving
t = 1 writes is denoted Np. Due to code redundancy, the
same physical block used for storing t = 2 writes can store
only bNp/rc pages. See Figure 1 for a pictorial description of
the double-fronted architecture. The light shading represents
pages that are likely to be re-written soon due to time locality.
The dark shading represents pages with no special likelihood
to be rewritten. In each block the white part represents invalid
pages.

5

����

����	
��������

�����������

��������������

Figure 2. Selective architecture employs a single frontier to which both user
writes (light “hot” pages using a multi-write code - t = 2) as well as GC
write-backs (dark “cold” pages using the standard no multi-write code - t = 1)
are performed.

C. Selective Multi-Write Architecture
The selective multi-write scheme uses a single frontier to

which user writes are written with t = 2, and internal GC
writes are written with t = 1. When a block is set as the
frontier, the first writes into it are internal GC writes from the
block being cleaned-up. Then the remainder of the block is
used for t = 2 writes from the user. This continues until the
block is full and then another frontier is chosen. The main
advantage of the selective architecture is its simplicity, in that
there is no need to manage two separate frontiers and to take
care to level the wear between t = 2 and t = 1 blocks. The
number of pages that fit in a physical block may vary between
Np and Np/r, depending on the fractions of t = 2 and t = 1
writes. See Figure 2 for a pictorial description of the selective
architecture.

V. RESULTS

To evaluate the write amplification of the proposed mapping
architectures, we implemented a C++ code for a discrete-event
simulation of the double-fronted and selective architectures.
To compare with known schemes, we also implemented a
standard mapping architecture with no multi-write capabilities
(see for example [2], [3], [4], [5]), and a full t = 2 multi-
write architecture as reported in [1]. In the subsequent write-
amplification result plots we assign tag names to the above
four architectures: D_Front for double-fronted, Selective for
selective, REG_RW1 for no multi-write, and REG_RW2 for
full multi-write. The simulator can be invoked with different
device settings such as the device logical and physical ca-
pacities, the cell-level technology, the mapping architecture,
workload source, and others. We discuss these parameters in
the next sub-section. In the first part of our evaluation in Sec-
tion V-B, we use traces of industry-accepted benchmarks taken
from the Microsoft Research (MSR) Cambridge repository
recommended by the storage networking industry association
(SNIA) [18]. In the second part of our evaluation in Section
V-C, we use synthetic workloads generated from a simple
access model that considers the time-locality of the user write
requests. In both workload types our proposed architectures
show clear advantage over the previously known ones.

A. Simulation Settings and Ranges
Using two server machines each with four Quad-Core AMD

Opteron(tm) Processors 8356 and 128GB memory, we ran

32 simulation jobs in parallel, each with different device
parameters and write workloads. Running this many jobs in
parallel was necessary to obtain accurate results for a large
number of setups in a reasonable time. We now detail the
ranges of the parameters we used.

1) The Workload Length L: The workload length L is the
number of write requests issued to the device during the test.
For trace workloads L is simply the trace length; for synthetic
workloads we fixed it to 15M.

2) Page Size: The page size was fixed to 4KB
3) Pages per Block Np: Np is the number of pages that can

fit in one block. We used Np = 128 throughout the evaluation.
4) Logical and Physical Block Counts U ,T : The number

U of logical blocks in the device sets the external capacity of
the device to UNp ·4KB. For the benchmark trace workloads
the device size was chosen in a way that on average a block
will be cycled about 100 times during a single run through
the trace file. For tests with synthetic workloads we used U =
211, which means that for the aforementioned values of Np

and page size, the device can store ~256K pages, or 1GB. A
much larger device size would have required very long test
runs to overcome warm-up effects. The number T of physical
blocks in the device sets the internal capacity of the device to
TNp · 4KB. This storage space is used both to store logical
pages and as a resource for the different architectures to reduce
the write amplification. Given U and T the over-provisioning
factor of the device is set as ρ = T−U

U .
5) The Mapping Architecture: This parameter sets the de-

vice architecture to one of the four aforementioned architec-
tures: 1) D_Front, 2) Selective, 3) REG_RW1, 4) REG_RW2.

6) The Watermark: Sets the minimal number of empty
blocks for the frontier allocation. GC is invoked when the
number of empty blocks drops below the watermark. We used
watermark=2.

7) (RW, RW expansion factor): Sets the t and r parame-
ters, respectively, to describe the number of writes and the
expansion factor of the used multi-write code. We fixed t = 2
throughout the evaluation, reflecting a modest multi-write
capability of one extra write beyond the standard case. The
resulting expansion factor of the t = 2 code was calculated
from (2) for three different cell technologies: q = 2 (SLC),
q = 4 (MLC), and q = 8 (TLC). We also include in the
sequel results where the expansion factor is set based on a
very simple to implement multi-write code given in [10].

8) hotBlocksCount: This parameter applies only to the
double-fronted architecture, and determines the size of the
t = 2 block pool as described in Section IV-B. It is chosen so
that the t = 2 block pool will be large enough that many
logical-page re-writes will find their previous versions still
in the t = 2 pool to reap the multi-write benefits. A more
detailed discussion on how to choose this parameter is deferred
to SectionVI-C.

B. Real-Benchmark Results

We now plot the write-amplification results obtained by the
four different architectures on the MSR traces. Each trace
represents the real storage access recorded on a server hosting

6

a different application. Each trace file is tagged with a tag
name that describes the application that generated it. We
aggregated all the files with the same tag name into one large
file, which we then used as input to our simulator. We repeated
this process for all tag names.

We first examine the results for the PRXY trace run on
a q = 8 (TLC) device, shown in Figure 3. The x-axis
of the plot is ρ, the percentage of over-provisioned storage
beyond the device logical capacity. We emphasize that the
storage expansion caused by the multi-write codes is counted
toward this over-provisioning allocation. The y-axis is the
resulting write amplification. Figure 3 shows that the double-
fronted architecture gives the best (lowest) write-amplification
for all over-provisioning amounts. For example, for 10%
over-provisioning double-front reduces the write amplification
from 3.45 to 1.9. The second best throughout this range
is the selective architecture. Note that the full multi-write
(REG_RW2) architecture fails to improve write amplification
over the standard mapping architecture (REG_RW1) in that
range. We now show in Figure 4 the results for the same
trace, but now over a q = 2 (SLC) device. For lower q values
the efficiency of the multi-write code decreases according to
(2), so we may expect worse performance for the schemes
using t = 2 writes. While this is indeed the case for the full
multi-write architecture (REG_RW2), we see that this hardly
affects the performance of the double-fronted architecture.
This can be attributed to the fact that only part of the writes use
t = 2, and thus the sensitivity to the multi-write efficiency is
lower. Similarly to the results obtained for PRXY, all other
traces showed significant advantage for the double-fronted
architecture, and a slightly lower advantage for the selective
architecture. The only exceptions to that are the traces SRC1
and SRC2, where no such decisive improvement was observed
(some q and ρ values show improvement and some do not).

Next we show another sample of the trace results. In Figure
5 we plot the results for the WEB trace run on a q = 4
(MLC) device. Here we also include a plot of the percentage
of the physical writes saved by the D_Front and Selective
architectures compared to the no multi-write (REG_RW1)
architecture. This gives another measure of the efficiency
offered by the proposed architectures - more than 60% of
the excess internal writes are saved by D_Front throughout
the over-provisioning range, and between 20-30% are saved
by Selective. Finally, in Figure 6 we show the results for the
PRXY trace where the expansion factor of the code is taken
as r = 1.5, corresponding to a very simple to implement
known multi-write code. We see that even for this pessimistic
assumption on the expansion factor, D_Front offers significant
savings.

C. Synthetic-Workload Results

To gain a better insight on the performance of the pro-
posed architectures, we complement our experiments on trace
workloads with synthetically generated ones. Synthetic work-
loads allow us to evaluate the architectures’ performance as
a function of the time-locality of the workload. It is clear
that workloads with strong locality in time benefit the most

�

���

�

���

�

���

�

���

�

���

��� ��� ��� ��� ��� ��� ��� ��� ���

�
�

ρ

��������

�	
���� �	
���� �������� �������

Figure 3. Write-amplification as a function of over-provisioning for the PRXY
workload over a TLC (q = 8) device.

�

�

�

�

�

�

� �� ��� ��� ��� ��� ��� ��� ��� ���

�
�

ρ

��������

��	
��� ��	
��� ������ �
�����

Figure 4. Write-amplification as a function of over-provisioning for the PRXY
workload over a SLC (q = 2) device.

from the partial multi-write capabilities of double-fronted and
selective, as locality induces in-place updates of logical pages
while they are still in t = 2 storage. When there is weak
or no time locality, a re-write of a logical page may come
when the t = 2 physical page holding the previous write is
already erased and its block is returned to the general pool. Our
objective now is to quantify this dependence of performance
on time locality using synthetically generated workloads. We
clarify that no spatial locality is assumed throughout this study,
i.e., a write to a logical page does not make proximate (or any
other) logical pages more likely to be written.

1) The locality parameters p, h: We choose a simple model
to generate workloads with time locality. The parameter p
determines the probability of the drawn logical-page write to
be taken from a set of recently written logical addresses. With
probability p the logical address is chosen uniformly from this
set. With probability 1−p the write is selected uniformly from
the remaining logical addresses (not in this recent-write set).
Hence p = 0 represents the standard uniform access model
with no locality. As we grow p, the workload become more
local – with a higher probability to re-write a recently written
logical page. The second parameter of the model is h, the
size of the above set of recently written logical pages. The
size-h set is managed as a FIFO queue, i.e., any page selected

7

�

�

�

�

�

�

�

�

��� ��� ��� ��� ��� ��� ��� ��� ���

�
�

ρ

�������

	
��	� 	
��	� ��������� ���	���

��

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
�
�
�
�
��

	

�
�
�
��
�
�

�
�

ρ

��	�

�����
�
�����

��������� ���	���

Figure 5. Write-amplification as a function of over-provisioning for the WEB
workload over a MLC (q = 4) device. The lower plot shows the percentage of
excess internal writes that are saved by the D_Front and Selective architectures
over REG_RW1.

�

���

�

���

�

���

�

���

�

� �� ��� ��� ��� ��� ��� ��� ��� ���

�
�

ρ

��������	

�	
���� �������� �������

Figure 6. Write-amplification as a function of over-provisioning for the PRXY
workload and devices using a simple multi-write code with a “pessimistic”
expansion factor of 1.5.

for writing is entered at the tail, and popped at the head when
there are h other logical pages that were written more recently.
If a page existing in the queue is written, the page is popped
and reentered at the tail. See Figure 7 for a schematic of the
locality model.

2) Results: In the following we show results on synthetic
workloads with p varying between 0 and 1 in jumps of 0.05.
h is fixed to h = 2 · Np. The length of the generated
workloads was taken to be L = 15M writes. In Figure 8 we
show the write-amplification results for an over-provisioning

���������	

����

��	����

��	�������

����

��

� ��� ��� �

��	����	��	�������	

����

Figure 7. Schematic description of synthetic workloads with locality.

�

�

�

�

�

�

�

�

	

�
�

���������	
��
ρ���

������ ��������� �������

Figure 8. Synthetic workload with ρ = 10% and q = 8. Write amplification
is plotted as a function of the locality parameter p of the workload.

factor of ρ = 10% over a q = 8 (TLC) device. It can be
observed that when the locality parameter p is 0.1 or higher,
the D_Front and Selective architectures outperform the no
multi-write REG_RW1. As p grows larger, the improvement
becomes more significant, until p approaches 1, when all the
architectures approach the same write amplification value of 1
(The p→ 1 case is rather pathological and not very interesting,
since only a small number of logical pages are actually
written). The all multi-write REG_RW2 is not included in
the plot, since ρ = 10% is not sufficient to accommodate
the multi-write expansion factor throughout the storage space.
Another example shown in Figure 9 uses ρ = 20% over
a q = 4 (MLC) device. Here on the one hand the over-
provisioning is higher, but on the other hand the multi-write
efficiency is lower because of the smaller q. The sum effect of
the two changes in parameters shows an advantage for D_Front
and Selective over REG_RW1, where now a smaller p value
is required for them to improve write amplification.

VI. ANALYTICAL INSIGHTS

In this section we move from a mode of evaluation of the
proposed architectures toward a design oriented discussion.
Our objective here is to provide analytical insight on the inner
workings of the architectures, such that an SSD developer
will be able to choose well-performing parameters for a
variety of real-product circumstances. To keep the presentation
clean and digestible, we only sketch the high level analytic
considerations, and omit the unwieldy complete derivations.

8

�

�

�

�

�

�

�
�

�

���������	
��
ρ���

�	
���� �������� �������

Figure 9. Synthetic workload with ρ = 20% and q = 4.

A. Workloads
In the standard uniform access model, the probability for a

page i to be chosen at a specific write is the reciprocal of the
total number of logical pages: Pr (i) = 1

U ·Np
. In a workload

with locality, the probability to choose a specific page i is
dependent on whether the page exists in the recent-page set
or not. In the sequel we use the terms recent-page set and
recent-page queue alternately, noting that these are different
views of the same object.

1) pout: the probability to choose page i when it is not in
the recent-page set. In this case i can be chosen only
when the recent set is not selected, and because h �
U ·Np we have

pout ≈
1− p

U ·Np
. (3)

2) pin: the probability to choose page i when it is in the
recent-page set. In this case, because of the uniform
selection within the recent-page set we have

pin = p · 1
h
. (4)

An important expression is for the mean time for a page to
stay in the recent-page queue. Consider the rate of the new
pages entering the recent-page queue (which is also equal to
to the rate of pages exiting the queue):

pexit = 1− p. (5)

The above is because a new page enters the queue only
when the recently-written set is not selected. The expected
time (time == number of user writes) Tq a page stays in the
queue is the length of the queue divided by the arrival rate

Tq =
h

pexit
=

h

1− p
. (6)

As one can deduce from equation (6), the larger h is and
the higher the locality p gets, the more time a page will stay
in the recent-page queue.

Another important value for multi-write analysis is the mean
number of user writes Nw for a page after it enters the recent-
page queue:

Nw = pin · Tq = p · 1
h
· Tq =

p

1− p
. (7)

The value of Nw is very important for the design of a
storage device using the double-fronted architecture. To obtain
good performance we need to have Nw away from zero, which
implies a high likelihood for logical re-write while the logical
page is still in the recent-page queue. Now we would like to
state that Nw

p→1
→ ∞. Moreover, Nw is independent from h,

and that starting from p = 0.2 there is on average 0.25 extra
writes induced by the locality.

B. The Block Life Cycle

If one considers the life cycle of a block from the time it is
selected as the write frontier for user writes until it is selected
for garbage collection, then it can be seen that it moves through
4 phases:

1) The frontier phase.
This is the beginning of the block’s life cycle. It becomes
the write frontier starting to accept user writes.

2) The recent-page phase.
After the block is filled as the frontier, it is replaced by
a new block. At this phase many of the pages written to
it are still in the recent-page queue.

3) The out phase.
In this phase all the pages in the block are out of the
recent-page queue. The block stays in this phase during
most of its life time.

4) The GC phase.
In this phase the block is chosen for GC and becomes
the new frontier, ending its life cycle.

C. Choosing hotBlocksCount

The objective in this sub-section is to provide guidance on
how to choose hotBlocksCount – the size of the t = 2 frontier
in the double-fronted architecture.

Definition 1. Define x as the expected number of pages being
copied in a garbage collection of a single block.

x is a decreasing function of ρ (the more over-provisioning,
the fewer pages are copied in a GC event). The write-
amplification is an increasing function of x (the more copies
in a GC event, the higher the write amplification).

Definition 2. Define n as the expected number of user logical-
page writes to a new write frontier before it is exhausted and
a new write frontier is chosen.

In all the architectures except double-fronted, the frontier
firstly captures write-backs due to the last GC event; conse-
quently the space left for user writes n decreases with x. In the
double-fronted architecture, we have n = bNp/rc irrespective
of x,because the user-write frontier is not used for GC writes.

For fixed Np, t a good choice of hotBlocksCount (h, p)
in the double-fronted architecture is taken to be the minimum
between two values specified next.

1) Time to invalidation (page written many times while still
in the recent-page queue): Which is the mean time from the
time that the page is written to the frontier until the time it
becomes invalid. This equals the time until the page is written

9

�

�

�

�

�

�

�

�

	

�
�
��
�
�
�

�

���������	�
��

Figure 10. The right-hand side of equation (9) under the simulation param-
eters (q = 2) as a function of p.

t times after being added to the frontier. On each logical write,
the probability for the write to fall on the page in question is
pin from equation (4), and the mean time to invalidation is
thus

Tinv =
t

pin
= t · h

p
. (8)

2) Time to exit queue (page leaves recent-page queue while
still valid): Which is the mean time for the page to leave the
recent-page queue, denoted above as Tq in equation (6).

Note that both Tinv and Tq depend upon p and h. Now we
write the value to be taken for hotBlocksCount (h, p):

hotBlocksCount (h, p) ≥ min {Tinv, Tq}
n

, (9)

where the division by n follows from the need of n times
hotBlocksCount (h, p) to be at least the smaller between the
time to invalidation and the time to exiting the recent-page
queue. This is because until either of invalidation or queue-exit
happens, the logical page is likely to be re-written in-place,
and for good performance we want to keep it “protected” from
GC in the t = 2 block queue.

To accommodate the worst-case workload scenario, the
hotBlocksCount is chosen to be the maximum over all the
workloads:

hotBlocksCount = max
h,p

{hotBlocksCount (h, p)} . (10)

For example, taking the simulation parameters, one can plot
the right-hand side of equation (9) as a function of p and then
take the maximum value plus some margin. See Figure 10.
Here hotBlocksCount was chosen to be 10.

D. The Effect of Locality

In the known architectures REG_RW1 and REG_RW2,
increasing the locality of the workload has a negative effect
on the write amplification. When a new block is selected as
the write frontier, it will accommodate new logical writes
whose addresses will enter the recent-page queue. Because
they reside in the recent queue, these pages will be repeatedly
re-written, and as a result will decrease the invalidation rate in

�

�

�

�

�

�

�

�

��� ���

�

Figure 11. Variable-fixed page mapping shown for expansion factor r = 1.5.
a) Expanded page allocation. b) Normal page allocation.

the general population of blocks, including in the “oldest” ones
that are the best candidates for GC. As a result GC events will
see fewer invalid pages and high write amplification. In the
double-fronted mapping architecture there is no such problem,
because the re-writes due to locality hit a separate (small) set
of blocks, with little effect on the general population of blocks.

VII. TOWARD REAL IMPLEMENTATION

The main complication introduced by the proposed archi-
tectures toward implementation is the mix between coded
t = 2 pages and standard t = 1 pages. In the double-fronted
architecture each block holds one of the two types of pages,
while the selective architecture mixes the two types even in
the same block. Due to the r > 1 expansion factor of the
t = 2 pages, each of the two types of pages has a different
size given a logical-page size. In case the physical media does
not support variable-size pages, it is up to the storage device
to implement a mapping between variable-size pages and the
fixed-size physical pages exposed by the media. This mapping
can be done in one of two ways:

(a) Expanded page allocation: The physical page size is
chosen to fit a page written with expansion r. In physical
pages where a t = 1 page is written the residual space
is used to accommodate portions of additional t = 1
pages. This option can be seen in Figure 11 (a) for the
case r = 1.5.

(b) Normal page allocation: The physical page size is cho-
sen to fit a page written without expansion. In physical
pages written with t = 2 the extra bits are written on a
page allocated for the overhead portions of t = 2 pages.
This option can be seen in Figure 11 (b) for the case
r = 1.5.

To avoid redundant write accesses to physical pages hosting
multiple logical pages, the device may need to aggregate
multiple incoming logical pages before writing them to the
physical pages. This will happen for t = 1 writes in option (a)
and for t = 2 writes in option (b). For read access the device
may need to access multiple physical pages per logical page.

10

���� ����

����	�
��	�������������	�����
�����	�����

��������

��� ���

������������	
�

��� ���

������������	
�

������ �	�
�����

�������

��

����	������

��������	����������� ���� ���

���� �

�������

�������������	
���
���

�����!"��#�

���
	��

����	�����
���
	�� �

����

����� �����

Figure 12. Diagram of a storage device using a multi-write mapping
architecture.

This will happen for some of the t = 1 reads in option (a)
and for all t = 2 reads in option (b). Consequently, assuming
that most of the writes and reads will be served from t = 2
pages, option (a) is a preferable choice.

A block diagram of a storage device using a multi-write
architecture is depicted in Figure 12. The right part consists of
the physical storage blocks, including the frontier, used blocks
and free blocks. The left part contains the functions comprising
the mapping architecture. The encoding and decoding blocks
are added to support the multi-write coding functionality,
on top of other coding schemes used for error correction
and detection. A page aggregation module is added before
dispatching writes to the physical media. At the bottom of the
left part we include the meta-data used by the architecture.
Here we add (on top of a standard-device meta-data) fields
describing the coding type of the physical page (t = 1 or
t = 2), and its status (how many times it has been written
since erasure).

VIII. CONCLUSION

The significant write-amplification savings demonstrated
here by the new proposed architectures attest to their attrac-
tiveness for real SSD implementation. We believe that the
insights provided in this and previous papers, together with
the maturity of the multi-write coding theory can lead in the
near future to SSD controllers with low-cost implementations
of redundancy-efficient multi-write codes. The main barrier
we see to wide adoption of our architectures is the partial
support flash vendors currently offer for re-programming of
physical pages to higher charge levels. To the best of our
knowledge, there is no serious technology limitation to support
such re-programming (in fact, some vendors do support it).
However, it is clear that a fully supported re-programmable
media will require addressing potential data integrity issues,
such as increased inter-cell disturbs. We are convinced that the
decisive results of this paper will give compelling motivation
for flash vendors to address these issues.

IX. ACKNOWLEDGMENT

This work was supported in part by the Israel Ministry of
Science and Technology, by a European Union CIG grant, and
by a Viterbi faculty fellowship

REFERENCES

[1] Luojie, Xiang, Kurkoski, Brian M and Yaakobi, Eitan. WOM codes
reduce write amplification in NAND flash memory, Global Communi-
cations Conference (GLOBECOM), 2012 IEEE, pages 3225-3230, 2012.
IEEE.

[2] Desnoyers, Peter. Analytic modeling of SSD write performance, Pro-
ceedings of the 5th Annual International Systems and Storage Confer-
ence, pages 12, 2012. ACM.

[3] Agarwal, Rajiv and Marrow, Marcus. A closed-form expression for write
amplification in NAND flash, GLOBECOM Workshops (GC Wkshps),
2010 IEEE, pages 1846-1850, 2010. IEEE.

[4] Hu, Xiao-Yu, Eleftheriou, Evangelos, Haas, Robert, Iliadis, Ilias and
Pletka, Roman. Write amplification analysis in flash-based solid state
drives, Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference, pages 10, 2009. ACM.

[5] Luojie, Xiang and Kurkoski, Brian M. An improved analytic expression
for write amplification in NAND flash, Computing, Networking and
Communications (ICNC), 2012 International Conference on, pages
497-501, 2012. IEEE.

[6] Rivest, Ronald L and Shamir, Adi. How to reuse a "write-once" memory.
Information and control, 55(1):1-19, 1982.

[7] Haas, XYHR and Hu, X. The fundamental limit of flash random
write performance: Understanding, analysis and performance modelling.
Technical report. IBM Research Report, 2010/3/31, 2010.

[8] Jagmohan, Ashish, Franceschini, Michele and Lastras, Luis. Write
amplification reduction in NAND flash through multi-write coding,
Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1-6, 2010. IEEE.

[9] Cassuto, Yuval and Yaakobi, Eitan. Short Q-ary Fixed-Rate WOM Codes
for Guaranteed Re-writes and with Hot/Cold Write Differentiation. IEEE
Transactions on Information Theory, to appear.

[10] Rivest, Ronald L and Shamir, Adi. How to reuse a "write-once" memory.
Information and control, 55(1):1-19, 1982.

[11] Bhatia, Aman, Iyengar, Aravind R and Siegel, Paul H. Multilevel 2-cell
t-write codes, Information Theory Workshop (ITW), 2012 IEEE, pages
247-251, 2012. IEEE.

[12] Burshtein, David and Strugatski, Alona. Polar write once memory
codes, Information Theory Proceedings (ISIT), 2012 IEEE International
Symposium on, pages 1972-1976, 2012. IEEE.

[13] Kurkoski, Brian M. Lattice-based WOM codebooks that allow two
writes, Information Theory and its Applications (ISITA), 2012 Inter-
national Symposium on, pages 101-105, 2012. IEEE.

[14] Kurkoski, Brian M. Rewriting codes for flash memories based upon
lattices, and an example using the E8 lattice, GLOBECOM Workshops
(GC Wkshps), 2010 IEEE, pages 1861-1865, 2010. IEEE.

[15] Shpilka, Amir. Capacity achieving multiwrite WOM codes. 2012.
[16] Shpilka, Amir. New constructions of WOM codes using the Wozencraft

ensemble. 2011.
[17] Buzaglo, Sarit and Etzion, Tuvi. Tilings with $ n $-Dimensional Chairs

and their Applications to WOM Codes. Technical report. 2012.
[18] MSR Cambridge traces http://iotta.snia.org/traces/388
[19] Bux, Werner. Performance evaluation of the write operation in flash-

based solid-state drives. IBM Research, Zurich, Rschlikon, Rep.
RZ3757, 2009.

[20] Bhatia, Aman, Iyengar, Aravind R and Siegel, Paul H. Multilevel 2-cell
t-write codes, Information Theory Workshop (ITW), 2012 IEEE, pages
247-251, 2012. IEEE.

[21] Burshtein, David and Strugatski, Alona. Polar write once memory
codes, Information Theory Proceedings (ISIT), 2012 IEEE International
Symposium on, pages 1972-1976, 2012. IEEE.

[22] Cohen, G, Godlewski, Philippe and Merkx, Frans. Linear binary code for
write-once memories (corresp.). Information Theory, IEEE Transactions
on, 32(5):697-700, 1986.

[23] Haymaker, Kathryn and Kelley, Christine A. Geometric WOM codes
and coding strategies for multilevel flash memories. Designs, Codes and
Cryptography, 70(1-2):91-104, 2014.

[24] Yaakobi, Eitan, Kayser, Scott, Siegel, Paul H, Vardy, Alexander and
Wolf, Jack Keil. Codes for write-once memories. Information Theory,
IEEE Transactions on, 58(9):5985-5999, 2012.

