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Abstract—Network switches and routers need to serve packet
writes and reads at rates that challenge the most advanced
memory technologies. As a result, scaling the switching rates is
commonly done by parallelizing the packet I/Os using multiple
memory units. For improved read rates, packets can be coded
upon write, thus giving more flexibility at read time to achieve
higher utilization of the memory units. This paper presents a
detailed study of coded network switches, and in particular how
to design them to maximize the throughput advantages over
standard uncoded switches. Toward that objective the paper
contributes a variety of algorithmic and analytical tools to
improve and evaluate the throughput performance. The most
interesting finding of this study is that the placement of packets
in the switch memory is the key to both high performance and
algorithmic efficiency. One particular placement policy we call
”design placement” is shown to enjoy the best combination of
throughput performance and implementation feasibility.

I. INTRODUCTION

With the increasing demand for network bandwidth, net-
work switches (and routers) face the challenge of serving
growing data rates. Currently the most viable way to scale
switching rates is by parallelizing the writing and reading
of packets between multiple memory units (MUs) in the
switch fabric. However, this introduces the problem of memory
contention, whereby multiple requested packets need to access
the same bandwidth-limited MUs. Our ability to avoid such
contention in the write stage is limited, as the reading schedule
of packets is not known upon arrival of the packets to the
switch. Thus, efficient packet placement and read policies are
required, such that memory contention is mitigated.

For greater flexibility in the read process, coded switches
introduce redundancy to the packet-write path. This is done by
calculating additional coded chunks from an incoming packet,
and writing them along with the original packet chunks to
MUs in the switch memory. A coding scheme takes an input
of k packet chunks and encodes them into a codeword of
n chunks (k ≤ n), where the redundant n − k chunks are
aimed at providing improved read flexibility. Thanks to the
redundancy, only a subset of the coded chunks is required
for reconstructing the original (uncoded) packet. Thus, packets
may be read even when only a part of their chunks is available
to read without contention. One natural coding approach is to
use [n, k] maximum distance separable (MDS) codes, which
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have the attractive property that any k chunks taken from the
n code chunks can be used for the recovery of the original k
packet chunks. Although MDS codes provide the maximum
flexibility, we show in our results that good switching perfor-
mance can be obtained even with much weaker (and lower
cost) codes, such as binary cyclic codes.

In the coded switching paradigm we propose in this paper,
our objective is to maximize the number of full packets read
from the switch memory simultaneously in a read cycle. The
packets to read at each read cycle are specified in a request
issued by the control plane of the switch. As we shall see,
coding the packets upon their write can significantly increase
the number of read packets, in return to a small increase
in the write load to store the redundancy. Thus coding can
significantly increase the overall switching throughput. In
this paper we identify and study two key components for
high-throughput coded switches: 1) Read algorithms that can
recover the maximal number of packets given an arbitrary
request for previously written packets, and 2) Placement
policies determining how coded chunks are placed in the
switch MUs. Our results contribute art and insight for each
of these two components, and more importantly, they reveal
the tight relations between them. At a high level, the choice of
placement policy can improve both the performance and the
computational efficiency of the read algorithm. To show the
former, we derive a collection of analysis tools to calculate
and/or bound the performance of a read algorithm given the
placement policy in use. For the latter, we show a huge gap
between an NP-hard optimal read problem for one policy
(unrestricted placement), and extremely efficient optimal read
algorithms for two others (cyclic and design placements).

The use of coding for improved memory read rates joins
a large body of recent work aimed at objectives of a similar
flavor, see e.g. the survey in [1]. In [2], [3], the effect of
MDS coding on content download time was analyzed for two
content access models, where an improvement in performance
was achieved. In [4], latency delay was reduced by choosing
MDS codes of appropriate rates. Latency comparison between
a simple replication scheme and MDS codes was pioneered
by Huang et al. [5] using queuing theory. It was shown
that for k = 2, the average latency for serving a packet
decreases significantly when a certain scheduling model is
used. This analysis was later extended by Shah et al. in [6],
[7], where bounds on latency performance under multiple
scheduling policies were investigated. In [8] and then in [9],
switch coding is done under a strong model guaranteeing
simultaneous reconstruction of worst-case packet requests.

This paper is structured as follows. In Section II, we
provide the switch setting and define formally the problem of
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maximizing the read throughput. We choose a simple model
of a shared-memory switch, which allows defining a clean
throughput-optimization problem. It is important to note that
all the paper’s results demonstrated on this simple model can
be extended to more realistic setups, with the same underlying
ideas at play. In Section III, we define a full-throughput
instance as one in which the switch is able to read all the
requested packets in the same read cycle. Full-throughput
instances are the most desired operation mode for a switch,
because there is no need for queueing unfulfilled packet
requests. We derive necessary and sufficient conditions for an
instance to be full-throughput, and specify placement policies
motivated by these conditions. Read algorithms are provided
in Section IV for maximizing the instantaneous throughput
at a read cycle. For the cyclic and design placements we
show efficient polynomial time optimal read algorithms, which
are also practical enough to implement in a switch environ-
ment. Probabilistic analysis of the average read throughput
is provided in Section V. We derive an upper bound for the
unrestricted placement, a lower and an upper bound for the
cyclic placement, and exact full-throughput analysis for the
design placement. Simulations results are given in Section VI.
Finally, the paper is concluded in Section VII.

II. PROBLEM SETTING AND FORMULATION

Given our objective to improve the switch throughput, we
now define the system setting for our proposed solution, and
pose the throughput-maximization problem within this setting.

A. The switch setting

Consider a switch composed of N parallel memory units
(MUs) serving writes and reads of incoming and outgoing
packets, respectively. Each MU is capable of storing a certain
number of bits on a write cycle, and retrieving this number
of bits on a read cycle. A data packet might be too large to
fit in a single MU. Thus, an incoming packet is partitioned
into k chunks of the same size, each stored in a distinct
MU on the same write cycle. Upon read request of a packet,
all k chunks of the packet need to be retrieved by the k
MUs storing it, after which it can be delivered to the output
port. Because there are multiple packet requests pending on
the same MUs simultaneously, contention may occur between
chunks of different packets stored in the same MUs.

To reduce the amount of contention in packet reading, we
propose in this paper to encode the incoming packets with
an [n, k] code, which means that the k chunks of the data
packet are encoded to n ≥ k chunks. The n fixed-size encoded
chunks are stored in n distinct MUs out of the N MUs in the
system (1 ≤ k ≤ n ≤ N ). Between packets overlap is allowed,
i.e., chunks of two or more packets may share one or more
MUs. For the code we mostly1 assume the maximum distance
separable (MDS) property, which means that any subset of k
chunks of the n encoded chunks is sufficient for recovering
the original packet. We mention here the Reed-Solomon (RS)

1Part of our results in the sequel do not require the code to have such a
strong property.

codes [10], [11], which are an important family of MDS codes
widely used in storage systems for improved reliability. An RS
code exists for every choice of k ≤ n ≤ q, where q is the code
alphabet size, which is a prime power. RS encoding/decoding
can be performed efficiently [10], [12].

In a typical switch, a large number of packets is stored
in memory at any given time. Out of these many packets,
L particular packets are requested at each read cycle. To
maximize the read throughput, at each read cycle the switch
needs to recover a maximal number of the L requested
packets. We next define this throughput maximization problem
formally.

B. The maximal-throughput read problem

A request arrives for L packets, with the objective to read
as many out of these packets in a single read cycle. The
locations of each packet’s chunks are known, and we wish
to find methods for reading as many packets as possible
simultaneously, with the constraint that each MU can be
accessed only once in a read cycle, delivering at most one
chunk. An instance of the problem is illustrated in Fig. 1,
where encoded data chunks of multiple packets appear in the
same column representing an MU. Let us denote by L∗ the
maximal number of packets that can be read, out of the L
packets requested from the switch memory. We consider the
following notion of throughput as a performance measure.

Definition 1: (Instantaneous Throughput) The instantaneous
throughput ρ of the system is defined as

ρ =
L∗k

N
. (1)

That is, ρ is the fraction of active MUs serving packets out of
the N MUs in the system, and it is a monotonically increasing
function of L∗. Clearly 0 ≤ ρ ≤ 1, because the total number
of read chunks cannot be more than N . Note that given
L, maximizing the instantaneous throughput is equivalent to
maximizing L∗, because k and N are constants. In the sequel
we refer to the instantaneous throughput as simply throughput.
Later in the paper we also discuss the average throughput ρ̄,
defined as the value of ρ averaged over read cycles.

We name the problem of maximizing the throughput ρ as
the [n, k]-maximal throughput problem, or nkMTP. Recall that
for reading a packet, k MUs are required, which are not
used to read chunks of any other packet. Thus, an nkMTP
solution amounts to finding the maximal number of disjoint
k-sets, leading to the following set-theory formulation of
nkMTP. Consider the N MUs as the elements of the set
S = {0, 1, 2, ..., N − 1}. Each packet i = 1, 2, ..., L is stored
in MUs indexed by a subset Si of S , where |Si| = n and
the subsets may overlap. Then nkMTP can be formulated as
follows.

Problem 1: (nkMTP)
Input: The set S = {0, 1, 2, ..., N − 1} and L subsets of S,
Si ⊆ S, such that |Si| = n.

Output: Subsets S ′i ⊆ Si such that |S ′i| = k, S ′i ∩ S ′j = ∅
(i 6= j) and the number of subsets is maximal.

Example 1: Consider an nkMTP instance with N = 5, L =
3 and n = 3, where the packets are stored in the MUs indexed
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Fig. 1: Illustration of nkMTP (n = 3).

by the sets S1 = {0, 1, 2} ,S2 = {1, 3, 4} ,S3 = {2, 3, 4}. If
k = n = 3, at most one packet can be read, since Si∩Sj 6= ∅
for i, j ∈ {1, 2, 3}. If k = 2, a possible solution is S ′1 = {0, 1}
and S ′2 = {3, 4} with L∗ = 2. Finally, if k = 1 all the packets
can be read, and one possible solution is S ′1 = {0} ,S ′2 = {1}
and S ′3 = {2}.

An nkMTP instance can be represented as a graph as well.
Consider a bipartite graph G = (XG, YG, EG), where XG and
YG are the two disjoint sets of vertices of G, and EG is the
set of edges of G. Thinking of XG as packets and of YG as
MUs, a vertex x ∈ XG is connected to a vertex y ∈ YG if one
of the encoded chunks of the packet x is stored in the MU
y. In Fig. 2, Example 1 is represented on a graph. This graph
interpretation will be used later to obtain further insights on
the problem. An algorithm that guarantees maximal throughput
for any instance is called an optimal read algorithm. A
straightforward approach for solving an nkMTP instance is
to consider all possible assignment configurations of MUs
to packets. However, this approach is clearly inefficient as
its complexity scales exponentially with L. We observe that
polynomial-time optimal read algorithms exist in the general
case for specific values of k and n. These read algorithms
are obtained by interpreting nkMTP for these parameters as
known graph matching problems whose efficient solutions are
known.

Theorem 1: For k = 1, n ≥ 1 or k = n = 2, nkMTP is
solvable in polynomial time.

Proof Consider a graph representation G of an nkMTP in-
stance. When k = 1, n ≥ 1, maximizing the throughput is
equivalent to finding a maximum bipartite matching [13] in G.
That is, a subgraph of G with the largest number of matched
pairs (x, y), x ∈ XG, y ∈ YG, such that each pair is connected
by an edge and the edges are pairwise non-adjacent. When
k = n = 2, consider the N MUs as the vertices of a (uni-
partite) graph, where an edge in this graph connects two MUs
shared by the same packet. A maximum matching in this graph
will provide the largest number of disjoint pairs of MUs, each
pair serving a packet, corresponding to a maximum-throughput
solution. Efficient maximum-matching algorithms are known
in both cases [13].

In practice, larger k and n values might be of interest.
However, nkMTP turns out to be NP-hard in this case, as

Fig. 2: nkMTP from Example 1 formulated on a graph. There
are three packets, each stored as n = 3 encoded chunks in n
MUs.

shown in the following theorem.
Theorem 2: nkMTP is NP-hard for 3 ≤ k ≤ n.

To prove Theorem 2, we reduce the l-set packing (l-SP)
problem [14], known to be NP-hard, to nkMTP. In l-SP, there
are L sets, each of size l, and the problem is to find the
maximal number of pairwise disjoint sets. By the reduction,
we basically show that an l-SP instance can be transformed
to an nkMTP instance with any k and n in the range, which
implies that nkMTP is at least as hard as l-SP. The details of
the reduction are provided in Appendix A. The consequence
of the hardness result of Theorem 2 is that no efficient optimal
algorithms are expected to be found for solving (an arbitrary
instance of) nkMTP when 3 ≤ k ≤ n.

Surprisingly, this hardness result does not imply the in-
tractability of optimal coded switching. The main observation
we make in this work is that clever chunk placement at the
write path can yield more structured nkMTP instances, which
do admit efficient optimal read algorithms. In the rest of this
paper we develop algorithmic and analytic tools that reveal the
interesting interplay in coded switches between packet place-
ment, computation efficiency, and throughput performance.

III. FULL-THROUGHPUT CONDITIONS AND PLACEMENT
POLICIES

In this section, we start with providing necessary and suf-
ficient conditions for a full-throughput solution, i.e., L∗ = L
read packets. This is desired in practice to avoid delaying or
reordering the read packets before fulfilling the read request.
These conditions will be used later toward specifying packet
placement policies, and analyzing the performance of read
algorithms. Subsequently, we define the three policies this
paper considers for placing packets in the switch memory:
unrestricted, cyclic, and design.

A. Full-throughput conditions

To find a necessary condition for the existence of a full-
throughput solution, note that each read packet requires at
least k MUs not used by any other packet. Thus, at least kL
MUs must be covered by the requested packets, such that the
following inequality ∣∣∣∣∣

L⋃
i=1

Si

∣∣∣∣∣ ≥ kL (2)
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must hold in any nkMTP instance with a full-throughput
solution. We refer to (2) as the coverage condition. Note that
when k = n this condition (with equality) becomes sufficient
as well, as the condition implies in this case that there is no
contention between packets. We now move to find a sufficient
condition for the existence of a full-throughput solution. Let
us extend the set notation to represent intersections of MU
sets, that is, SI ,

⋂
j∈I
Sj , for I ⊆ {1, 2, ..., L}.

Theorem 3: Let S1, ...,SL (L ≥ 2) be the MU sets of an
nkMTP instance. Then an L∗ = L solution exists if

∀i, j : i 6= j, |Si ∩ Sj | ≤
2(n− k)

L− 1
, tmax. (3)

Proof Denote by Φs,L the sum of cardinalities of intersections
of s distinct sets taken from the MU sets indexed by a certain
set L

Φs,L =
∑

I⊆L,|I|=s

|SI | . (4)

As an example, if L is the set {1, 2, 3}, then Φ2,L is
|S1 ∩ S2|+ |S1 ∩ S3|+ |S2 ∩ S3|. As we saw in Section II-B,
an nkMTP instance can be represented as a bipratite graph
with the packets and MUs being the disjoint vertex sets. In
this representation, packet vertices need to be matched to
disjoint sets of k MU vertices. According to the extended
Hall’s theorem [15], all the L packet vertices can be matched
(i.e., an L∗ = L solution exists) if and only if∣∣∣∣∣∣

⋃
j∈L
Sj

∣∣∣∣∣∣ ≥ k |L| (5)

for every subset L ⊆ {1, 2, ..., L}. In words, at least k|L|
distinct MUs should be present in each L sub-family of the
L MU sets. Using the inclusion-exclusion principle, (5) is
equivalent to the requirement

n|L| − Φ2,L +

|L|∑
s=3

(−1)
s−1

Φs,L ≥ k|L| (6)

for every L ⊆ {1, 2, ..., L}, |L| ≥ 2 (for |L| = 1, (6)
reduces to the requirement n ≥ k that always holds). The

sum
|L|∑
s=3

(−1)
s−1

Φs,L is non-negative, as it compensates for

over-subtraction of pairwise intersection cardinalities in the
inclusion-exclusion process. Therefore, (6) holds if the in-
equality

Φ2,L ≤ |L| (n− k) (7)

holds for every L. We can bound Φ2,L by bounding the
pairwise intersection cardinalities

Φ2,L =
∑

i 6=j⊆L

|Si ∩ Sj | ≤
(
|L|
2

)
max
i6=j⊆L

|Si ∩ Sj | . (8)

Finally, combining (8) and (7), the inequality (7) holds when

max
i 6=j⊆L

|Si ∩ Sj | ≤
2(n− k)

|L| − 1
. (9)

We now observe that the condition of the theorem (3) implies
(9) because |L| ≤ L for every L.

We refer to condition (3) as the pairwise condition. The full-
throughput coverage and pairwise conditions above will serve
us later for specifying placement policies and analyzing their
throughput performance. The sufficient pairwise condition will
give lower bounds on average throughput, and the necessary
coverage condition will give upper bounds. We next turn to
specify three placement policies for the switch write path:
the unrestricted, cyclic and design placements. In subsequent
sections these placement policies are given efficient read
algorithms and performance analysis.

B. Unrestricted placement

In the first placement policy we consider, the n chunks of a
packet may be placed in any set of n MUs taken from the N
MUs in the system. That is, the set of a packet MU indices
can be one of the

(
N
n

)
n-subsets of S = {0, 1, ..., N − 1}. We

term this policy as unrestricted placement, but note that no
probability distribution is assumed. This placement policy is
the most general as no structure is imposed on the placement
of packet chunks to memory.

Example 2: Assume that N = 5 and n = 3. There are(
N
n

)
= 10 possible MU sets when the unrestricted placement

policy is used: {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4},
{0, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}.
This placement policy is convenient to implement, because
it has maximal flexibility to choose MUs to write based on
load and available space. However, this comes with a price, as
solving efficiently an arbitrary unrestricted placement instance
amounts to solving nkMTP, shown to be NP-hard in Section II.
Therefore, in the rest of this section we propose two additional
placement policies, which will be shown later to admit efficient
optimal read algorithms.

C. Cyclic placement

In the second placement policy we propose, termed as cyclic
placement, we add a structure constraint on the MUs chosen
to store packet chunks. The constraint is that the possible MU
sets are composed of n cyclic consecutive MU indices. The
number of possible MU sets is N (assuming that n < N ),
which is smaller in all non-trivial cases than the

(
N
n

)
sets in

the unrestricted placement. An MU set in a cyclic instance
can be conveniently thought of as an arc covering n cyclic
consecutive points out of N points on a circle, where the
points are considered as MUs. An example for a circle-arc
representation of a cyclic instance is shown in Fig. 3.

Example 3: Assume that N = 5 and n = 3. There are
N = 5 possible MU sets when the cyclic placement policy
is used: {0, 1, 2} , {1, 2, 3} , {2, 3, 4} , {3, 4, 0} and {4, 0, 1}.
Note that these sets are contained in the sets of Example 2.

A further restriction of the cyclic placement policy gives
a simple placement policy where the N MUs are statically
partitioned to N/n disjoint sets of n consecutive MUs (as-
suming that n divides N ), and each packet is restricted to one
of these sets. In this case, the packets are restricted to MU sets
that are mutually disjoint. However, using the full cyclic (non
partitioned) placement is beneficial for increased flexibility at
the read path.
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Fig. 3: A cyclic instance in a circle-arc representation. The
marks on the inner circle represent N = 12 MUs, where the
L = 6 outer arcs represent packets stored each in n = 4 cyclic
consecutive MUs.

D. Design placement

In the third policy we consider, our aim is to guarantee
a full-throughput solution, i.e., L∗ = L read packets. Moti-
vated by the sufficient condition of Theorem 3, we propose
to construct a collection of MU sets with overlap at most
tmax = 2(n− k)/(L− 1), using combinatorial block designs.
To find such MU sets, we use the so called t-designs [16] with
carefully chosen parameters. A t-(N,n, λ) design consists of
n-element subsets (blocks) taken from a set of N elements,
such that every t elements taken from the set appear in exactly
λ subsets. 2-designs are of particular interest in the literature,
and they are known as balanced incomplete block design
(BIBD).

While it is not a trivial problem to construct combinatorial
designs with arbitrary parameters, many design families are
known within the vast literature on this topic [17], [18].
When λ = 1, t-designs are known as Steiner systems, and
they contain (when exist) b =

(
N
t

)
/
(
n
t

)
blocks [16]. Note

the relation between N,n, t and b, demonstrating that these
values cannot be chosen arbitrarily. In general, a large value
of b is desired (i.e., large number of blocks) to have fewer
occurrences where two requested packets use the same block
as their MU set. We use the notation t-(N,n) for Steiner
systems (where λ = 1 is implied). Our interest lies in block
designs with t = tmax + 1 and λ = 1, such that the pairwise
intersection cardinality is at most tmax. We term a placement
method where packets are constrained to such MU sets as
design placement. In such a placement, we are guaranteed the
existence of an L∗ = L solution if the packets are placed in
L distinct MU sets.

Example 4: Consider the set M = {0, 1, 2, 3, 4, 5, 6}. Its
subsets (blocks) M1 = {0, 1, 2} ,M2 = {0, 3, 4} ,M3 =
{0, 5, 6} ,M4 = {1, 3, 5} ,M5 = {1, 4, 6} ,M6 = {2, 3, 6}
and M7 = {2, 4, 5} form a 2-(7, 3, 1) BIBD (which is a
Steiner system). There are

(
7
2

)
/
(
3
2

)
= 7 blocks in this design,

known as the Fano plane [18]. It can be seen that no two
blocks intersect on more than one element (and each pair of
elements is contained in exactly one block), such that this
design can be used when tmax = 1 is desired. Since n = 3 in

this design, this value of tmax guarantees a solution for either
k = 2 and L = 3 or k = 1 and L = 5.

An alternative for constructing MU sets with overlap at
most tmax is the use of constant-weight codes. A binary
(N, d, n) constant-weight code contains binary codewords
of length N , each with n non-zero coordinates, such that
the Hamming distance between every two vectors (i.e., the
number of coordinates in which they differ) is at least d.
The supports (i.e., the non-zero coordinates) of the codewords
form an (n− d/2 + 1)-(N,n, 1) packing [19], in which each
(n− d/2 + 1)-subset appears at most once. A packing can
be thought of as a relaxed version of a block design, which
similarly satisfies pairwise intersection of at most tmax when
setting d = 2 (n− tmax). As a consequence, we can use
(N, 2 (n− tmax) , n) constant-weight codes to construct MU
sets with the desired tmax intersection property. As a large
number of valid MU sets is desired, we are interested in
constant-weight codes with the maximum possible number of
codewords for the given parameters. Constructions of constant-
weight codes and lower/upper bounds on the maximum num-
ber of codewords for certain parameters N, d and n, denoted
A (N, d, n), are provided e.g. in [20], [21], [19]. For simplicity,
we include MU sets constructed using constant-weight codes
under the design placement, even though such constructions
are packings rather than block designs.

Example 5: Consider the binary vectors of length N = 5
with exactly n = 3 non-zero coordinates. These vectors form
an (N, 1, n) constant-weight code. The corresponding MU sets
are the codeword supports, which appear in Example 2.

IV. READ ALGORITHMS

As we saw in Section II, nkMTP is intractable for general
instances obtained when the unrestricted placement is used.
In this section, we provide explicit and efficient optimal read
algorithms for the cyclic and design policies.

A. Cyclic placement

In this subsection, we provide an efficient optimal algorithm
for finding a maximum-throughput solution in the cyclic case.
We start with the following important observation.

Lemma 4: Assume an nkMTP instance with cyclic place-
ment of the packet chunks. Then there exists an optimal
(attaining the maximal L∗) solution where the k MUs assigned
to each read packet are cyclic consecutive. In addition, there
is at least one packet in such a solution that is assigned its
first k MUs.

Proof We show that any optimal solution for the cyclic
placement can be transformed into an optimal solution with a
cyclic consecutive assignment of MUs to each packet. Assume
an optimal solution with a gap in packet j’s assignment (i.e.,
the k assigned MUs to packet j are not cyclic consecutive).
If the MUs in the gap are not assigned to any other packet,
then clearly we can exchange MUs between the gap and the
assigned MUs to obtain an assignment with no gap. Let us
now consider a case where the MUs in the gap were assigned
to other packets. Because of the cyclic placement and the fixed
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n, the packets assigned the gap MUs overlap with packet
j on either the MUs before the gap or the MUs after the
gap. In either case we can exchange between MUs in the gap
and MUs assigned to packet j to obtain a cyclic consecutive
assignment, as the MUs in the overlap can serve any of the
overlapping packets. Finally, there is at least one packet in a
cyclic consecutive solution that is assigned its first k MUs.
If there is no such packet, we can shift the solution counter-
clockwise until this condition is met.

Based on Lemma 4, we propose an efficient algorithm for
solving a cyclic instance. For convenience, we assume a circle-
arc representation (see Section III-C). Define an order of the
packets with respect to packet j, such that the packets are
sorted according to their arcs’ starting points relatively to
packet j’s starting point in clockwise order. We denote such

an order of the packets by
{
S̃(j)i

}L

i=1
. That is, S̃(j)1 is packet

j, S̃(j)2 is a packet whose starting point is next after packet
j’s starting point in clockwise order, and so on.

Example 6: Consider the cyclic instance in Fig. 3, where the
order is with respect to the topmost packet arc ({11, 0, 1, 2}).
The ordered packets are {11, 0, 1, 2}, {1, 2, 3, 4}, {3, 4, 5, 6},
{5, 6, 7, 8}, {7, 8, 9, 10} and {9, 10, 11, 0}.
In the algorithm we begin with two empty sets Λ and Ω, which
will eventually contain the read packets and their assigned
MUs, respectively. We also initialize the sets Λj and Ωj (for
j = 1, 2, ..., L) as empty sets. The following algorithm solves
optimally a cyclic nkMTP instance.

Algorithm 1: (Cyclic placement, optimal read algorithm)
For j = 1, 2, ..., L, do:
1) Set i := 1.
2) If

∣∣∣S̃(j)i

∣∣∣ ≥ k, add i to Λj , and add the first k MUs

in S̃(j)i to Ωj . Remove the added MUs from all other
packets.

3) Set i := i+ 1. If i ≤ L, go to Step 2. Otherwise, go to
Step 4.

4) If |Λj | > |Λ|, set Λ := Λj , Ω := Ωj .
Theorem 5: The set of packets Λ and their corresponding

MUs in Ω found by Algorithm 1 are an optimal solution to a
cyclic nkMTP instance.

Proof According to Lemma 4, there exists an optimal solution
where the k MUs assigned to a read packet are cyclic
consecutive and there is a packet j0 in this solution that is
assigned its first k MUs. We prove that Algorithm 1 finds
the optimal solution in iteration j = j0. Consider the order{
S̃(j0)i

}L

i=1
. We show that if packet i′ was added to Λj0 in

Step 2, then this packet appears in the optimal solution. This
is proved by induction on i′. Assume all packets 1, . . . , i′− 1
(ordered with respect to packet j0) can be chosen as in Step
2. Then we show that the i′-th packet can be chosen in the
same way. We assume by contradiction that |S̃(j0)i′ | ≥ k and
there is no optimal solution that contains packet i′. Then we
look at the packet i′′ whose starting point follows the starting
point of packet i′ (with respect to packet j0), such that packet
i′′ appears in the optimal solution. From the fact that its k
assigned MUs are cyclic consecutive it is possible to shift the

Fig. 4: A solution of a cyclic instance (k = 2, n = 4). ’+’
denotes an MU assigned to the packet where ’X’ denotes an
MU not assigned to the packet (erasure).

assignment to the first MU index in S̃(j0)i′ , and replace i′′ by
i′ in the optimal solution without affecting the selection of
packets following packet i′′. This is a contradiction.

The proof is completed by observing that maximizing the
size of the packet set Λj over all indices j is guaranteed to give
the optimal solution, because at least one packet j is qualified
as a j0 that is in the optimal solution with its first k MUs.

Algorithm 1 requires simple sorting and comparison op-
erations, resulting in O(L2) complexity. Since the solution
method assures that MUs assigned to each read packet are
cyclic consecutive, the non-assigned MUs can be regarded as
n−k erased symbols, or as a cyclic burst of n−k erasures. An
example is shown in Fig. 4. This erasure structure suggests the
use of [n, k] binary cyclic codes (not necessarily MDS), which
are especially efficient at recovering burst erasures. Cyclic
codes are linear codes, with the property that a cyclic shift
of a codeword produces a codeword as well. These codes are
capable of recovering from any cyclic burst erasure of length
up to n − k [22]. The use of binary cyclic codes simplifies
the coding process considerably. The reason is that non-trivial
MDS codes require non-binary field arithmetic and impose
certain restrictions on the code parameters, which can mostly
be lifted once cyclic binary codes are used.

Example 7: Consider the (systematic) cyclic code C =
{0000, 0101, 1010, 1111}, where k = 2 bits are encoded to
n = 4 bits. There are n possible cyclic bursts of length
n− k = 2. Assume a burst in the first 2 codeword positions.
Then the remaining bits at the last 2 positions are all distinct:
00, 01, 10 and 11, determining uniquely the codeword. The
same holds for any cyclic burst erasure of length n− k = 2.

B. Design placement

We now turn to provide an efficient optimal read algorithm
for an nkMTP instance of the design placement. The algorithm
we propose owes its efficiency to the sufficient pairwise
condition satisfied by design-placement instances. As we show
below, if the pairwise condition is satisfied, an optimal solution
does not need to assign MUs contained in sets of more than
two packets. This fact turns out to imply an extremely simple
assignment algorithm. In the typical case k > n/2, a certain
set (design block) of n MUs can not serve more than one
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packet. Thus, we consider design instances with L packets
stored in L distinct MU sets (otherwise a subset of the packets
stored in distinct blocks is considered). Denote by Ṡi the MUs
indexed in Si that are not shared by any other MU set, and by
Ṡij the MUs indexed in both Si and Sj but not in any other
MU set. In the rest of this sub-section, we show that for each
i, at least k MUs from the sets Ṡi and Ṡij (j 6= i) can be
assigned to packet i (such that these MUs do not serve any
other packet). At a high level, the assignment that guarantees
k MUs to packet i is all of Ṡi, and half of each Ṡij . We
present this more formally in the following Algorithm 2. The
algorithm is initialized with empty sets S ′i (i = 1, 2, ..., L)
that will eventually contain an optimal assignment of MUs to
the packets. We use the notation bxc (resp. dxe) for the floor
(resp. ceiling) value of x, i.e., the largest integer not greater
than x (resp. the smallest integer not smaller than x).

Algorithm 2: (Design placement, optimal read algorithm)
For each packet i = 1, ..., L, do:
1) Add the MUs in Ṡi to S ′i.
2) For each j such that

∣∣∣Ṡij∣∣∣ is even, add
∣∣∣Ṡij∣∣∣ /2 MUs

from Ṡij to S ′i (disjoint from the MUs added to S ′j in a
different iteration).

3) For each j such that
∣∣∣Ṡij∣∣∣ is odd, add either

⌈∣∣∣Ṡij∣∣∣ /2⌉ or⌊∣∣∣Ṡij∣∣∣ /2⌋ MUs from Ṡij to S ′i, according to the policy
specified below under floor/ceil balancing.

Floor/ceil balancing. For Algorithm 2 we need to specify
whether to assign

⌈∣∣∣Ṡij∣∣∣ /2⌉ or
⌊∣∣∣Ṡij∣∣∣ /2⌋ MUs in the odd

case (step 3). We show such an assignment that for each
i balances the number of floors and ceils sufficiently to
guarantee at least k assigned MUs. Construct an undirected
graph U whose vertices are the packet indices, and connect two
vertices i and j by an edge if

∣∣∣Ṡij∣∣∣ is odd. Remove from the
graph vertices not connected by an edge to any other vertex.
An orientation of U is an assignment of a direction to each
edge in U (leading to a directed graph). There always exists
an orientation of an undirected graph such that the number
of edges entering and exiting every vertex differ by at most
one [23]. This orientation can be found in time linear in the
number of edges [13]. We denote such an orientation by ~U ,
and an example is shown in Fig. 5. Given ~U , we can rewrite
step 3 in Algorithm 2 in a precise way

3) For each j such that
∣∣∣Ṡij∣∣∣ is odd

a) If the edge between i and j is oriented towards i
in ~U , add

⌈∣∣∣Ṡij∣∣∣ /2⌉ MUs (not added earlier) from

Ṡij to packet i.
b) Otherwise, add

⌊∣∣∣Ṡij∣∣∣ /2⌋ MUs (not added earlier)

from Ṡij to packet i.
Theorem 6: The sets S ′i in Algorithm 2 give a full-

throughput solution to any design instance.

Proof First, an MU added to S ′i is not added to any S ′j 6=i.
The reason is that MUs in Ṡi are added to S ′i only, and two
disjoint subsets of MUs (using complementary ceiling/floor
operations) are taken from Ṡij to S ′i and S ′j only. Define the
function fij (x) as dxe if the edge between i and j is oriented

Fig. 5: An orientation where the number of edges entering and
exiting a vertex differ by at most one.

towards i in ~U , and bxc otherwise. If i and j are not connected
in ~U (i.e.,

∣∣∣Ṡij∣∣∣ is even), fij (x) is simply x. The cardinality
of S ′i is then ∣∣∣Ṡi∣∣∣+

∑
j 6=i

fij

(∣∣∣Ṡij∣∣∣/2). (10)

In the rest of this proof, we show that (10) is lower-bounded
by k. For odd-cardinality sets Ṡij ,

⌊∣∣∣Ṡij∣∣∣ /2⌋ equals
∣∣∣Ṡij∣∣∣ /2−

1/2, and
⌈∣∣∣Ṡij∣∣∣ /2⌉ equals

∣∣∣Ṡij∣∣∣ /2+1/2. Since the number of
edges entering and exiting a vertex differ by at most one, the
number of floor operations in (10) might exceed the number
of ceiling operations by at most one. Therefore, (10) is lower-
bounded by ∣∣∣Ṡi∣∣∣+

1

2

∑
j 6=i

∣∣∣Ṡij∣∣∣− 1

2
. (11)

According to the inclusion-exclusion principle,∣∣∣Ṡi∣∣∣ =
∑
J⊇{i}

(−1)
|J |−1 |SJ |, (12)

∣∣∣Ṡij∣∣∣ =
∑
J⊇{i,j}

(−1)
|J | |SJ |. (13)

Substitute
∣∣∣Ṡi∣∣∣ and

∣∣∣Ṡij∣∣∣ in (11) by the sums expanding them
in (12)-(13). Each set J ⊇ {i} appears in the combined sums
once due to

∣∣∣Ṡi∣∣∣, and additional |J | − 1 times (weighted by

1/2 and with an opposite sign) due to the summation of
∣∣∣Ṡij∣∣∣

over j 6= i. Therefore, (11) equals

1

2

∑
J⊇{i}

(−1)
|J |−1

(3− |J |) |SJ | −
1

2

= n− 1

2
− 1

2

∑
j 6=i

|Sij |+
1

2

∑
J⊇{i},
|J |≥4

(−1)
|J |

(|J | − 3) |SJ |.

(14)

We claim that the last sum in (14) is non-negative. This
sum counts the number of occurrences of MUs in intersection
sets of 4 packets or more that include packet i, multiplied by
the factor (|J | − 3)/2, and with alternating signs. Consider a
certain MU shared by exactly T ≥ 4 packets including packet
i. This MU appears in

(
T−1
|J |−1

)
intersection sets of cardinality

4 ≤ |J | ≤ T (we subtract 1 as the packet index i is always
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contained in J ). Therefore, the contribution of this MU to the
count is

1

2

T∑
|J |=4

(−1)
|J |

(|J | − 3)

(
T − 1

|J | − 1

)
(15)

=
1

2

T−1∑
|J |=3

(−1)
|J |+1

(|J | − 2)

(
T − 1

|J |

)

=
1

2

2∑
|J |=0

(−1)
|J |

(|J | − 2)

(
T − 1

|J |

)
= (T − 3)/2 ≥ 0,

where we used the binomial identities
T∑

j=0

(−1)
j

(
T

j

)
=

T∑
j=0

j(−1)
j

(
T

j

)
= 0. (16)

This establishes the non-negativity of the last sum in (14).
|Sij | ≤ tmax, so we conclude that (14) and thus (10) are
lower-bounded by

n− 1

2
− 1

2

∑
j 6=i

tmax = n− 1

2
− 1

2
(L− 1) tmax = k − 1

2
.

(17)

The number of MUs added to packet i in (10) is necessarily
integer. Thus, we have the integer value (10) lower-bounded
by the non-integer value (17). This means that (10) is in fact
lower-bounded by the ceiling value of (17), i.e., by k.

Algorithm 2 requires the construction of the sets Ṡi and
Ṡij , which can be performed in O(Ln) operations by running
over the elements in the sets Si. We then have to find a
balanced path in a graph that is complete in the worst case
(i.e., when |Ṡij | are all odd), with O(L2) edges. The path is
found in linear-time in the number of edges, such that the total
complexity of Algorithm 2 is O(L(n+ L)).

Example 8: Consider the block design of Example 4 (where
n = 3). This design can be used to read L = 3 packets
if tmax = n − k = 1, i.e., when k = 2. Assume that
the three packets are stored in the MU sets S1 = {1, 2, 3},
S2 = {1, 4, 5} and S3 = {3, 5, 6}. Then Ṡ1 = {2} , Ṡ2 =
{4} , Ṡ3 = {6} , Ṡ12 = {1} , Ṡ13 = {3} and Ṡ23 = {5}.
Since all the pairwise sets are of odd cardinality, U in this
case is a complete graph with three vertices. Labeling these
vertices 1, 2 and 3, a valid orientation ~U is 1→ 2→ 3→ 1.
Using Algorithm 2, we obtain S ′1 = {2, 3} ,S ′2 = {1, 4} and
S ′3 = {5, 6}.

V. PROBABILISTIC ANALYSIS

In this section, we consider ensembles of random instances
characterized by k, n,N,L and the placement policy in use,
where an instance is obtained by sampling the L packet
sets uniformly and independently from the universe of sets
allowed in the corresponding placement policy. As an example,
under the cyclic placement, the L packets are assigned L
sets independently and uniformly from the universe of cyclic-
consecutive MU n-sets. Our primary objective is to calculate
or bound the full-throughput probability Pr (L∗ = L) for the
three placement policies discussed above. For the unrestricted

and cyclic placements we use the coverage and pairwise
conditions (see Section III-A) to obtain upper and lower
bounds, respectively, on the full-throughput probability. We
later present a convenient tighter probabilistic framework for
analyzing the throughput performance for the design place-
ment.

A. Unrestricted placement

Denote the probability of the coverage condition (2) in the
unrestricted placement by puncover. The full-throughput proba-
bility Pr (L∗ = L) is clearly upper bounded by puncover. The
coverage condition in the unrestricted case is equivalent to
the requirement that the union of L random n-subsets of an
N -element set results in a set of cardinality at least kL. A
closed-form expression for this probability is provided by the
union model [24], which is an extension of the balls-and-
bins model [25]. The details are provided in Appendix B.
Through this calculation we obtain an upper bound on the
full-throughput probability for any combination of k, n,N
and L. Exact calculation of the full-throughput probability
for the unrestricted placement seems hard, and even a lower
bound through the pairwise condition (3) is not available. This
lack of positive results for the unrestricted placement is not
very surprising given the computational hardness of solving it
optimally.

B. Cyclic placement

Considering the circle-arc representation of cyclic instances
(see Section III-C), the probability of the coverage condition is
the probability that at least kL points of the circle are covered
by L random arcs of n cyclic consecutive points each. In [26],
[27], the probability distribution of the number of vacant points
on a circle once L random arcs are placed without replacement
was derived. In our case, replacement is allowed (i.e., the same
MU set may serve two packets or more), and for the upper
bound on full-throughput probability we are actually interested
in the complement distribution of the occupied points. The
details are provided in Appendix B. We denote the probability
of the coverage condition in the cyclic case by pcyccover. For the
lower bound, unlike the unrestricted policy, the structure in
the cyclic case allows to find the probability of the pairwise
condition, which we denote pcycpair.

Theorem 7: Consider an instance drawn at random from a
cyclic ensemble with parameters N,n, L. The probability that
the maximum pairwise intersection cardinality is at most tmax

is

pcycpair = N1−L
L−1∏
i=1

(N − L (n− tmax) + i). (18)

Proof Consider a circle-arc representation of the cyclic
nkMTP instances. Assume clockwise order, and that each
packet arc does not precede the first packet arc. Each placed
packet prevents the placement of the start of any other packet
in its first n − tmax MUs. In a legal placement (i.e., when
the pairwise intersection cardinality is at most tmax), there are
N −L(n− tmax) MUs that do not belong to the first n− tmax

MUs of any packet. Thus, the number of legal placements
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(given the order constraint above) is equivalently the number
of ways to partition N −L(n− tmax) MUs to L sets of cyclic
consecutive MUs. Thinking of the latter MU sets as gaps, they
can be distributed in

(
N−L(n−tmax)+L−1

L−1
)

ways, which is the
number of L non-negative integers (gap lengths) whose sum
is N − L(n − tmax) [16]. Each legal placement is obtained
(uniquely) as a combination of 1) the starting MU for the first
drawn packet, 2) a gap configuration, and 3) a permutation of
the other L−1 packets. Hence to get the total number of legal
placements we multiply the number of gap configurations by
N (the number of possible starting points for the first packet)
and by (L−1)! (the number of permutations of L−1 packets).
After normalizing by the total number of (legal and illegal)
placements NL, we obtain (18).

C. Design placement

The design placement enjoys a sharper characterization of
full-throughput instances, which simplifies the probabilistic
analysis. It is sufficient that the L MU sets are different
design blocks, and the request is full-throughput by the design
properties and the sufficient pairwise condition (3). Thus, the
probability that a random design instance contains a full-
throughput solution is lower-bounded by the probability that
the L MU sets are distinct. We denote this probability by
pdespair. To find this probability, we use the balls-and-bins model
[25]. In this model, there are L balls and b bins (recall that
b is the number of blocks in the design), where the balls are
placed independently and uniformly at random in the bins.
The probability of L distinct blocks is the probability of L
non-empty bins [25], which equals

pdespair =

(
b

L

)
1

bL

L∑
j=0

(−1)
j

(
L

j

)
(L− j)L. (19)

In the typical case k > n/2, each block can serve only
one packet, and thus pdespair is the exact probability of a full-
throughput solution in the design case.

To demonstrate the possible improved performance when
the design placement is used, assume that n = k+1 for a fixed
k value. If the desired number of read packets is L∗ = L = 3,
we can take the 2-(k2 + k + 1, k + 1) Steiner system [16],
where the sufficient pairwise condition tmax = n − k = 1
is guaranteed by the t = 2 parameter of the design. To have
a full-throughput solution we need that the L = 3 blocks
drawn from the b = k2 + k + 1 blocks of the design will be
all distinct. In Fig. 6, we plot pdespair, which is Pr(L∗ = L)
in the design case, in comparison to the unrestricted upper
bound and the cyclic lower and upper bounds on Pr(L∗ = L)
(puncover, p

cyc
pair and pcyccover, respectively). We also plot pcycsim, the

only graph in Fig. 6 obtained using simulations, which is
the empirical Pr(L∗ = L) in the cyclic case. The results
clearly demonstrate that the design policy exhibits significantly
superior performance. It is shown that with a fixed redundancy
of 1 chunk per packet, the full-throughput probability of the
design placement grows monotonically when k grows and
N = k2 + k + 1 MUs are deployed in the switch.

Fig. 6: A comparison of full-throughput performance bounds
(n = k + 1, N = k2 + k + 1).

VI. SIMULATION RESULTS

In this section, we provide simulation results of the average
throughput performance of the placement policies proposed
in Section III. Recall from Section II-B that the average
throughput equals a constant times the average L∗ of ensemble
instances. Hence evaluating the average throughput can be
done by solving random instances optimally, and averaging the
resulting L∗ values empirically. For the unrestricted placement
we solved unrestricted nkMTP instances by an exhaustive-
search algorithm (recall that no efficient algorithm is likely to
exist in this case, see Section II). We compare it to a greedy
(suboptimal) solution, where random packets are assigned k
MUs, until no k MUs that can serve a packet remain. To
solve cyclic instances optimally, we used Algorithm 1. A
comparison of the average throughput ρ̄ performance (see
Section II-B) of the unrestricted and cyclic placement policies
is provided in Fig. 7 for k = 3 and n = 3 (uncoded case)
up to n = 6. Several observations follow from these results.
First, coding improves throughput performance considerably.
Taking the cyclic case as an example when L = 4, the
throughput performance is improved by 18% (n = 4) to 52%
(n = 6) compared to the uncoded case (n = 3). Another
important observation is that the unrestricted policy does not
necessarily lead to better performance compared to the cyclic
policy. Actually, the relation between the performance of these
schemes depends on the system parameters. We can see that
the cyclic case provides higher throughput performance when
k is close to n, showing that the structure becomes helpful
when the read-flexibility in choosing k MUs decreases. On the
other hand, when the redundancy becomes larger (i.e., when n
becomes large compared to k), the unrestricted and the cyclic
placement policies exhibit similar performance, each with a
slight advantage at different L values. When computational
complexity is taken into account, the cyclic placement be-
comes superior over unrestricted, because it outperforms the
low-complexity greedy read algorithm.

Another performance measure we investigated is the number
of packets that are read (i.e., the value of L∗) with high
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(a) k = n = 3 (no coding). (b) k = 3, n = 4.

(c) k = 3, n = 5. (d) k = 3, n = 6.

Fig. 7: Average throughput ρ̄ performance comparison (N = 12).

probability (w.h.p.) in a random instance. In Fig. 8, we show
L∗ values that were observed with probability at least 0.95.
Similarly to the results in Fig. 7a, the cyclic scheme provides
better L∗ performance in the uncoded case. For moderate n
values, the unrestricted policy is better than cyclic, where for
larger n values the performance becomes close. Regardless of
the placement policy in use, coding improves the throughput
performance. For example, when k = n = 3 (Fig. 8a) and
the load is L = 3, we expect to get w.h.p. only one packet
at the output. On the other hand, when coding is introduced
such that k = 3 and n = 4, this increases to L∗ = 2 packets
and keeps improving up to L = L∗ = 3 for k = 3 and n = 6.
That is, when the switch is required to fulfill all L requests
w.h.p., coding is an important tool.

In Fig. 9, we compare the probability of a full-throughput
solution (i.e., L∗ = L solution) for the unrestricted, cyclic
and design placement policies for k = 3, n = 5 and L = 3.
We note that in the design case, the probability is obtained
analytically using the balls and bins model (See Section V-C),
given the number of valid MU sets (blocks). To find the
number of blocks, we used constant-weight codes with n = 5

and d = 2 (n− tmax) = 6 (see Section III-D). The (exact)
number of blocks (i.e., the maximum number of codewords)
in this case is known for N values up to 17 [21]. The graphs
in Fig. 9 show that the unrestricted placement is somewhat
better than the design placement in terms of full-throughput
probability. The reason is the large number of valid MU
sets in the unrestricted case, which is

(
N
n

)
, compared to the

number of blocks in the design case, which is typically much
smaller (e.g., 68 blocks when N = 17 compared to 6188
subsets). However, as no efficient read algorithm is known
for the unrestricted placement, an exhaustive-search algorithm
requires 2Ln = 215 operations to find an optimal solution.
On the other hand, the efficient optimal read algorithm in
the design case requires only L (n+ L) = 24 operations,
i.e., a number smaller by four orders of magnitude. This
makes the design placement policy appealing in practice due
to complexity considerations.

VII. CONCLUSION

In this paper, we studied placement policies and read
algorithms of coded packets in a switch memory. The study
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(a) k = n = 3 (no coding). (b) k = 3, n = 4.

(c) k = 3, n = 5. (d) k = 3, n = 6.

Fig. 8: The expected L∗ with probability at least 0.95 as a function of the load L (N = 12).

Fig. 9: Full-throughput probability for k = 3, n = 5, L = 3 as
a function of N .

revealed that coding can significantly improve switching
throughput, and that the choice of placement has significant
effect on performance and complexity. We proved that in
its most general form, the problem of obtaining maximum
throughput for a set of requested packets is a hard problem.
Therefore, we moved to propose two practical placement
policies and efficient optimal read algorithms, with better
throughput performance in certain cases compared to the
general non-structured placement policy.

We demonstrated tradeoffs between write flexibility, read-
algorithm complexity and performance. In particular, we saw
that no choice of placement policy is universally optimal,
and provided analytic tools for choosing a policy wisely. Our
work leaves many interesting problems for future research. For
example, one may consider other structured write policies by
imposing different constraints rather than restricting pairwise
intersections. It is also interesting to consider variable-length
codes (i.e., varying values of k and n values for each packet),
to match the expected switch load.
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APPENDIX A
DETAILED PROOF OF THEOREM 2

To show the hardness of nkMTP when 3 ≤ k ≤ n, we define
its decision-problem version, which we name M -nkMTP. In
the rest of this appendix, we assume that 3 ≤ k ≤ n.

Problem 2: (M -nkMTP)
Input: An nkMTP instance and a positive integer M .
Output: ”Yes” if there are M subsets S ′i ⊆ Si with the

properties |S ′i| = k, S ′i ∩ S ′j = ∅ (i 6= j).
For showing that nkMTP is NP-hard we can show that M -
nkMTP is NP-complete. Note that M -nkMTP is in NP, since
once we are given a collection of M subsets S′i ⊆ Si claimed
to be pairwise disjoint, this can be validated in polynomial
time. It remains to reduce a known NP-complete problem to
M -nkMTP, meaning that we have to show that an efficient
solution to M -nkMTP implies an efficient solution to this NP-
complete problem. We will reduce the l-set packing problem
(l-SP), known to be NP-complete for l ≥ 3 [14], to our
problem. l-SP is defined as follows.

Problem 3: (l-SP)
Input: A collection of sets over a certain domain, each of

them of size l, and a positive integer M .
Output: ”Yes” if there are M pairwise disjoint sets.

M -nkMTP is NP-complete for 3 ≤ k = n, since in this case
M -nkMTP and l-SP, for l = k = n, are essentially the same.
Therefore, it remains to reduce l-SP (l ≥ 3) to M -nkMTP for
3 ≤ k < n. Let us begin with reducing l-SP to M -nkMTP
with k = l, n = k + 1.

Consider an instance of l-SP with l = k, with M de-
noting the number of pairwise disjoint subsets required in
the solution. Assume that the input to l-SP are L sets Ai

(i = 1, 2, ..., L), where the elements contained in Ai are⋃
i

Ai = {a1, a2, ..., as}. For building an instance of M -

nkMTP with k = l, n = k + 1, do the following:
• Build sets Bi, each of size k, from s new elements
{b1, b2, ..., bs}, such that a one-to-one correspondence
between the elements in Ai and the elements in Bi exists:
aj ∈ Ai ⇔ bj ∈ Bi.

• Add a new element, say θ, which does not belong to either
Ai or Bi, to both sets to obtain the new sets denoted by
Ãi and B̃i.

The input to M -nkMTP with n = k + 1 will be the sets
Ãi and B̃i, where we ask whether there exist 2M subsets of
size k each that are pairwise disjoint. If the l-SP instance has
a solution of size M for the sets Ai, then clearly the sets
Ai ⊆ Ãi,Bi ⊆ B̃i serve as solution of size 2M to M -nkMTP
with n = k + 1. On the other hand, if there exists a solution
of size 2M in the M -nkMTP problem, we have three cases:

1) M subsets A′i ⊆ Ãi and M subsets B′i ⊆ B̃i appear
in the solution. The element θ can appear in only one
of the subsets, since they must be pairwise disjoint. If
θ belongs to some A′i, then we have M subsets B′i
that provide a solution to l-SP (after transforming the
elements in B′i to the their corresponding elements in
A′i). On the other hand, if θ belongs to some B′i, then
the solution is the sets A′i.

2) M1 subsets A′i ⊆ Ãi and M2 subsets B′i ⊆ B̃i appear in
the solution, where M1 < M2 and M1 +M2 = 2M . θ
can appear in at most one of the subsets B′i. In addition,
M < M2, and therefore choosing the subsets B′i that do
not contain θ leads to a solution of l-SP with at least
M subsets (again, transformation to the elements of Ai

is required).
3) M1 subsets B′i ⊆ B̃i and M2 subsets A′i ⊆ Ãi appear

in the solution, where M1 < M2 and M1 +M2 = 2M .
A solution of size at least M to l-SP is obtained in a
similar way to the previous case.

The transformation Ai,Bi → Ãi, B̃i is polynomial in L,
since it merely requires to build L sets of size k and to add one
element to each of the resulting 2L sets. Thus, the reduction
described above is a polynomial time reduction. Therefore, M -
nkMTP is NP-complete for k ≥ 3, n = k + 1, and it remains
to show that M -nkMTP is NP-complete for k ≥ 3, n > k+ 1.
Consider M -nkMTP with k ≥ 3, n = k + 2. We can reduce
M -nkMTP with k ≥ 3, n = k + 1 (which we proved to be
NP-complete) to M -nkMTP with k ≥ 3, n = k + 2, similarly
to the reduction of l-SP to M -nkMTP with k = l, n = k + 1
that was described earlier. Continuing in the same fashion, we
are able to reduce M -nkMTP with n = k + j (k ≥ 3, j ≥ 1)
to M -nkMTP with n = k+ j+1. Finally, we deduce that M -
nkMTP is NP-complete for 3 ≤ k ≤ n, meaning that nkMTP
(the optimization version of M -nkMTP) is NP-hard.

APPENDIX B
puncover AND pcyccover

The following derivation of puncover (see Section V-A) is
based on the union model [24]. Define the function:

Im (i, n) =

min(i,n)−m∑
j=0

(−1)
j · νm+j (i, n) ·

(
m+ j

m

)
,

where

νm+j (i, n) =

(
N

m+ j

)
·
(
N − (m+ j)

i− (m+ j)

)
·
(
N − (m+ j)

n− (m+ j)

)
,

(20)
for i = 0, 1, ..., N . Im is the number of ways to realize two
sets of cardinalities i and n, taken from a set of N elements,
such that their intersection is of cardinality m. Define the
probability distribution Rm:

Rm (i, n) =
Im (i, n)(
N
i

)
·
(
N
n

) , (21)

which is the probability that two sets of cardinalities i and n,
taken uniformly at random from a set of N elements, have an
intersection of cardinality m. Define the following (N + 1)×
(N + 1) Markov matrix, with indices i, j ranging from 0 to
N :

(Γ)i,j = Ri+n−j (i, n) . (22)

The (i, j) entry of Γ is the probability that the union of a set
with i elements and a set with n elements is of cardinality j.
Finally, puncover is the sum of the first kL entries in the first row
of ΓL (we assume that kL ≤ N ).
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To obtain pcyccover, we use the probability distribution on V ,
the number of vacant points on the circle when L random arcs
are placed without replacement. A closed-form expression for
this distribution is given in Theorem 1 in [27]. This expression
is rather long and depends on the parameter range so we do
not provide this here. We are actually interested in the number
of non-vacant points (i.e., how many MUs are covered by the
packets) which is the probability distribution of N −V . As in
our case the arcs are taken with replacement, we condition the
probability distribution of N−V by the probability distribution
on the number of distinct arcs among L random arcs using the
balls-and-bins model (i.e., (19) with b = L). We note here that
sampling with replacement is discussed as well in Chapter 4.1
of [27].
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