
1

Codes for Asymmetric Limited-Magnitude Errors
with Application to Multi-Level Flash Memories
Yuval Cassuto,Member, IEEE, Moshe Schwartz,Member, IEEE, Vasken Bohossian, and Jehoshua

Bruck, Fellow, IEEE

Abstract—Several physical effects that limit the reliability and
performance of Multilevel Flash Memories induce errors that
have low magnitudes and are dominantly asymmetric. This paper
studies block codes for asymmetric limited-magnitude errors
over q-ary channels. We propose code constructions and bounds
for such channels when the number of errors is bounded byt
and the error magnitudes are bounded byℓ. The constructions
utilize known codes for symmetric errors, over small alphabets,
to protect large-alphabet symbols from asymmetric limited-
magnitude errors. The encoding and decoding of these codes are
performed over the small alphabet whose size depends only onthe
maximum error magnitude and is independent of the alphabet
size of the outer code. Moreover, the size of the codes is shown
to exceed the sizes of known codes (for related error models),
and asymptotic rate-optimality results are proved. Extensions
of the construction are proposed to accommodate variationson
the error model and to include systematic codes as a benefit to
practical implementation.

Index Terms—asymmetric limited-magnitude errors, error-
correcting codes, Flash memory codes, q-ary codes, systematic
codes

I. I NTRODUCTION

T HE most well-studied model for error-correcting codes is
the model of symmetric errors. According to this model,

a symbol, taken from the code alphabet, is changed to another
symbol from the same alphabet, and all such transitions are
equally likely. The popularity of this model stems from both
its applicability to a broad set of applications, and from the
powerful construction techniques that were found to address
it. In addition to the symmetric model, many other models,
variations and generalizations were studied, each motivated
by a behavior of practical systems or applications.

In this paper we study block codes that correctAsymmetric
Limited-Magnitude errors. This model is parameterized by two
integer parameters:t is the maximum number of symbol errors
within a codeword, andℓ is the maximal magnitude of an error.
This model is motivated by error mechanisms that affect Multi-
Level Flash Memory reliability and access speed.

Yuval Cassuto is with Hitachi Global Storage Technologies,
3403 Yerba Buena Rd., San Jose, CA 95135, U.S.A. (e-mail:
yuval.cassuto@hitachigst.com).

Moshe Schwartz is with the Department of Electrical and Computer
Engineering, Ben-Gurion University, Beer Sheva 84105, Israel (e-mail:
schwartz@ee.bgu.ac.il).

Vasken Bohossian was with the Department of Electrical Engineering,
California Institute of Technology, 1200 E California Blvd., Mail Code 136-
93, Pasadena, CA 91125, U.S.A. (e-mail: vincent@paradise.caltech.edu).

Jehoshua Bruck is with the Department of Electrical Engineering, California
Institute of Technology, 1200 E California Blvd., Mail Code136-93, Pasadena,
CA 91125, U.S.A. (e-mail: bruck@paradise.caltech.edu).

This work was supported in part by the Caltech Lee Center for Advanced
Networking and by GIF grant 2179-1785.10/2007.

Flash Memory is a Non-Volatile Memory (NVM) technol-
ogy that is both electrically programmable and electrically
erasable. To scale the storage density of Flash memories, the
Multi-Level Flash Cell concept is used to increase the number
of stored bits in a cell [5]. Thus each Multi-Level Flash cell
stores one ofq levels and can be regarded as a symbol over a
discrete alphabet of sizeq. Flash devices exhibit a multitude
of complex error types and behaviors, but common to all
flavors of Flash storage is the inherent asymmetry between
cell programming (charge placement) and cell erasing (charge
removal). This asymmetry causes significant error sources to
change cell levels in one dominant direction. Moreover, many
reported common Flash error mechanisms induce errors whose
magnitudes (the number of level changes) are small, and
independent of the alphabet size, which may be significantly
larger than the typical error magnitude. Altogether, Flash
errors strongly motivate the model of asymmetric limited-
magnitude errors studied in this paper. In addition to the
(uncontrolled) errors that challenge Flash Memory design and
operation, codes for asymmetric limited-magnitude errorscan
be used to speed-up memory access by allowing less-precise
programming schemes that introduce errors in a controlled
way. While not a panacea for all Flash issues, the potential
error mitigation and performance boost by asymmetric limited-
magnitude codes, justify their addition, alongside other coding
innovations, to the menu of Flash coding solutions.

Asymmetric limited-magnitude error-correcting codes were
proposed in [1] for the special case of correctingall such errors
within a codeword. These codes turn out to be a special case
of the general construction method provided here. Previous
works that treated related error models include [2],[15] and
[9].

The following example illustrates the coding problem and
introduces the main idea of the code construction. Suppose we
have a set of5 cells, each in one ofq = 8 possible levels,
marked by the integers{0, 1, . . . , 7}. The design goal is now
chosen to be protecting this set of cells againstt = 2 errors
of magnitudeℓ = 1 in the upward direction. As illustrated by
the sample words in Figure 1 below, if the stored levels are
restricted to have either all symbols with even parity or all
symbols with odd parity, the required protection is achieved.
For each of the two sample codewords in row (a) of Figure 1,
the channel introduces two upward errors of magnitude1
(b). By even/odd majority, the locations of the errors are
detected (c), in bold, and the original symbols are recovered
by decrementing the erroneous symbols (d).

The example above is one instantiation of a general con-
struction method that provides codes for all possible code
parameters. The main strength of this method is that for any

2

(a)

(b)

(c)

(d)

Sample 1 Sample 2

codewordcodeword

corruptedcorrupted

detecteddetected

correctedcorrected

0

1

1

1

11

1

2

2

22

2

2

3

3 3

3 3

3

44

4

4

4

5

5

5

5

6

6

6

6

0

1

1 2

2 3

3

4

Figure 1. Example of correcting asymmetric limited-magnitude errors

target alphabet size (determined by the number of levels),
asymmetric limited-magnitude error-correctability is inherited
from symmetric error correctability of codes over alphabets of
size ℓ + 1 (in the case of the example above, it is the binary
repetition code). Thus a rich selection of known symmetric-
error-correcting codes becomes handy to offer codes that are
optimized for the asymmetric limited-magnitude channel. As
a favorable by-product of the construction method, encoding
and decoding of the resulting codes are performed on alphabets
whose sizes depend only onℓ, irrespective of the code alphabet
(which may be much larger thanℓ). Working with both the
(ℓ + 1)-ary andq-ary alphabets provides advantage in both
redundancy and complexity, compared to earlier works on
codes for Multilevel Flash memories [7] that employ pureq-
ary constructions.

After discussing the asymmetricℓ-limited-magnitude error
model in Section II, the main code construction is presentedin
Section III, together with encoding and decoding procedures.
Evaluation of the resulting codes is performed in Section IV,
where asymptotic optimality is shown forℓ = 1 and for a
generalℓ when t grows “slowly” relative to the code length
n. A more conclusive optimality is shown by constructing
codes that are perfect in the asymmetricℓ-limited-magnitude
error model. In addition, Section IV compares the code sizes
to sizes of codes for a related error model. Section V and
Section VI discuss extensions of the code construction with
motivations from practical applications. Those include the
construction of systematic codes (V), and codes for simul-
taneous asymmetric and symmetric limited-magnitude errors
(VI). Finally, section VII discusses the usage of asymmetric
limited-magnitude codes in Flash devices, by showing their
effectiveness in speeding up the memory write access.

II. t ASYMMETRIC ℓ-L IMITED -MAGNITUDE

ERROR-CORRECTINGCODES

An alphabetQ of size q is defined as the set of integers
moduloq: {0, 1, 2, . . . , q− 1}. For a codewordx∈Qn and a
channel outputy∈Qn, the definition of asymmetric limited-
magnitude errors now follows.

Definition 1. A vector of integerse = (e1, . . . , en) is called at
asymmetricℓ-limited-magnitude error word if|{i : ei 6= 0}| 6
t, and for all i, 0 6 ei 6 ℓ. Given a codewordx∈Qn,
a t asymmetricℓ-limited-magnitude channel outputs a vector
y∈Qn, such thatx+ e = y, ande is at asymmetricℓ-limited-
magnitude error word. The+ symbol denotes addition over the
reals.

Note that somet asymmetricℓ-limited-magnitude error words
e make y overshoot beyond the upper alphabet symbol, for
which reason the restrictiony∈Qn was added. A general-
ization of the above definition is when we allow asymmetric
errors to wrap around (fromq − 1 back to 0), whereby we
interpret the+ symbol above as addition moduloq.

The q-ary asymmetricℓ-limited-magnitude error model
studied in this paper is a generalization of the binary
asymmetric-error model studied by numerous authors (see [10]
for a detailed treatment of this channel). Another generaliza-
tion, proposed by Varshamov [15], studiesq-ary asymmetric
errors that have no magnitude limit for individual coordinates,
but the sum of the error-vector elements is bounded by
some integerT. When T = tℓ, codes for the Varshamov
channel trivially correctt asymmetric ℓ-limited-magnitude
errors. However, for many applications, such as Multi-Level
Flash memories, the Varshamov channel may be too strong
an error model. These applications can greatly benefit from
the constructions presented here, which give better codes in
terms of size, and also enjoy simple encoding and decoding
algorithms.

The discussion of codes for the asymmetricℓ-limited-
magnitude channel-model is commenced with the definition
of a distance that captures the correctability oft asymmetric
ℓ-limited-magnitude errors.

Definition 2. For x = (x1, . . . , xn)∈Qn and z =
(z1, . . . , zn)∈Qn, defineN(x, z) = |{i : xi > zi}|. The dis-
tancedℓ between the wordsx, z is defined

dℓ(x, z) =

=

{

n + 1 if maxi {|xi − zi|} > ℓ

max(N(x, z),N(z, x)) otherwise

The dℓ distance defined above allows to determine the
number ofℓ-limited-magnitude errors, correctable by a code
C.

Proposition 3. A codeC ⊆ Qn can correctt asymmetricℓ-
limited-magnitude errors if and only ifdℓ(x, z) > t + 1 for all
distinctx, z∈ C.

Proof: A code fails to correct at asymmetricℓ-limited-
magnitude error word if and only if there exist two distinct
codewordsx,z and two t asymmetricℓ-limited-magnitude
error wordse, f , such thatx + e = z + f , or equivalently,
x− z = f − e.

(⇐) Assume that for a pairx,z, dℓ(x, z) > t + 1. Then at
least one of the following holds:

1) N(x, z) > t or N(z, x) > t
2) |xi − zi| > ℓ for at least one indexi∈ {1, . . . , n}.

3

Case 1 implies thatf − e has either more thant positive
elements or more thant negative elements, none of which is
possible by the definition of the error vectorse, f .

Case 2 implies that for somei, eitherei > ℓ or fi > ℓ, both
impossible by the definition ofe, f .

Since the same arguments apply to anyx,z in the code,
it necessarily corrects all possiblet asymmetricℓ-limited-
magnitude errors.

(⇒) Assume there exist a pair of codewordsx,z, for which
dℓ(x, z) 6 t < n. Then bothN(x, z) 6 t and N(z, x) 6 t
are true, and|xi − zi| 6 ℓ at all positionsi. In that case we
can set fi = xi − zi at all positionsi such thatxi > zi and
ei = zi − xi at all positionsi such thatzi > xi. With zeros
at all other positions, suche, f satisfyx− z = f − e without
violating the conditions oft asymmetricℓ-limited-magnitude
errors.

The following Corollary states that the same distancedℓ
captures the errordetection capability of the code, unless
no codeword is greater than or equal to another codeword
on every coordinate, in which case the code detects all
asymmetricℓ-limited-magnitude errors. Detailed treatment of
joint correction/detection is beyond the scope of this paper,
but these properties can be analyzed using similar methods to
binary asymmetric codes [2].

Corollary 4. Unless

∀(x∈ C , z∈C) : min(N(x, z),N(z, x)) > 0, (1)

a codeC ⊆ Qn candetectt asymmetricℓ-limited-magnitude
errors if and only ifdℓ(x, z) > t + 1 for all distinct x, z∈C.
If (1) is met, then the code detectsall asymmetricℓ-limited-
magnitude errors.

Proof: The proof is essentially the same as of Propo-
sition 3, only with e = 0. If (1) is not met, then for a
codeword pair withN(z, x) = 0 the equalityx − z = f
provides the same necessary and sufficient conditions as the
former x− z = f − e. If, on the other hand, (1) is met, i.e.
all codeword pairs have bothN(x, z) > 0 andN(z, x) > 0,
then no all-positivef can equalx− z, and the code detects
all asymmetricℓ-limited-magnitude errors.

Although the asymmetricℓ-limited-magnitude distance-
measuredℓ is not a metric (since the triangle inequality does
not hold), it still provides a necessary and sufficient condi-
tion for the correctability of asymmetricℓ-limited-magnitude
errors. In subsequent sections, it will be used both to prove
the correction capability of code constructions, and to obtain
upper bounds on the size of codes.

III. C ONSTRUCTION OFt ASYMMETRIC

ℓ-L IMITED -MAGNITUDE ERROR-CORRECTINGCODES

We now provide the main construction of the paper. We
note that the general idea of the basic code construction
below, restricted to binary codes (q′ = 2), has appeared in
Construction A of [11], for a different application (sphere
packings in Euclidean spaces). The same work also considered
the encoding and decoding of Construction A codes, which
appear here in sub-sections III-B and III-C for the general case

of q′ > 2. For notational convenience, givenx = (x1, . . . , xn),
the vector (x1 mod q′ , x2 mod q′, . . . , xn mod q′) will be
denoted byx mod q′. To obtain a code over alphabetQ that
correctst or less asymmetric errors ofℓ-limited-magnitude,
one can use codes for symmetric errors over small alphabets
as follows.

Construction 1. Let Σ be a code over the alphabetQ′ of size
q′ = ℓ + 1. The codeC over the alphabetQ of sizeq (q >
ℓ + 1) is defined as

C =
{

x = (x1, . . . , xn)∈Qn : x mod q′ ∈ Σ
}

. (2)

In other words, the codewords ofC are the subset of the words
of Qn that are mapped to codewords ofΣ, when their symbols
are reduced moduloq′ = ℓ + 1.

Codes obtained by Construction 1 have the following error-
correction capability.

Theorem 5. C correctst asymmetricℓ-limited-magnitude er-
rors if Σ correctst symmetric errors. Ifq > 2ℓ,1 the converse
is true as well.

Proof: The proof proceeds by showing that any pair of
distinct codewordsx, z∈ C is at dℓ distance of at leastt + 1
apart. By Proposition 3, this would conclude thatC corrects
all t asymmetricℓ-limited-magnitude errors. We distinguish
between two cases:

In the first casex mod q′ = z mod q′. Sincex 6= z, this
implies that for at least one indexi∈ {1, . . . , n}, |xi − zi| >
ℓ, settling theirdℓ distance to ben + 1.

In the other case,x mod q′ 6= z mod q′. The fact thatΣ
has minimum Hamming distance of at least2t + 1 implies
that x and z differ in at least2t + 1 locations and thus, in
particular,max(N(x, z),N(z, x)) > t + 1.

For the converse, ifΣ does not correct allt symmetric
errors, then there exists a quadruple(χ∈ Σ,ζ ∈Σ, e, f), such
that χ+ e ≡ ζ + f (mod q′), and e, f are t asymmetricℓ-
limited-magnitude error vectors. Therefore, the vectorsx =
χ+ q′ ·∆(ζ + f − χ− e) andz = ζ + q′ ·∆(χ+ e−ζ − f),
(where∆(v) is a vector with ones wherevi > 0 and zeros
elsewhere), are codewords ofC and they satisfyx+ e = z+ f .
Since q > 2ℓ, the last sum is a valid channel output. We
conclude that there exists an uncorrectable error word forC,
and the converse follows.

Construction 1 is clearly useful as it leverages the com-
prehensively studied theory of codes for symmetric errors,
to obtain codes for asymmetric limited-magnitude errors.
However, Construction 1 is a special case of the following
construction.

Construction 1A. Let Σ be a code over the alphabetQ′ of size
q′. The codeC over the alphabetQ of sizeq (q > q′ > ℓ) is
defined as

C =
{

x = (x1, . . . , xn)∈Qn : x mod q′ ∈ Σ
}

. (3)

The relationship betweenC andΣ in the general case are
summarized below. The proof is almost identical to that of
Theorem 5.

1The biggest motivation to use asymmetric limited-magnitude codes is
when q ≫ ℓ, so q > 2ℓ is a reasonable condition.

4

Theorem 6. C correctst asymmetricℓ-limited-magnitude er-
rors ifΣ correctst asymmetricℓ-limited-magnitude errors with
wrap-around. Ifq > q′ + ℓ, the converse is true as well.

Remark: If q′ | q then C correctst asymmetricℓ-limited-
magnitude errorswith wrap-around for Σ with the same
properties as above.

It is easy to see how Construction 1 is a special case of
Construction 1A. Whenq′ = ℓ + 1, an asymmetricℓ-limited-
magnitude error with wrap-around is equivalent to a symmetric
error (with no magnitude limit).

A. Discussion and Analysis of Code Constructions

The size of the codeC is bounded from below and from
above by the following theorem.

Theorem 7.The number of codewords in the codeC is bounded
by the following inequalities,

⌊

q

q′

⌋n

· |Σ| 6 |C| 6

⌈

q

q′

⌉n

· |Σ| . (4)

Proof: Let χ = (χ1, . . . , χn) be a codeword ofΣ. A
valid codeword ofC can be obtained by replacing eachχi by
any element of the set{x∈Q : x = χi (mod q′)}. The size
of this set is⌈q/q′⌉ if χi < q mod q′ and ⌊q/q′⌋ otherwise.
Thus for any codeΣ, the lower and upper bounds above follow.

In the special case whenq′ = 2, the size ofC can be
obtained exactly from the weight enumerator ofΣ.

Theorem 8. Let q′ = 2 andΣ be a code overQ′ = {0, 1}.
Then the size of the codeC, as defined in(3), is given by

|C| =
n

∑
w=0

Aw

⌈ q

2

⌉n−w ⌊ q

2

⌋w

whereAw is the number of codewords ofΣ with Hamming
weightw.

Proof: When2 | q, the right hand side equals(q/2)n · |Σ|,
as the matching lower and upper bounds of (4) predict. When
2 ∤ q, a 0 in χ can be replaced by⌈q/2⌉ different symbols of
Q and a1 in χ can be replaced by⌊q/2⌋ different symbols.
Using the weight enumerator ofΣ we obtain the exact value
for the size ofC above.

This theorem can be extended toq′ > 2, but in such cases
knowing the weight distribution ofΣ does not suffice, and
more detailed enumeration of the code is needed for an exact
count.

The ℓ-AEC codes suggested in [1], that correct all asym-
metric ℓ-limited-magnitude errors, can also be regarded as a
special case of this construction method. To show that, let
0 be the trivial lengthn code over the alphabetQ′ of size
q′ = ℓ + 1, that contains only the all-zero codeword. Define

C =
{

x∈Qn : x mod q′ ∈ 0
}

=
{

x∈Qn : xi ≡ 0 mod q′ for i = 1, 2, . . . , n
}

[1].

Since0 can correctt = n symmetric errors,C can correct
t = n asymmetricℓ-limited-magnitude errors.

B. Decoding

The main construction of this paper (Construction 1) re-
duces the problem of constructing asymmetricℓ-limited-
magnitude error-correcting codes, to the problem of construct-
ing codes for symmetric errors. The correction capability
of the code constructions was proved earlier in the section
using arguments on their minimumdℓ distance, arguments
that have a non-algorithmic character. We next show that
a similar reduction applies also to the algorithmic problem
of efficiently decoding asymmetricℓ-limited-magnitude error-
correcting codes.

In the following, we describe how, given a decoding algo-
rithm for the codeΣ, one can obtain a decoder for the codeC,
that has essentially the same decoding complexity, with only
a few additional simple arithmetic operations. The decoding
procedure herein refers to the more general Construction 1A,
and it clearly applies to the special case of Construction 1
(q′ = ℓ + 1).

Let x = (x1, . . . , xn)∈C be a codeword andy =
(y1, . . . , yn)∈Qn be the channel output when up tot asym-
metric ℓ-limited-magnitude errors have occurred. Denote the
correspondingΣ codeword byχ = x mod q′, and also
defineψ = y mod q′ and ǫ = (ψ − χ) (mod q′). First
we observe that sinceq′ > ℓ, if 0 6 yi − xi 6 ℓ then
yi − xi = (yi − xi) mod q′. Using the simple modular
identity

(yi − xi) mod q′ = (yi mod q′ − xi mod q′) mod q′

= (ψi − χi) mod q′ = ǫi,

we get thatyi− xi = ǫi, and in particular, if0 6 yi− xi 6 ℓ,
then 0 6 ǫi 6 ℓ. In other words, if the codewordx over Q
suffered an asymmetricℓ-limited-magnitude error at location
i, then the codewordχ over Q′ suffered an asymmetricℓ-
limited-magnitude error with wrap-around at the same location
i, and with the same magnitude. Given at mostt asymmetric
ℓ-limited-magnitude errors with wrap-around, a decoder forΣ

can recoverǫ fromψ. Thus, the equalityyi − xi = ǫi allows
the same decoder to recoverx from y.

A schematic decoder of an asymmetricℓ-limited-magnitude
error-correcting codeC that uses a decoder for a symmetric
error-correcting codeΣ is given in Figure 2. Given a channel
outputy∈Qn, the decoder takes the symbol-wise moduloq′

of y to obtainψ∈Q′n. Then a decoder forΣ is invoked with
the inputψ and an error estimatêǫ is obtained such that
χ̂+ ǫ̂ ≡ ψ (mod q′), and χ̂ is a codeword ofΣ within the
correction radius of the decoder forΣ. Note that the codeword
estimateχ̂ is discarded and not used for the decoding ofC.
Finally, ǫ̂ is subtracted fromy to obtain the codeword estimate
x̂∈C.

C. Encoding

Construction 1 (and 1A) define the codeC as a subset of
Qn, without specifying how information symbols are mapped
to codewords. There are many ways to map information to
codewords ofC, and the simplest one, that applies to any
q, q′ such thatq | q′, is detailed below. For an alphabet of
size q = A · q′, whereA and q′ are integers, information is

5

y∈Qn

modq′
ψ Decoder for

Σ

ǫ̂

χ̂∈Σ

x̂∈ C

+

−

Figure 2. Decoding asymmetricℓ-limited-magnitude error-correcting codes

mapped to a lengthn codeword ofC as follows:n symbols,
(a1, . . . , an), over the alphabet of sizeA are set as pure infor-
mation symbols. Additionally,k information symbols over the
alphabet of sizeq′ are input to an encoder ofΣ to obtainn
symbols,(χ1, . . . , χn), over the same alphabet. Finally, each
code symbolxi overQ is calculated byai · q′ + χi.

Other encoding functions can map information symbols to
codewords ofC in a different way than the simple encoding
function above. Different mappings with good properties are
discussed in Section V and Section VI.

Example 1 now attempts to convey the main ideas of the
encoding and decoding of asymmetricℓ-limited-magnitude
error-correcting codes.

Example 1. Let ΣH be the binary2 Hamming code of length
n = 2m − 1, for some integerm. First we define the codeCH
in the way of Construction1.

CH = {x = (x1, . . . , xn)∈Qn : x mod 2∈ΣH} .

By the properties ofΣH, the codeCH corrects a single asym-
metricℓ = 1 limited-magnitude error. When the code alphabet
size isq = 2b, for some integerb, the codeCH, whose size
equals|CH| = An · q′n−m = 2(b−1)n · 2n−m = 2nb−m by
equation(4), admits a simple function fromnb − m informa-
tion bits to codewords ofCH overQ, as illustrated in Figure3
below. In Figure3 (a),nb−m information bits are input to the
encoder. The encoder then uses a binary Hamming encoder to
encoden−m of the information bits into a lengthn Hamming
codeword (Figure3 (b)). Finally, in Figure3 (c), each q-ary
symbol of the codewordx∈CH is constructed fromb bits using
the usual binary-to-integer conversion, the top row being the
least-significant bits ofxi ∈Q.

Decoding is carried out by using a Hamming decoder on the
top row to find the limited-magnitude error location and mag-
nitude (for binary Hamming codes the magnitude is always1).
The top row word isnotcorrected by the Hamming decoder, but
rather the error magnitude is subtracted from theQ-ary wordy
to obtain a decoded codeword. To recover the information bits
after decoding, theQ symbols are converted back to bits in the
usual way, and them parity bits are discarded.

2Non-binary Hamming codes can be used as well whenℓ > 1.

(a) (b)

(c)

n n

m

b b
n(b− 1) info n(b− 1) info

n−m info n−m infom parity ∈ΣH

xi ∈Q =
{

0, 1, . . . , 2b − 1
}

lsb

msb

Figure 3. Encoding Procedure forCH

IV. OPTIMALITY OF THE CODE CONSTRUCTION AND

COMPARISON TORELATED CODES

A. Perfect Codes

For some parameters, the codes constructed in the previous
section are the best conceivable ones for the asymmetricℓ-
limited-magnitude error model. These codes areperfect codes
in the sense that they attain the sphere-packing bound for
asymmetricℓ-limited-magnitude errors. Theq-ary symmetric
sphere-packing bound is first generalized to asymmetricℓ-
limited-magnitude errors (with wrap-around), and then it is
shown that asymmetricℓ-limited-magnitude error-correcting
codes that meet this bound with equality can be obtained by
using other known perfect codes, e.g., perfect codes in the
Hamming metric.

Theorem 9. If C is a t asymmetricℓ-limited-magnitude (with
wrap-around) error-correcting code, of lengthn over an alpha-
bet of sizeq, then

|C| ·
t

∑
i=0

(

n

i

)

ℓi 6 qn. (5)

Proof: The proof is essentially the same as the proof of
theq-ary sphere-packing bound for symmetric errors [8, Ch.1],
with ℓ replacingq− 1 in the sum.

Perfect t asymmetricℓ-limited-magnitude error-correcting
codes are obtained through the following proposition.

Proposition 10. If there exists a perfect asymmetricℓ-limited-
magnitude code over an alphabet of sizeq′, then there exists
a perfect asymmetricℓ-limited-magnitude code with the same
length, over an alphabet of any sizeq, such thatq′ | q, that
corrects the same number of errors.

Proof: Let C andΣ be as in Construction 1A. We first
substitute the expression for the code size from (4) into the
left side of the sphere packing bound

|C| ·
t

∑
i=0

(

n

i

)

ℓi =

(

q

q′

)n

· |Σ| ·
t

∑
i=0

(

n

i

)

ℓi.

6

If the codeΣ over the alphabet of sizeq′ is perfect, then its
size satisfies

|Σ| ·
t

∑
i=0

(

n

i

)

ℓi = q′n

Substituting the latter into the former we get

|C| ·
t

∑
i=0

(

n

i

)

ℓi =

(

q

q′

)n

· q′n = qn,

which completes the proof.
Alternatively, perfect codes are codes which induce a par-

tition of the space into error spheres. As was already noted,
whenq′ = ℓ + 1, the t asymmetricℓ-limited-magnitude error
sphere coincides with the Hamming metrict symmetric error
sphere. Thus, takingΣ to be a perfect code in the Hamming
metric (e.g., Hamming or Golay codes), produces perfect
asymmetricℓ-limited-magnitude error-correcting codes over
an alphabet of sizeq, whereq′ | q.

Other perfect codes may exist even whenq′ 6= ℓ + 1. For
example, whent = 1, the asymmetricℓ-limited-magnitude
error sphere is the semi-cross examined by Stein in [14].

One may wonder if anyinherently new perfect code is
produced by Construction 1A. The answer, unfortunately, is
no: Construction 1A simply takes translations of the tiling
provided by the base codeΣ to accommodate for the larger
alphabet. This is depicted in the following example.

Example 2.Let Σ be the perfect ternary lengthn = 2 code ca-
pable of correcting one asymmetric1-limited-magnitude error,
Σ = {00, 11, 22}. The code induces a tiling ofZ2

3 with the
error sphere, and is shown in Figure4. Since this tiling is with
wrap-around, it also induces a natural tiling with wrap-around
of Z2

3k for every k∈N. Specifically, forC, the code over an
alphabet of size6 produced fromΣ by Construction1A, the
resulting tiling is also shown in Figure4.

(a) (b)

Figure 4. In Example 2, the tilings induced by (a) the codeΣ, and (b) the
codeC

B. Asymptotic Optimality of Construction 1

The implication of Construction 1 is that “large” codes
for symmetric errors over an alphabet of sizeℓ + 1 imply
“large” codes for asymmetricℓ-limited-magnitude errors over
any larger alphabet. Showing the reverse implication, namely,
that “large” codes for asymmetricℓ-limited-magnitude errors

imply “large” codes for symmetric errors, would conclude that
Construction 1 is optimal. Optimality is achieved in this case
since given the “large” code for symmetric errors implied
by the reverse direction, Construction 1 can be invoked to
yield code of the same size as the original “large” code for
asymmetricℓ-limited-magnitude errors. The purpose of this
subsection is to show that asymptotically, Construction 1 gives
the largest possible codes for asymmetricℓ-limited-magnitude
errors.

Definition 11. Define the rateR of a codeC of lengthn over an
alphabet of sizeq as

R =
1

n
logq |C|

where|C| is the number of codewords inC.

Theorem 12.If C̃ is at asymmetricℓ-limited-magnitude error-
correcting code with rateR and block-lengthn that tends to
infinity, then

1) When ℓ = 1 and for arbitraryt, there exists a codeC,
constructed by Construction1, with rate of at leastR.

2) For general ℓ and for t = o(n/ log n) (i.e.,
limn→∞ t log n/n = 0, or in words, t has a slower
asymptotic growth compared ton/ log n), there exists a
codeC, constructed by Construction1, with rate of at
leastR.

Proof: We first introduce the following notation. Let
AℓMa(n, t) be the size of the largest lengthn code that cor-
rectst asymmetricℓ-limited-magnitude errors over an alphabet
of size a. Let Asyma(n, t) be the size of the largest lengthn
code that correctst asymmetric errors (symbols change only
in the upward direction, with no magnitude limit), over an
alphabet of sizea. Finally, let Sa(n, t) be the size of the
largest lengthn code that correctst symmetric errors, over
an alphabet of sizea. Sa(n, t) used here is a replacement
of the more commonly usedAa(n, d) [8, Ch.2], whereby the
parameterd stands for the minimum Hamming distance of the
code instead of the number of correctable symmetric errors
(thereforeSa(n, t) = Aa(n, 2t+ 1)).

To avoid the excessive use of the⌈·⌉ operator, assume
that (ℓ + 1) | q. The set of allqn words over the alphabet
of size q is partitioned by the quotient groupZn

q/Zn
ℓ+1 into

qn/(ℓ + 1)n subsets, each of size(ℓ + 1)n. In other words,
each subset contains a single word whose symbol-wise modulo
ℓ + 1 equals the all zero vector. In addition to this vector, the
subset contains the sum of that vector with all(ℓ + 1)n − 1
non-zero vectors over the alphabet of sizeℓ + 1. Each subset
has the property that no two words within it differ in any
coordinate by more thanℓ. A sample such partition forn = 2,
q = 4 and ℓ = 1 is given below.

0 0 0 2 2 0 2 2
0 1 0 3 2 1 2 3
1 0 1 2 3 0 3 2
1 1 1 3 3 1 3 3

This property is equivalent to havingdℓ(x, z) < n + 1 for
everyx, z in the subset.

7

Suppose there is a codẽC that correctst asymmetricℓ-
limited-magnitude errors. Then there exists at least one subset,
with at least

∣

∣C̃
∣

∣ (ℓ + 1)n/qn codewords ofC̃. Since any
two codewordsx, z in that subset satisfydℓ(x, z) < n + 1,
each such pair has to satisfymax(N(x, z),N(z, x)) > t.
In other words, the codewords of̃C that belong to the same
subset, form a code that correctst asymmetric errors with
no magnitude limit of size at least

∣

∣C̃
∣

∣ (ℓ + 1)n/qn. Without
loss of generality, assume the subset with the most codewords
is the one that contains the all zero codeword. Generality is
maintained since neitherN(x, z) nor N(z, x) are changed
when a constant vector is subtracted from bothx and z.
Consequently, the codewords of this subset imply the existence
of a code over an alphabet of sizeℓ + 1 that correctst
asymmetric errors with no magnitude limit. Formally,

Asymℓ+1(n, t) >
(

ℓ+1
q

)n
AℓMq(n, t).

On the other hand, Construction 1 and Theorem 7 provide
the following lower bound onAℓMq(n, t):

AℓMq(n, t) > (q
ℓ+1)

n
Sℓ+1(n, t)

Combining the lower and upper bounds we obtain

Sℓ+1(n, t) 6
(

ℓ+1
q

)n
AℓMq(n, t) 6 Asymℓ+1(n, t) (6)

which is consistent with the trivial inequalitySℓ+1(n, t) 6
Asymℓ+1(n, t) (any code for symmetric errors is also a code
for asymmetric errors). The proof of the theorem is achieved
by bounding the gap betweenSℓ+1(n, t) and Asymℓ+1(n, t)
using the following lemmas.

Lemma 13.[4]: S2(n, t) > 1
t+1Asym2(n, t).

Proof: See [10].

Lemma 14.Sℓ+1(n, t) > 1
(nℓ)2t

Asymℓ+1(n, t).

Proof: We will show that a code for symmetric errors can
be obtained from a code for asymmetric errors by expurgating
all but at least a1/(nℓ)2t fraction of codewords of the
asymmetric-error-correcting code.

Any two codewords in at asymmetric-error-correcting code
have Hamming distance of at leastt+ 1. Any two codewords
in a t symmetric-error-correcting code have Hamming distance
of at least2t+ 1. The number of words (and in particular, an
upper bound on the number of codewords) that are at distance
betweent + 1 and 2t from a codeword of at asymmetric-
error-correcting code is

2t

∑
i=t+1

(

n

i

)

ℓi = ℓt
t

∑
i=1

(

n

t+ i

)

ℓi.

Since(n
t+i) < nt+i/t,

ℓt
t

∑
i=1

(

n

t + i

)

ℓi < (nℓ)2t,

and thus expurgating all but at least1/(nℓ)2t of the code-
words, yields a code fort symmetric errors:

Sℓ+1(n, t) >
1

(nℓ)2t
Asymℓ+1(n, t).

Combining Lemma 13 with (6), forℓ = 1 we obtain
(q

2

)n
S2(n, t) 6 AℓMq(n, t) 6 n

(q

2

)n
S2(n, t).

While Lemma 14 end (6) imply, for generalℓ,

(q
ℓ+1)

n
Sℓ+1(n, t) 6 AℓMq(n, t) 6 (nℓ)2t(q

ℓ+1)
n
Sℓ+1(n, t).

Taking the logarithm, dividing byn and taking the limitn →
∞, the upper and lower bounds ofAℓMq(n, t) are identical
for bothℓ = 1 and for generalℓ (under the restrictions ont of
part 2 of the theorem). Hence asymmetricℓ-limited-magnitude
codes obtained from symmetric codes by Construction 1 are
asymptotically optimal.

C. Comparison to Varshamov Codes

Prior to this paper’s introduction of thet asymmetricℓ-
limited-magnitude error model, the closest error model that
achieves this correction capability is the q-ary asymmetric-
error model proposed by Varshamov [15]. In particular, the
known codes for the Varshamov channel are better than known
codes for symmetric channels. According to the Varshamov
model, parameterized by an integer parameterT, if a vector
x = (x1, . . . , xn) overQn is transmitted, the channel output is
a vectorx+ e overQn, such thatei > 0 and∑n

i=1 ei 6 T (the
addition and summation are over the reals). WhenT = tℓ, a
T error-correcting code for the Varshamov channel is also at
asymmetricℓ-limited-magnitude error-correcting code. Since
the T = tℓ Varshamov channel allows errors that are not
allowed by thet asymmetricℓ-limited-magnitude channel (i.e.,
errors with high magnitudes, which are unlikely in the target
application), we expect the code constructions of this paper to
yield better codes compared to the best known Varshamov
codes. This section thus compares between sizes of codes
that are obtained using Construction 1, and lower bounds,
provided in [13], on the sizes of various Varshamov codes.
This comparison is incomplete since it only discusses thesizes
of the codes. Evidently, ourt asymmetricℓ-limited-magnitude
codes enjoy efficient encoding and decoding procedures, a
property which Varshamov codes are not known to have in
general. We also do not discuss the restrictions on the block
sizesn of the code constructions, in order to avoid overloading
the discussion with secondary details.

1) Comparison for ℓ = 1: When the asymmetric errors
have a magnitude limit ofℓ = 1, we compare the codes of
Construction 1 to Varshamov codes withT = t. Whent = 1,
the two error models are identical and both constructions
yield (different) codes that are perfect in that metric, whose
sizes areqn/(n + 1). When t = 2 Varshamov codes are
known to haveqn/(n2 + n + 1) codewords, while using the
(punctured) Preparata codes [12, Ch.15] in Construction 1
gives2qn/(n+ 1)2, roughly twice as many codewords. For a
generalt, there exist Varshamov codes with sizesqn/(n+ 1)t.
If we apply Construction 1 with BCH codes with designed
distance2t + 1, we get the same code size. However, using
the Goppa codes [12, Ch.12] instead, is possibly superior to
Varshamov codes withqn/nt codewords.

8

2) Comparison for a General ℓ: While for ℓ = 1 the advan-
tage of the codes for asymmetricℓ-limited-magnitude errors,
in terms of the code sizes is small, for largerℓ values these
codes are significantly larger than Varshamov codes. Even if
we only use(ℓ + 1)-ary BCH codes in Construction 1, codes
of sizesqn/(n + 1)t

′
are obtained, wheret′ = 2tℓ/(ℓ + 1).

Comparing toqn/(n + 1)tℓ of Varshamov codes shows a
significant advantage to the favor of Construction 1.

V. SYSTEMATIC ASYMMETRIC L IMITED -MAGNITUDE

ERROR-CORRECTINGCODES

All its advantages notwithstanding, Construction 1 suffers
the shortcoming of not admitting a systematic representation
overQ. A codeC over an alphabetQ is said to be in systematic
form if its coordinates{x1, . . . , xn} can be partitioned into
an information setI = {x1, . . . , xk} and a parity setP =
{xk+1, . . . , xn}, such that each symbol inI is independent of
other symbols inI, and each symbol inP is (non-trivially)
a function of symbols inI only. As seen in Figure 3(b),m
code symbols contain parity contribution. Each of thesem
symbols also has a pure-information component, so it can
neither belong to theP set, nor to theI set of a systematic-
code coordinate set. This non-systematic structure implies that
“many” code symbols contain some parity contribution: a bad
property in practice as it dictates accessing many Flash cells
for each information update. In this section we proposesys-
tematic asymmetric limited-magnitude error-correcting codes
that have few parity symbols.

A. Systematic Codes for ℓ = 1 Limited-Magnitude Errors

When the error magnitudeℓ is bounded by1, the codeΣ
in Construction 1 is a binary code. As we show next for this
case, a modification of any codeC can be carried out, that
yields a systematic code with the same correction capability.
The construction method of systematic codes forℓ = 1 is first
presented in the following example.

Example 3. In this example we propose a systematic variant
to the codeCH, given in Example1. The encoding function
given below generates a code that has the same correction
capabilities asCH, namely any singleℓ = 1 asymmetric error is
correctable, though the resulting code is different. Specifically,
the dimensions of the systematic code are different. For this
example we assume that the alphabet size of the code is2m (m
– the number of parity bits in the binary code), compared to
2b for arbitraryb in CH. This assumption can be lifted with a
small increase in redundancy that depends on the actual code
parameters. For an[n, k = n−m] binary Hamming codeΣH,
the length of the systematic code isn − m + 1, compared to
n in the non-systematic case. The systematic code is encoded
as follows. In Figure5 (a), km information bits are input to
the encoder. The encoder then uses a binary Hamming encoder
to encode thek information bits of the top row into a length
n = k + m Hamming codeword (Figure5 (b)). The parity bits
of the Hamming codeword are now placed as a separate column.
The mapping of bits toQ symbols, shown in Figure5 (c), is the

(a) (b)

(c)

k

m mkm infokm info

m
p

ar
ity

m
p

ar
ity

m
in

fo

∈ΣH

xi ∈Q xi ∈Q
positional Gray

lsblsb

msbmsb

Figure 5. Encoding Procedure for a Systematic Code

usual (positional) mapping for thek information symbols, and
the Gray mapping for the parity symbol.

To decode, a word fromQk+1 is converted back to bits using
the same mappings, and a binary Hamming decoder is invoked
for then coded bits. By construction, a singleℓ = 1 asymmetric
error overQ translates to a single bit error in the Hamming
codeword: in thek information symbols, anℓ = 1 error flips
the least-significant bit that is part of the Hamming codeword,
and in the parity symbol, anℓ = 1 error flips exactly one parity
bit in the column, thanks to the Gray code used in the mapping.

The code proposed in Example 3, together with its en-
coding/decoding, can be generalized to anyℓ = 1 limited-
magnitudet asymmetric error-correcting code as stated by the
following proposition.

Proposition 15.Let Σ be a binary systematic code of lengthn
andm 6 b · r parity bits, for any two integersr andb > 1. If
Σ correctst symmetric errors, then it can be used to construct
a systematict asymmetricℓ = 1 limited-magnitude error-
correcting code over an alphabet of sizeq = 2b. This code
has lengthn−m + r, of whichr symbols are parity symbols.

Proof: The general construction follows closely the one
in Example 3. Then−m information bits are used to encode
a codeword ofΣ. Them 6 br parity bits are grouped intor
columns ofb bits each. Then theser columns are mapped to
Q symbols using the Gray mapping and information bits are
mapped to symbols using the positional mapping. The property
that each asymmetric limited-magnitude error results in one
symmetric error in the codeword ofΣ is preserved for this
general case.

B. Systematic Codes for ℓ > 1 Limited-Magnitude Errors

If we try to extend the construction of the previous sub-
section to codes forℓ > 1 limited-magnitude errors, we
immediately face a stumbling block. Although generalized
Gray codes exist for non-binary alphabets, their properties do
not suffice to guarantee a similar general construction. The
crucial property, that a single asymmetric limited-magnitude
error translates to a single symmetric error in the(ℓ + 1)-ary

9

code, is lost for the general case. For example, if forℓ = 2 a
symbol represents the ternary reflected Gray codeword0001,
then an error of magnitude2 will result in the Gray codeword
0012, whose Hamming distance to0001 is 2 and not1 as
required. Thus, a limited-magnitude error at this symbol may
induce2 errors for the ternary codeΣ. Evidently, this effect is
not unique to the(ℓ + 1)-ary reflected Gray code, and there is

no mapping betweenq-ary symbols
{

0, 1, . . . , (ℓ + 1)b − 1
}

and (ℓ + 1)-ary b-tuples with this property. This subsection
proposes a construction for systematic asymmetricℓ-limited-
magnitude error-correcting codes, for arbitraryℓ.

The construction builds on the non-systematic Construc-
tion 1. Two modifications of Construction 1 need to be
instituted to yield a systematic code. The first is using a code
Σ′ that has different correction properties thanΣ used before.
The second is a special mapping between parity symbols of
Σ′ and code symbols ofC ′ over Q.

Let q andq′ = ℓ + 1 be the alphabet sizes of the codesC ′

andΣ′, respectively. Assume for simplicity thatq = 2(ℓ+ 1)s,
for some integers. If this is not the case, the same construction
can still be used, only the mappings betweenQ′ andQ will
be slightly more complicated.

1) The Code Σ′: Let Σ be a linear systematic code over
an alphabet of sizeq′ = ℓ + 1. The number of information
symbols ofΣ is denotedκ, and the number of parity symbols
is m. The parity-check matrix ofΣ is denoted byH. Columns
{0, . . . ,m− 1} of H correspond to them parity symbols of
the codeΣ. Let H′ be the parity-check matrix that is obtained
from H by replicating all columns ini∈ {0, . . . ,m− 1} such
that i 6≡ 0 (mod s), and appending them toH. H′ is the
parity-check matrix of the linear codeΣ′ that hasm parity
symbols andκ+ ⌊m(s− 1)/s⌋ information symbols.

2) The Mapping Q′ ↔ Q for Parity Symbols: From the
m parity symbols ofΣ′, each set ofs parity symbols, denoted
φ

(j)
0 , . . . ,φ

(j)
s−1, is mapped to a single parity symbol ofC ′

using the following formula

x j = φ
(j)
0 + 2

s−1

∑
i=1

φ
(j)
i (ℓ + 1)i. (7)

The systematic codeC ′ is now specified using its encoding
function.

Construction 2. Let Σ be a [κ + m,κ] linear code over the
alphabetQ′ of sizeq′ = ℓ + 1. The systematic codeC ′ over
the alphabetQ of sizeq = 2(ℓ + 1)s hasκ + ⌊m(s− 1)/s⌋
information symbols and⌈m/s⌉ parity symbols. The parity
symbols are computed by taking the moduloℓ + 1 of the in-
formation symbols, encoding them using a systematic encoder
for Σ′, and mapping the resultingm parity symbols overQ′ to
⌈m/s⌉ symbols overQ, as described in(7).

Note that the length of the codeC ′ is κ+ ⌊m(s− 1)/s⌋+
⌈m/s⌉ = κ+ m, the length of the non-systematic codeC.
Codes obtained by Construction 2 have the following error-
correction capability.

Theorem 16. C ′ corrects t asymmetricℓ-limited-magnitude
errors ifΣ correctst symmetric errors.

Proof: The key point in the proof is that an asymmetric
ℓ-limited-magnitude error in a parity symbolj of C ′ may only

changeφ(j)
0 out of thes parity symbolsφ(j)

0 , . . . ,φ
(j)
s−1 of Σ′,

mapped to this symbol. The wayΣ′ was extended fromΣ
allows correcting errors in the added information symbols,as
long as the parity symbols whoseH columns were replicated
are guaranteed to be error free. This fact can be verified
by using a decoder forΣ′ that first computes the syndrome
using H′ and then inputs this syndrome to a decoder forΣ.
Thus t or less asymmetricℓ-limited-magnitude errors in any
combination of information and parity symbols will result in
a correctable error for the codeΣ′.

To clarify Construction 2 an example is now provided.

Example 4. Suppose we want to protect20 information bits
with a systematic code that correctst = 1 asymmetricℓ = 3
limited-magnitude error, over an alphabet of sizeq = 32. Since
t = 1 and ℓ = 3, we takeΣ to be the quaternary Hamming
code. More specifically, we chooseΣ to be the[5, 3] Hamming
code over the alphabet of sizeq′ = 4 whose parity-check matrix
is given below.

H =

[

1 0 1 1 1
0 1 1 2 3

]

Them = 2 left columns ofH correspond to the parity symbols
of Σ. Note thatq = 2(q′)s ands = 2.

Replicating the right parity column we obtainH′, the parity-
check matrix ofΣ′.

H =

[

1 0 0 1 1 1
0 1 1 1 2 3

]

The encoding of20 bits of information into a codeword of a
systematic codeC ′ with the specified parameters is described in
Figure 6. Shaded cells represent parity symbols and unshaded
cells represent information symbols. In Figure6(a), the top
two bit rows are used to encode a word ofΣ′ over the Finite
Field of size4. In the right part of Figure6(b), information bits
are mapped to symbols ofQ using the usual binary to integer
conversion. In the left part, the parity symbols ofΣ′ are mapped
to a symbol ofQ using the mapping defined in equation(7).
Figure6(c) shows the final codeword ofC ′.

As implied by the constant2 in equation (7), only half of
the alphabetQ is used in the parity symbols. That is equivalent
to 1 extra redundantbit for each parity symbol ofC ′. Note
that the half factor is true for arbitraryℓ. Wheneverℓ > 1,
that amount of additional redundancy compares favorably to
restricting the parity symbols to be0 modulo ℓ + 1, (akin to
the Ahlswede et al. “all error-correcting” scheme [1]), which
allows using only a1/(ℓ + 1) fraction of the alphabetQ in
parity symbols. It is interesting to note however, that restricting
the parity symbols to be0 moduloℓ+ 1 turns out to be optimal
for the caset = n, as proved in [6].

To better understand Construction 2, it may be beneficial
to view it as a concatenated coding scheme. The codeC ′ is
a concatenation of the outer codeΣ′ and an inner code for
each symbol (the mappingQ′ ↔ Q) that partially corrects an
asymmetricℓ-limited-magnitude error, to have the outer code
Σ′ observe at most one symmetric error. Figure 7 illustrates
this view of the systematic code construction.

10

(a)

(b)

(c)

00
00 0

0

0

00

000

0 0

1
1

1

1

1

1 1

1

1

2 23

814171219

H′

{

∑4
i=0 ai4

iφ0 + 2φ1 · 41

φ0 φ1

Figure 6. Encoding of a systematic code witht = 1 and ℓ = 3

s parity s parity
symbols symbols

of Σ′of Σ′
Q′→Q

1 bit
redundancy

AℓM Partial
ErrorError Recovery

Q→Q′

Figure 7. Concatenated Code view of Construction 2

VI. CODES FORASYMMETRIC AND SYMMETRIC

L IMITED -MAGNITUDE ERRORS

In Flash memory applications, the dominant error sources
may cause most of the errors to be in one known direction.
However, other, more secondary error sources can inject
errors that are more symmetrical in nature, but still have low
magnitudes. To answer such plausible scenarios, we addressa
variation of the asymmetricℓ-limited-magnitude error model
to include a (small) number of symmetricℓ-limited-magnitude
errors.

Definition 17. A (t↑, tl) asymmetric/symmetricℓ-limited-
magnitude error is a vectore such that|{i : ei 6= 0}| 6 t↑ + tl.
In addition,tl of the indices ofe satisfy−ℓ 6 ei 6 ℓ, and the
remainingn− tl indices satisfy0 6 ei 6 ℓ.

In the following, we present a construction method for
codes C↑,l that correct (t↑, tl) asymmetric/symmetricℓ-
limited-magnitude errors. This enhanced error correctability
is achieved by modifying Construction 1 with the addition
of an auxiliary binary code and a special mapping from
information bits toq-ary symbols. We assume for simplicity
that q = 2s(ℓ + 1), for some integers.

Construction 3.Letσ = (σ1, . . . ,σn) be a codeword of a code
Σ, over an alphabet of sizeℓ + 1, that correctst = t↑ + tl
symmetric errors. LetV = (~v1, . . . , ~vn) be a two-dimensional

binary array of sizes × n, taken from an array codeC that
corrects a single bit error in each of at mosttl columns3. Each
symbol ofx∈C↑,l is composed from a symbol of the codeword
σ and a bit vector of the codewordV as follows. For anyi,

xi = (ℓ + 1) ·Gray(~vi) +σi

whereGray(~u) is the sequential number of the vector~u in a
binary Gray code ons bits. The codeC↑,l contains all|Σ| · |C|
compositions of the codewords ofΣ andC.

Proposition 18. The code C↑,l is a (t↑, tl) asymmet-
ric/symmetricℓ-limited-magnitude error-correcting code.

Proof: Decoding ofC↑,l is performed in two steps. Firstly,
C↑,l is decoded as if it were a plaint asymmetricℓ-limited-
magnitude error-correcting code (of Construction 1). For the
tl coordinates that possibly suffered errors in the downward
direction, the first decoding step miscorrects these errorsto
exactly ℓ + 1 levels below their correct levels. Thus, for each
of thesetl miscorrections, the Gray mapping of the upper bits
of the symbol guarantees that the resulting error observed by
the codeC is a single bit error.
Example 5 below illustrates the encoding and decoding of a
code originating from Construction 3.

Example 5. In this example we protect7 symbols over an
alphabet of size q = 12 against t↑ = 2 asymmetric
errors plus tl = 1 symmetric error. Both the asymmetric and
symmetric errors have magnitude limit ofℓ = 2. In Figure8,
σ is a codeword of the ternary repetition code that corrects
t↑ + tl = 3 symmetric errors. The bits ofV , placed in two
rows, are a codeword of the (shortened) binary Hamming code
of length 14. Each column of V is mapped to an integer
in {0, 1, 2, 3} using the Gray code, and the final codeword
x combinesV andσ through the formula

x = 3 ·Gray(V) +σ

σ

V
Gray

x

0000

000
00

1 1

11

11

1
1 1

22

22

2222222

3

558811

Figure 8. Example of a code for asymmetric and symmetric limited-
magnitude errors. From top to bottom: a codewordσ of the ternary
repetition code; a binary Hamming codeword arranged into a2 ×
7 array and its Gray mapping; the final codewordx obtained by
combiningσ andV.

3Such codes can be obtained by lengthsn, binary tl error-correcting
codes, or more cleverly, using J.K. Wolf’s Tensor-Product code construction
method [16].

11

Decoding of the sample code above is illustrated in Figure9.
The codeword in (a) is corrupted by2 asymmetric (upward)
errors and1 downward error; the resulting word is given in (b).
In (c) the result of correcting3 asymmetriclimited-magnitude
errors is given. The “corrected” arraỹV is shown in (d), and
the top bit of the third column from right (marked with a bold-
face0) is found to be in error. Finally, in (e) the third symbol
from right (in bold face) is adjusted3 levels upward after a
miscorrection was detected at the previous step.

(a)

(b)

(c)

(d)

(e)

codeword

corrupted

AℓM decoded

correctedṼ

SℓM adjusted

0 000

000

11 1

111

2

2

22

2 22

2

34

5

5

5

55

88

88

8

88

10

11

11

11

11

0

5

+3

Figure 9. Example of decoding asymmetric and symmetric limited-
magnitude errors. (a) Codeword. (b) Codeword corrupted by asym-
metric and symmetric limited-magnitude errors. (c) First decoding
step: correction of asymmetric limited-magnitude (AℓM) errors. (d)
Resulting corrected codeword̃V is decoded using a Hamming de-
coder. (e) Adjusting the miscorrection of the symmetric error found
in the previous step.

Note that the amount of redundancy (of bothσ and V)
required in the example to correct(2, 1) asymmetric/symmetric
errors is smaller than ifV is not restricted and the repetition
code is taken over an alphabet of size2ℓ + 1 = 5 (that scheme
would correct3 symmetric ℓ = 2 limited magnitude errors).

The counter-intuitive part of Construction 3 is thatbinary
Gray mappings are used regardless of the error-magnitudeℓ.
This fact implies that the codesΣ andC cooperate with each
other to achieve the prescribed correction capability, otherwise
C would need to operate over a larger alphabet forℓ > 1.

VII. SPEEDING UPFLASH ACCESS WITHASYMMETRIC

L IMITED -MAGNITUDE ERROR-CORRECTINGCODES

Error-correcting codes are usually used for Forward Error
Correction (FEC), namely to protect the data integrity against
uncontrolled errors. In this section we show that asymmetric
limited-magnitude error-correcting codes, in addition tothe
standard FEC capabilities shown earlier in the paper, can be
used to speed up the writing4 process to Flash devices. This

4Memory write is referred to asprogramming in the Flash literature

is done by relaxing the programming accuracy requirements,
and using the codes to correct the resulting programming
errors. Since the Flash programming mechanism is inherently
probabilistic, the introduction of “intentional” programming
errors in a controlled way can significantly reduce the average
programming time and improve the write performance. Such
an outcome would be highly desirable given the inferiority
of Flash devices in write performance compared to their
read performance, and to the sequential write performance of
hard-disk drives. The programming speedup is next analyzed
quantitatively by calculating the savings in programming time
as a function ofℓ (the correctable error magnitude of the
employed codes).

The behavior of a typical optimized Flash programming
sequence is shown in the graphs of Figure 10, which is
taken from [3]. The integers of the horizontal axis represent
the program-pulse sequential numbers and the vertical axis
represents electric-current levels to which Flash cells are
programmed. A circle on the a graph represents a current
level achieved by a pulse at some point along the programming
sequence. The different graphs in Figure 10 represent program
sequences with different target current values. As can be
clearly seen, most of the progress toward the target value is
achieved by the early pulses, and the numerous later pulses
are used for a fine asymptotic convergence to a value very
close to the target. Therefore, having even a small error
resiliency against asymmetric limited-magnitude errors can
allow the programming sequence to terminate long before
hitting the target value (due to the asymptotic nature of the
programming curves) thus significantly speeding up memory
access. Increasing the error resiliency beyond the flat partof
the curve does not add significant benefits, as at the steeper
part of the curve the vertical concentration of programming
points becomes sparser.

Figure 10. Performance of a Flash adaptive program sequence [3].
The circles on each curve describe the results of an iterative pro-
gramming algorithm for a given target value.

To supplement the experimental evidence above, that tol-
erance to asymmetric limited-magnitude errors can speed-up
the programming sequence, a quantitative analysis of the time

12

savings is now carried out. The inputs to a Flash programming
algorithm are theinitial andtarget current levels; its output is a
programming pulse of some width and amplitude, that attempts
to move closer to the target level, under some constraints. To
have an analytic description of the programming sequence,
we need to model the programming algorithm in a way that
captures its main design constraints in practice. In Flash
devices, preventingover-programming, whereby the program-
ming result exceeds the target level, is a crucial consideration
taken by the programming algorithm. The reason for that
being that Flash devices do not support single-cell erases,and
an over-programming instance requires erasing a full Flash
block, an operation that is very costly in terms of time and
device wear. The analysis that follows, strongly builds on that
property of Flash devices.

Suppose a Flash cell is to be programmed from a lower
level Ii to a higher target levelIF. Since the changeδ in
the current level is a random variable whose distribution
depends on the chosen programming pulse, we model it as
an exponentially distributed random variable with mean1/µ.
µ will be determined by the programming algorithm as a
function of Ii, IF, and subject to a constraint of fixing a low
probability of over-programming. Specifically,µ will be taken
such that

Pr(Ii + δ > IF) = ǫ

ǫ is a global parameter that specifies the allowable probability
of over-programming. Substituting the exponential distribution
of δ, we get the integral equation

∫

∞

IF−Ii
µ exp(−µδ)dδ = ǫ (8)

(See Figure 11 for illustration.)

µ

pdf(δ)

IF − Ii
ǫ

δ

Figure 11. Choice of a programming distribution based on the speci-
fied probability of over-programming. For starting levelIi and target
level IF the parameterµ of the exponential distribution is chosen such
that the marked area under the probability density functiongraph
equalsǫ (the specified probability of over-programming)

Solving (8) and rearranging we get

µ = −
ln(ǫ)

IF − Ii

Hence we have the following relationship between the lower
level Ii and the final (higher) levelIi+1:

Ii+1 = Ii + δi , δi ∼ Exponential[− ln(ǫ)/(IF − Ii)]
(9)

Note that the parameter of the exponential distribution ofδi
at each stepi depends on the starting levelIi that is itself a
random variable.

Starting from an initial levelI0, the programming algorithm
recursively updates the cell level according to (9), and stops
after thenth step if In > IF − ∆, where∆ is the maximum
allowed deviation from the target levelIF. Discussed in
detail later, the parameter∆ specifies the device tolerance to
programming errors in the downward direction. A pictorial
illustration of the modeled programming sequence is given in
Figure 12.

IF
∆

I0

δ2

δ3

δn

δ1

I1

I2

I3

In−1

In

Figure 12. A pictorial illustration of the modeled programming
sequence. On the left side are the initial levelI0, the target level
IF and the tolerance parameter∆. In the middle is a sequence of ex-
ponentially distributed level incrementsδ1 , δ2 , . . . , δn resulting from
the programming algorithm. On the right side are the instantaneous
levels Ii until the process terminates atIn.

To analyze the performance of the programming algorithm,
we need to find the expected number of stepsn, such that

In−1 < IF −∆ 6 In

However, given the complex5 structure of the random process
Ii, finding the mean ofn is hard. Instead, we will approximate
Ii’s mean crossing time by the (deterministic) crossing time
of the mean ofIi. This latter calculation is significantly easier
since we can use the linearity of expectation to obtain a
recursive formula for the mean ofIi. The accuracy of that
approximation can be established using concentration bounds
(e.g. Chebyshev inequality), however for the discussion here
a first order approximation should suffice.

Now taking the mean of equation (9) we write

Ii+1 = Ii + E

[

1

µi

]

= Ii + Kǫ(IF − Ii) (10)

5Ii is a Markov process with an uncountable number of states

13

whereKǫ , −1/ ln(ǫ). Rewriting (10) provides a recurrence
relation on the expected programmed levels

Ii+1 = Ii(1− Kǫ) + Kǫ IF

Solving the recurrence for initial levelI0 we get the expression

In = I0(1− Kǫ)
n + IFKǫ

n

∑
i=1

(1− Kǫ)
i−1

which after simplification becomes

In = IF − (1− Kǫ)
n(IF − I0) (11)

Now, by equating (11) toIF −∆ we can calculate the timeN
when the sequence of meansIn crossesIF − ∆:

IF − (1− Kǫ)
N(IF − I0) = IF −∆

that gives

N =
log(IF − I0) − log(∆)

− log(1− Kǫ)
(12)

The importance of (12) is that it describes how the number of
required pulsesN depends on the error margin∆. To compare
the programming speed of Flash devices with and without
an asymmetric limited-magnitude error-correcting code, we
define two different error margins,∆c and∆uc, respectively
(the subscriptc stands forcoded and the subscriptuc stands for
uncoded, and obviously∆c > ∆uc). The difference between
the corresponding numbers of pulsesNuc andNc is then

Nuc − Nc =
log(∆c/∆uc)

− log(1− Kǫ)

A conservative assumption is to set∆c = (ℓ + 1)∆uc, whereℓ
is the parameter of the asymmetricℓ-limited-magnitude error-
correcting code. This assumption corresponds to allowing the
uncoded device a tolerance of one level (over the discrete
alphabetQ), and the coded device a tolerance ofℓ additional
levels for the total ofℓ + 1 levels. Under that assumption, the
savings in the number of programming pulses equals

Nuc − Nc =
log(ℓ + 1)

− log(1− Kǫ)
(13)

For an over-programming probabilityǫ = 0.01 the above
equals

Nuc − Nc = 4.08 log(ℓ + 1)

Values of savings for different values ofℓ are given in Table I.

ℓ Nuc − Nc

1 2.84
2 4.48
3 5.66
4 6.57
5 7.31
6 7.94

TABLE I
APPROXIMATE AVERAGE SAVINGS IN PROGRAMMING PULSES FOR

SAMPLE VALUES OFℓ

Another quantity of interest is the percentage of savings
(Nuc − Nc)/Nuc × 100, which depends on the particular dif-
ferenceIF − I0. For a programming window ofIF − I0 = a∆,

a is an integer specifying the target increase in discrete levels,
the part of the programming duration saved by the code equals

log(ℓ + 1)

log a
,

as long asa < q − ℓ. The median6 percentage savings is
obtained by takinga = q/2 and is equal to

log(ℓ + 1)

log(q/2)
.

For a sample number of levelsq = 32, the median savings
in programming time suggested by the model is plotted in
Figure 13.

1 2 3 4

20%

40%

ℓ

% Savings

Figure 13. Percentage of program-time savings as a function of the
code’s magnitude limit parameterℓ. Significant savings are suggested
even for smallℓ and returns are diminishing for growingℓ.

As seen in both Figure 13 and Table I, while even smallℓ
values suggest significant savings, increasingℓ beyond some
point exhibits diminishing returns and does not significantly
contribute to increased savings in programming time. Note
that this last qualitative observation is one we have already
made when discussing Figure 10 earlier in the sub-section.
Thus both analytical and experimental evidence motivate the
application of asymmetric limited-magnitude error-correcting
codes (with smallℓ), as clearly codes for symmetric errors
will not be an efficient solution for programming speed-up.

VIII. C ONCLUSIONS ANDFUTURE RESEARCH

This paper proposes a new coding technique that is moti-
vated by multi-level Flash memories. Defining a natural new
error model has opened the way to a simple but powerful con-
struction method that enjoys good storage and implementation
efficiencies. By an interplay between symbol mappings and
constraints on the full code block, several useful extensions
to the basic code construction are achieved. An attractive
property of the codes herein, is that the coding parameters
n, t, ℓ need not be fixed for a Flash memory device family.
After implementing the simple circuitry to support this coding

6The median savings is a simple approximation to the average savings,
which has an unwieldy expression. For smallℓ (compared toq) it is a relatively
good approximation.

14

method in general (modulo and other arithmetic operations),
different code parameters can be chosen, depending on the
application, by using varying external coding modules for
the symmetric error-correcting code. Many of the strengths
of this construction method were not explored in the cur-
rent paper. When the reading resolution is larger than the
code alphabet size (e.g., readers that give a real number
rather than an integer), improved decoding techniques can be
readily applied using “limited-magnitude erasures” or other
soft interpretations of the read symbols. Better systematic
codes may be obtained by observing the relation between the
limited-magnitude errors and the errors they impose on the
low-alphabet code, and then replacing the symmetric error-
correction properties we required (which are too strong) with
various Unequal Error Protection properties. An interesting
open problem is showing (if true) the asymptotic optimality
of Construction 1 for all values ofℓ andt. This fact lies upon
the existence of a proof to the following conjecture.

Conjecture 1. For anya and t, Aa(n, t) (size of largesta-ary
code for symmetric errors) andAsyma(n, t) (size of largesta-
ary code for asymmetric errors) satisfy the following equality.

lim
n→∞

1

n
loga |Aa(n, t)| = lim

n→∞

1

n
loga |Asyma(n, t)|

(This was proved here fora = 2 and for restrictedt if a > 2).

ACKNOWLEDGMENTS

The authors wish to thank Anxiao Jiang for insightful com-
ments and suggestions. In addition, the authors acknowledge
the anonymous reviewers’ contributions to the paper’s quality
of presentation.

REFERENCES

[1] R. Ahlswede, H. Aydinian, and L. Khachatrian, “Unidirectional error
control codes and related combinatorial problems,” inProc. of the
Eighth International Workshop on Algebraic and Combinatorial Coding
Theory (ACCT-8), St. Petersburg, Russia (Extended version available at:
http://arxiv.org/abs/cs/0607132), 2002, pp. 6–9.

[2] S. Al-Bassam and B. Bose, “Asymmetric/unidirectional error correcting
and detecting codes,”IEEE Transactions on Computers, vol. 43, no. 5,
pp. 590–597, 1994.

[3] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades us-
ing a predictive method,” inProc. of the IEEE International Symposium
on Circuits and Systems, 2005, pp. 2148–2151.

[4] J. Borden, “Bounds and constructions for error correcting/detecting
codes on the Z-channel,” inProc. IEEE International Symposium on
Information Theory, 1981, pp. 94–95.

[5] B. Eitan and A. Roy, “Binary and multilevel Flash cells,”Flash
Memories, P. Cappelletti, C. Golla, P. Olivo, E. Zanoni Eds. Kluwer,
pp. 91–152, 1999.

[6] N. Elarief and B. Bose, “Optimal, systematic q-ary codescorrecting
all asymmetric errors of limited magnitude,” inProc. of the IEEE
International Symposium on Info. Theory. Seoul, Korea: IEEE, Jun.
2009, pp. 2704–2707.

[7] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error
correcting techniques for new-generation Flash memories,” Proceedings
of the IEEE, vol. 91, no. 4, pp. 602–616, 2003.

[8] W. Huffman and V. Pless,Fundamentals of Error-Correcting Codes.
Cambridge, UK: Cambridge university press, 2003.

[9] H. Kaneko and E. Fujiwara, “A class of M-ary asymmetric symbol
error correcting codes for data entry devices,”IEEE Transactions on
Computers, vol. 53, no. 2, pp. 159–167, 2004.

[10] T. Kløve, “Error correcting codes for the asymmetric channel,” Dept.
Mathematics, University of Bergen, Norway, Tech. Rep. 18-09-07-81,
1981.

[11] J. Leech and N. Sloane, “Sphere packing and error-correcting codes,”
Canadian J. Math., vol. 23, no. 4, pp. 718–745, 1971.

[12] F. MacWilliams and N. Sloane,The Theory of Error-Correcting Codes.
Amsterdam, The Netherlands: North Holland, 1977.

[13] R. McEliece, “Comments on ‘A class of codes for asymmetric channels
and a problem from the additive theory of numbers’,”IEEE Trans. on
Inform. Theory, vol. 19, no. 1, p. 137, Jan. 1973.

[14] S. Stein, “Packings ofRn by certain error spheres,”IEEE Trans. on
Inform. Theory, vol. 30, no. 2, pp. 356–363, Mar. 1984.

[15] R. Varshamov, “A class of codes for asymmetric channelsand a problem
from the additive theory of numbers,”IEEE Trans. on Inform. Theory,
vol. 19, no. 1, pp. 92–95, Jan. 1973.

[16] J. K. Wolf, “An introduction to tensor product codes andapplications to
digital storage systems,” inProc. IEEE Information Theory Workshop,
Chengdu, China, 2006, pp. 6–10.

Yuval Cassuto Yuval Cassuto (S’02-M’08) is a Research Staff Member
at Hitachi Global Storage Technologies, San Jose Research Laboratory.
His research focuses on information theory, error-correcting codes, storage
architecture, performance and security.

He received the B.Sc degree in Electrical Engineering, summa cum laude,
from the Technion, Israel Institute of Technology, in 2001,and the MS
and Ph.D degrees in Electrical Engineering from the California Institute of
Technology, in 2004 and 2008, respectively.

From 2000 to 2002, he was with Qualcomm, Israel R&D Center, where he
worked on modeling and analysis of physical layer communication principles.

Dr. Cassuto was awarded the 2001 Texas Instruments DSP and Analog
Challenge $100,000 award, as well as the Powell and Atwood graduate
research fellowship awards.

Moshe Schwartz Moshe Schwartz was born in Israel in 1975. He received
the B.A., M.Sc., and Ph.D. degrees from the Technion – IsraelInstitute of
Technology, Haifa, Israel, in 1997, 1998, and 2004 respectively, all from the
Computer Science Department.

He was a Fulbright post-doctoral researcher in the Department of Electrical
and Computer Engineering, University of California San Diego, USA, and a
post-doctoral researcher in the Department of Electrical Engineering, Califor-
nia Institute of Technology. He now holds a position with theDepartment
of Electrical and Computer Engineering, Ben-Gurion University, Israel. His
research interests include algebraic coding, combinatorial structures, and
digital sequences.

Vasken BohossianVasken Bohossian received his B.S.E. in electrical engi-
neering (honors program) from McGill University in 1993, the M.S. degree in
electrical engineering and the Ph.D. degree in computationand neural systems
from the California Institute of Technology in 1994 and 1998respectively.
He is a co-founder of Rainfinity, acquired by EMC Corporationin 2005. His
research interests include parallel and distributed computing, fault-tolerant
computing, error-correcting codes, computation theory and threshold logic.

Jehoshua Bruck Jehoshua (Shuki) Bruck is the Gordon and Betty Moore
Professor of Computation and Neural Systems and ElectricalEngineering at
the California Institute of Technology. His research focuses on information
theory and systems and the theory biological networks.

He received the B.Sc. and M.Sc. degrees in electrical engineering from the
Technion, Israel Institute of Technology, in 1982 and 1985,respectively and
the Ph.D. degree in Electrical Engineering from Stanford University in 1989.

15

He has an extensive industrial experience, including working with IBM
Research where he participated in the design and implementation of the first
IBM parallel computer. He was a co-founder and chairman of Rainfinity,
a spin-off company from Caltech that focused on software products for
management of network information storage systems.

He is an IEEE fellow, and his awards include the National Science
Foundation Young Investigator award and the Sloan fellowship. He published
more than 200 journal and conference papers in his areas of interests and he
holds more than 30 US patents. His publications were recognized by awards,
including, a selection as an ISI highly cited researcher, winning the 2005 S.
A. Schelkunoff Transactions prize paper award from the IEEEAntennas and
Propagation society and the Best Paper Award in the 2003 Design Automation
Conference.

