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Abstract—Several physical effects that limit the reliability and Flash Memory is a Non-Volatile Memory (NVM) technol-
performance of Multilevel Flash Memories induce errors tha gy that is both electrically programmable and electricall
have low magnitudes and are dominantly asymmetric. This pagr  orasaple. To scale the storage density of Flash memoris, th
studies block codes for asymmetric limited-magnitude errcs lti-Level Flash Cell ti dtoi th b
over g-ary channels. We propose code constructions and bounds'\/Iu t-Lev e conceptis used to |nc_rease € number
for such channels when the number of errors is bounded by Of stored bits in a cell [5]. Thus each Multi-Level Flash cell
and the error magnitudes are bounded by/. The constructions stores one ofj levels and can be regarded as a symbol over a
utilize known codes for symmetric errors, over small alphalets, discrete alphabet of sizg Flash devices exhibit a multitude
to protect large-alphabet symbols from asymmetric limited of complex error types and behaviors, but common to all

magnitude errors. The encoding and decoding of these codesea fl f Elash st is the inh t trv bet
performed over the small alphabet whose size depends only dne  "'@VOrS OF Flash Storage 1S the inherent aSymmelry between

maximum error magnitude and is independent of the alphabet Cell programming (charge placement) and cell erasing gehar
size of the outer code. Moreover, the size of the codes is show removal). This asymmetry causes significant error sourzes t
to exceed the sizes of known codes (for related error models) change cell levels in one dominant direction. Moreover, ynan
and asymptotic rate-optimality results are proved. EXten®ons  ongrad common Flash error mechanisms induce errors whose
of the construction are proposed to accommodate variation®n .

magnitudes (the number of level changes) are small, and

the error model and to include systematic codes as a benefit to . : ! e
practical implementation. independent of the alphabet size, which may be significantly

o . larger than the typical error magnitude. Altogether, Flash
Index Terms—asymmetric limited-magnitude errors, error- . L
correcting codes, Flash memory codes, g-ary codes, systaisa €TOS strongly mot|vat.e th_e mc_)del of asymmet_rllc limited-
codes magnitude errors studied in this paper. In addition to the
(uncontrolled) errors that challenge Flash Memory desigh a
operation, codes for asymmetric limited-magnitude eroans
|. INTRODUCTION be used to speed-up memory access by allowing less-precise

HE most well-studied model for error-correcting codes frogramming schemes that introduce errors in a controlled

the model of symmetric errors. According to this model'®Y: VV_h_iIe _not a panacea for all Flash issues, the_ p_ot(_antial
a symbol, taken from the code alphabet, is changed to anotfEP" m|t|gat|on ant_j pe_rformf_mce b.(.)OSt by asymmetrlc ‘i‘"’“t
symbol from the same alphabet, and all such transitions ép@gnltgde codes, justify their addltlon,_alongsuj_e otiuicg
equally likely. The popularity of this model stems from botfPnovations, .to _th? menu of.FIash coding SOIU,“O”S'
its applicability to a broad set of applications, and frone th Asymmgtrlc Ilmlted-magmtude error-corre(;tlng codes ever
powerful construction techniques that were found to addrd/0P0sed in [1] for the special case of correcafigsuch errors

it. In addition to the symmetric model, many other modeI¥Vithin a codeword. These codes turn out to be a special case

variations and generalizations were studied, each metivaPf the general construction method provided here. Previous

by a behavior of practical systems or applications. works that treated related error models include [2],[15d an
: . 9].
In this paper we study block codes that corrAsgmmetric [ . . .
Limited-Magnitude errors. This model is parameterized by two The following e?<almple llustrates the codm_g problem and
integer parametersis the maximum number of symbol error htroduces the main idea of _the code construcuo_n. Suppese w
within a codeword, and is the maximal magnitude of an error. avle( %Sbm tﬁﬁ _C?”S' eac? n oge (ﬁh:ds p_ossmlell_evels,
This model is motivated by error mechanisms that affect Myl{"ar«ed by the in ege_r@O, L ) The €sign goat is now
Level Flash Memory reliability and access speed. chosen to be protecting this set of cells against 2 errors
of magnitude/ = 1 in the upward direction. As illustrated by
Yuval Cassuto is with Hitachi Global Storage Te(:hnologiest,he S_ample words 'r_‘ Figure 1 below, 'f.the stored Igvels are
3403 Yerba Buena Rd., San Jose, CA 95135, U.S.A. (e-mallestricted to have either all symbols with even parity or all

yuval.cassuto@hitachigst.com). _ symbols with odd parity, the required protection is achitve
M‘oshe‘ Schwartz is with the D_epartment of Electrical and Ou!mp For each of the two sample codewords in row (a) of Fiqure 1
Engineering, Ben-Gurion University, Beer Sheva 84105adbkr(e-mail: p g )

schwartz@ee.bgu.ac.il). the channel introduces two upward errors of magnitdde

Vasken Bohossian was with the Department of Electrical B#ging, (b), By even/odd majority, the locations of the errors are
California Institute of Technology, 1200 E California Blydvlail Code 136- d d in bold d th iginal bol -y
93, Pasadena, CA 91125, U.S.A. (e-mail: vincent@paraditech.edu). etecte (C)' In bold, and the original symbols are recavere

Jehoshua Bruck is with the Department of Electrical Enginge California by decrementing the erroneous symbols (d).
Institute of Technology, 1_200ECaI|forn|a'Blvd., Mail Cotig6-93, Pasadena, The example above is one instantiation of a general con-
CA 91125, U.S.A. (e-mail: bruck@paradise.caltech.edu). . hod th id d f I ibl d
This work was supported in part by the Caltech Lee Center fivaAced struction method that provides codes tor all possible code

Networking and by GIF grant 2179-1785.10/2007. parameters. The main strength of this method is that for any



Sample 1 Sample 2 Definition 1. A vector of integerg = (eq, .. .,e,) is called &

asymmetrid-limited-magnitude error word [fi : e; # 0}| <
codeword codeword t, and for alli, 0 < e; < /. Given a cg{dewordc 6}‘Q",

(a) ‘ 4l6]2]2]0 ‘ at asymmetric/-limited-magnitude channel outputs a vector
y € Q", such thak 4 e = y, ande is at asymmetrid-limited-

corrupted corrupted magnitude error word. Th¢ symbol denotes addition over the

®  [a]5[3[2]1] reats
Note that somé asymmetric/-limited-magnitude error words
detected detected e make y overshoot beyond the upper alphabet symbol, for
which reason the restrictioy € Q" was added. A general-
© ization of the above definitign is when we allow asymmetric
errors to wrap around (from — 1 back to0), whereby we
corrected corrected interpret the+ symbol above as addition modujo
(d) The g-ary asymmetric/-limited-magnitude error model
studied in this paper is a generalization of the binary
Figure1l. Example of correcting asymmetric limited-magnitude esro asymmetric-error model studied by numerous authors ($ge [1
for a detailed treatment of this channel). Another geneaali

. ) tion, proposed by Varshamov [15], studigsry asymmetric
target alphabet size (determined by the number of levelglyors that have no magnitude limit for individual coordis

asymmetric limited-magnitude error-correctability ihérited [t the sum of the error-vector elements is bounded by
from symmetric error correctability of codes over alphabets 0§y integerT. When T = t¢, codes for the Varshamov
size£ +1 (in the case of the example above, it is the binahannel trivially correctt asymmetric -limited-magnitude
repetition co_de). Thus a rich selection of known symmetrigsors. However, for many applications, such as Multi-leve
error-correcting codes becomes handy to offer codes tieat gfash memories, the Varshamov channel may be too strong
optimized for the asymmetric limited-magnitude channes. Ay error model. These applications can greatly benefit from
a favorable by-product of the construction method, ena@dife constructions presented here, which give better cades i
and decoding of the resulting codes are performed on alphalg ms of size, and also enjoy simple encoding and decoding
whose sizes depend only énirrespective of the code alphaberalgorithms.

(which may be much larger thaf). Working with both the 1o giscussion of codes for the asymmetfidimited-

(¢ +1)-ary andg-ary alphabets provides advantage in bothagnitude channel-model is commenced with the definition

redundancy and complexity, compared to earlier works Qff 5 gistance that captures the correctabilityt gisymmetric
codes for Multilevel Flash memories [7] that employ pyre ¢-limited-magnitude errors.

ary constructions.

After discussing the asymmetritlimited-magnitude error Definition2. For x = (x1,...,x,)€Q" and z =
model in Section II, the main code construction is preseimted(zy, ..., z,) € Q", defineN(x, z) = |{i : x; > z;}|. The dis-
Section lll, together with encoding and decoding proceslurdanced, between the words, z is defined
Evaluation of the resulting codes is performed in Section IV

where asymptotic optimality is shown fdr = 1 and for a do(x,z) =
generall whent grows “slowly” relative to the code length n+1 if max; {|x; —z|} > ¢
n. A more conclusive optimality is shown by constructing — max(N(x, z), N(z,x)) otherwise

codes that are perfect in the asymmettilimited-magnitude
error model. In addition, Section IV compares the code sizesThe d, distance defined above allows to determine the
to sizes of codes for a related error model. Section V am@imber of¢-limited-magnitude errors, correctable by a code
Section VI discuss extensions of the code construction with

motivations from practical applications. Those include th

construction of systematic codes (V), and codes for simf¥oposition3. A codeC C Q" can correct asymmetricl-
taneous asymmetric and symmetric limited-magnitude srrdimited-magnitude errors if and onlydfy (x, z) > t + 1 for all
(VI). Finally, section VII discusses the usage of asymmetrfistinctx, z € C.

limited-magnitude codes in Flash devices, by showing their

. . ) X Proof: A code fails to correct & asymmetric/-limited-
effectiveness in speeding up the memory write access.

magnitude error word if and only if there exist two distinct
codewordsx,z and two t asymmetric /-limited-magnitude
Il. +t ASYMMETRIC ¢-LIMITED-MAGNITUDE error wordse, f, such thatx +e = z + f, or equivalently,
ERROR-CORRECTING CODES x—z=f—e.

An alphabetQ of size g is defined as the set of integers (<) Assume that for a pait,z, d/(x,z) > t + 1. Then at
modulog: {0,1,2,...,q4 — 1}. For a codeword € Q" and a l€ast one of the following holds:
channel outpuyy € Q", the definition of asymmetric limited- 1) N(x,z) >t or N(z,x) >t
magnitude errors now follows. 2) |x; — z;| > { for at least one indexe {1,...,n}.



Case 1 implies thaf — e has either more thah positive of ¢ > 2. For notational convenience, given= (x1, ..., x,),
elements or more thahnegative elements, none of which ighe vector (x; mod ¢4’, x, mod ¢/, ..., x, mod q") will be

possible by the definition of the error vectary. denoted byx mod 4’. To obtain a code over alphabgtthat
Case 2 implies that for somieeithere; > ¢ or f; > ¢, both correctst or less asymmetric errors dflimited-magnitude,
impossible by the definition of, f. one can use codes for symmetric errors over small alphabets

Since the same arguments apply to any in the code, as follows.

it necessarily corrects all possible asymmetric/-limited-  ~gnstruction 1. Let = be a code over the alphab@t of size

magnitude errors. _ _ _ g’ = ¢+ 1. The codeC over the alphabe® of sizeq (7 >
(=) Assume there exist a pair of codewords, for which 1 1) is defined as

dy(x,z) <t < n. Then bothN(x,z) < t andN(z,x) < ¢ )
are true, andx; — z;| < £ at all positionsi. In that case we C={x=(x,....5p)€Q":xmod g €L}. (2

can setf; = x; — z; at all positionsi such thaty; > z; and 1, sther words, the codewords @fare the subset of the words

¢i = z; — x; at all positionsi such thatz; > x;. With zeros ¢ o that are mapped to codewordsfwhen their symbols
at all other positions, such f satisfyx —z = f —e without "o y,ced modulg = ¢ + 1
violating the conditions ot asymmetric/-limited-magnitude ’

errors. - Codes obtained by Construction 1 have the following error-
The following Corollary states that the same distadge correction capability.

captures the errodetection capability of the code, unlessTheorem5.C correctst asymmetrict-limited-magnitude er-

no codeword is greater than or equal to another codewatwsts if £ correctst symmetric errors. Iff > 2¢,' the converse

on every coordinate, in which case the code detects #ltrue as well.

asymmetric/-limited-magnitude errors. Detailed treatment of Proof: The proof proceeds by showing that any pair of

joint correction/detection is beyond the scope of this PaP&istinct codewords:. z € C is at 4, distance of at least+ 1

b.Ut these propert_les can be analyzed using similar metknodsa art. By Proposition 3, this would conclude tltatcorrects
binary asymmetric codes [2].

all + asymmetric/-limited-magnitude errors. We distinguish
Corollary 4. Unless between two cases:
. In the first caser mod 4’ = z mod ¢'. Sincex # z, this
V(x€C, z€C) : min(N(x,2),N(z %)) >0, (1) implies that for at least one index {1,...,n}, |x; —z;| >
a codeC C Q" candetectt asymmetric/-limited-magnitude ¢, settling theird, distance to be: + 1.

errors if and only ifd;(x,z) > t+ 1 for all distinctx, z € C. In the other casey mod g’ # z mod q'. The fact thatz
If (1) is met, then the code detecth asymmetric(-limited- has minimum Hamming distance of at least+ 1 implies
magnitude errors. that x and z differ in at least2t + 1 locations and thus, in

. . articular,max(N(x,z), N(z,x)) > t+ 1.

- Proof. The proof IS essenﬂally the same as of Prop(?— For the conE/er(se, ?12 éoes))not correct alt symmetric
S't'gn 3,donly_ W't.hh;[: 0. ﬁ (01) r:s not Tet’ then jor a errors, then there exists a quadruplec £, € L, ¢, f), such
codeword pair withN(z,x) = 0 the equalityx —z = f thatx+e = ¢+ f (mod q'), ande, f aret asymmetric/-
provides the same necessary and sufficient conditions as Imﬁted—magnitude error veotors. Therefore. the vectors
formerx — z = f — e. If, on the other hand, (1) is met, i.e. _' '
all codeword pajirrs have botN (x, z) > 0 andIE]()z x) >0 X+q AL+ f-x—e)andz=C+q" Alx+e—C—f),

h I i lx’ q th Id q ' (whereA(w) is a vector with ones where; > 0 and zeros
t"en no a -F%sgltl[ve!; <(:jan eQU_c’t:\ d_ z, and the code eteCtSelsewhere), are codewords®fnd they satisfy +e = z+ f.

a ,ﬁfgmmﬁ rtlh simite ma;g(r;éllJ gte(;rors. itude dist Sincegq > 24, the last sum is a valid channel output. We
ough the asymmetrict-imrted-magnitude  aistance- ., de that there exists an uncorrectable error wordCfor

measurel, is not a metric (since the triangle inequality do%ﬁnd the converse follows -

qot hold), it still prov_ic_ies a hecessary ‘F_’mq sufficien_t coNal construction 1 is clearly useful as it leverages the com-

tion for the correctability of asymmetri¢-limited-magnitude prehensively studied theory of codes for symmetric errors,

errors. In subsequent sections, it will be used both to PIOY§ obtain codes for asymmetric limited-magnitude errors.
the correction capability of code constructions, and taaiobt Ho

X wever, Construction 1 is a special case of the following
upper bounds on the size of codes.

construction.

Construction 1A. Let X be a code over the alphaligt of size
I1l. CONSTRUCTION OFf ASYMMETRIC q'. The codeC over the alphabe® of sizeq (7 > q' > () is
£-LIMITED-MAGNITUDE ERROR-CORRECTING CODES defined as

We now provide the .main constructiqn of the paper. We C = {x = (x1,...,%2) €Q" :xmod ' € Z}. 3)
note that the general idea of the basic code construction _ _ _
below, restricted to binary codeg’ (= 2), has appeared in The rglatlonshlp betweeéi angl): in the gene_ral case are
Construction A of [11]’ for a different app"cation (Spheréummanzed below. The proof is almost identical to that of
packings in Euclidean spaces). The same work also considef&eorem 5.
the enCOdmg and deco_dmg of Construction A codes, Wh'Cthhe biggest motivation to use asymmetric limited-magrétutbdes is
appear here in sub-sections I11-B and 11I-C for the geneaskc wheng > ¢, soq > 2¢ is a reasonable condition.



Theorem 6.C correctst asymmetricl-limited-magnitude er- B. Decoding
rors if L. correctg asymmetrid-limited-magnitude errors with  The main construction of this paper (Construction 1) re-

wrap-around. Ifj > q' + ¢, the converse is true as well. duces the problem of constructing asymmetfidimited-

Remark: If ¢’ | g thenC correctst asymmetric/-limited- magnitude error-correcting codes, to the problem of costr
magnitude errorsaith wrap-around for £ with the same ing codes for symmetric errors. The correction capability
properties as above. of the code constructions was proved earlier in the section

It is easy to see how Construction 1 is a special case $#ing arguments on their minimumy, distance, arguments
Construction 1A. Whery = ¢ + 1, an asymmetri¢-limited- that have a non-algorithmic character. We next show that

magnitude error with wrap-around is equivalent to a symimet@ Similar reduction applies also to the algorithmic problem
error (with no magnitude limit). of efficiently decoding asymmetri¢limited-magnitude error-
correcting codes.
In the following, we describe how, given a decoding algo-

A. Discussion and Analysis of Code Constructions rithm for the codeZ, one can obtain a decoder for the catle
The size of the cod€ is bounded from below and fromthat has essentially the same decoding complexity, witly onl
above by the following theorem. a few additional simple arithmetic operations. The decgdin

procedure herein refers to the more general Constructign 1A

Theorem 7.The number of codewords in the codés bounded and it clearly applies to the special case of Construction 1

by the following inequalities, ¢ =(+1)
" " Let x = (x1,...,x4)€C be a codeword andy =
q q 1 n
{_/J |zl <el < [7} -1z (4) (y1,...,yn) € Q" be the channel output when up t@asym-
q q A .
metric /-limited-magnitude errors have occurred. Denote the
Proof: Let x = (x1,...,xn) be a codeword of£. A correspondingZ codeword byx = xmod g/, and also

valid codeword ofC can be obtained by replacing eaghby define = y mod ¢’ ande = (p — x) (mod ¢'). First
any element of the sgtx € Q : x = x; (mod ¢')}. The size we observe that sincg’ > ¢, if 0 < y; —x; < ¢ then

of this set is[q/q'] if x; <qmod q" and|q/q'| otherwise. y, — x; = (y; — x;) mod ¢. Using the simple modular
Thus for any codé, the lower and upper bounds above followigentity
[ |
In the special case wheqf = 2, the size ofC can be (yi —x;) mod q' = (y; mod g — x; mod 4') mod ¢’
obtained exactly from the weight enumeratorof = (¢; — xi) mod ¢’ = ¢;,
Theorem 8. Letq’ = 2 andX be a code ove®’ = {0,1}. we getthaty; —x; = €;, and in particular, i0 < y; —x; </,
Then the size of the codk as defined in(3), is given by then0 < ¢; < £. In other words, if the codeword over Q
" e " suffered an asymmetrié-limited-magnitude error at location
IC| = Z Aw [q HJ i, then the codeworgk over Q' suffered an asymmetrié-
w=0 2 2 limited-magnitude error with wrap-around at the same liocat

i, and with the same magnitude. Given at mbsisymmetric

£-limited-magnitude errors with wrap-around, a decoderXor

can recovee from 1. Thus, the equality; — x; = €; allows

Proof: When2 ‘ q, the right hand side equadq/z)" . ‘Z‘, the same decoder to recoverfrom y.

as the matching lower and upper bounds of (4) predict. Whena schematic decoder of an asymmettitimited-magnitude

21q,a0in x can be replaced bjyq/2] different symbols of error-correcting cod€ that uses a decoder for a symmetric

Q and al in x can be replaced byg/2| different symbols. error-correcting codé& is given in Figure 2. Given a channel

Using the weight enumerator &f we obtain the exact value outputy € Q”", the decoder takes the symbol-wise modsflo

for the size ofC above. B of y to obtainy € Q". Then a decoder faE is invoked with
This theorem can be extendedqo> 2, but in such cases the inputy and an error estimaté is obtained such that

knowing the weight distribution ot does not suffice, and 5 + & = ¢ (mod ¢’), andk is a codeword o within the

more detailed enumeration of the code is needed for an exagtrection radius of the decoder f&r Note that the codeword

count. estimatey is discarded and not used for the decodingCof
The ¢-AEC codes suggested in [1], that correct all asynFinally, & is subtracted frony to obtain the codeword estimate

metric ¢-limited-magnitude errors, can also be regarded asiyac C.

special case of this construction method. To show that, let

0 be the trivial lengthn code over the alphabe&d’ of size C. Encoding

q' = ¢ +1, that contains only the all-zero codeword. Define

where A, is the number of codewords af with Hamming
weightw.

Construction 1 (and 1A) define the codeas a subset of
C={xeQ":xmod g €0} Q", without specifying how information symbols are mapped
_ {xe Q":x;=0mod q' fori= 1,2"“,”} 1. to codewords. There are many ways to map |nf(_)rmat|on to
codewords ofC, and the simplest one, that applies to any
Since0 can correct = n symmetric errorsC can correct g,4" such thatg | 4, is detailed below. For an alphabet of
t = n asymmetric/-limited-magnitude errors. sizeq = A-q', where A and g’ are integers, information is
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Figure2. Decoding asymmetri¢-limited-magnitude error-correcting codes

—> xeQ= {0,1,...,2b—1}

mapped to a length codeword ofC as follows:n symbols, mshb
(a1,...,an), over the alphabet of sizé are set as pure infor- —
mation symbols. Additionallyk information symbols over the ©)

alphabet of sizej’ are input to an encoder & to obtainn
symbols,(x1,---,X.), over the same alphabet. Finally, eackigure3. Encoding Procedure faf
code symbok; over Q is calculated by; - 4" + x;.

Other encoding functions can map information symbols to
codewords ofC in a different way than the simple encoding V. OPTIMALITY OF THE CODE CONSTRUCTION AND
function above. Different mappings with good properties ar COMPARISON TORELATED CODES
discussed in Section V and Section VI. A. Perfect Codes

Example 1 now attempts to convey the main ideas of the
encoding and decoding of asymmetridimited-magnitude
error-correcting codes.

For some parameters, the codes constructed in the previous
section are the best conceivable ones for the asymmétric
limited-magnitude error model. These codes adect codes

in the sense that they attain the sphere-packing bound for
Example 1. Let £y be the binary Hamming code of length asymmetric/-limited-magnitude errors. The-ary symmetric

n = 2" —1, for some integem. First we define the codey  sphere-packing bound is first generalized to asymmetric

in the way of ConstructioA. limited-magnitude errors (with wrap-around), and thensit i
shown that asymmetrié-limited-magnitude error-correcting
Cu={x=(x1,..., %) €Q":xmod 2€ Xy}. codes that meet this bound with equality can be obtained by

using other known perfect codes, e.g., perfect codes in the
By the properties oE ;, the codeCy; corrects a single asym-Hamming metric.

metrict = 1 limited-magnitude error. When the code alphab&l, .o .em 9 if C is at asymmetricl-limited-magnitude (with

. . _ b . .
size isq = 2", for some ,ntegel;, ihe codeCy, wh(b)se SI2€ \wrap-around) error-correcting code, of lengtiover an alpha-
equals|Cy| = A" . gn—m = 2(b-Dn . gn—m — pnb=m py, bet of sizej, then

equation(4), admits a simple function fromb — m informa-

tion bits to codewords dfy; overQ, as illustrated in Figur8 Lo/n\ "

below. In Figure3 (a),nb — m information bits are input to the Cl- z <i>£ Sq- )
encoder. The encoder then uses a binary Hamming encoder to =0

encoder — m of the information bits into a length Hamming Proof: The proof is essentially the same as the proof of
codeword (Figure8 (b)). Finally, in Figure3 (c), each g-ary theg-ary sphere-packing bound for symmetric errors [8, Ch.1],
symbol of the codeword € Cy is constructed frorh bits using with ¢ replacingg — 1 in the sum. [ ]

the usual binary-to-integer conversion, the top row behwy t Perfectt asymmetric/-limited-magnitude error-correcting
least-significant bits af; € Q. codes are obtained through the following proposition.

Decoding is carried out by using a Hamming decoder on tlf_),ef

top row to ﬁ'."d the Iimiteq-magnitude error "?Cat")!’ and magrﬁagnitude code over an alphabet of sizethen there exists
nitude (for binary Hamming codes the magnitude is alwgys a perfect asymmetri€-limited-magnitude code with the same

The top row word imot_corregted by the Hamming decoder, b“fen gth, over an alphabet of any sigesuch thay’ | g, that

rather the error magnitude is subtracted from@hary wordy corrects the same number of errors.

to obtain a decoded codeword. To recover the informatica bit

after decoding, th® symbols are converted back to bits in the  Proof: Let C and £ be as in Construction 1A. We first

usual way, and the: parity bits are discarded. substitute the expression for the code size from (4) into the
left side of the sphere packing bound

t n t
g n ; n .
‘ | . ( ] ) El < q/ > . | | . ( ] > El ’
2Non-binary Hamming codes can be used as well when1. z‘z:O 1 q z‘Z:O 1

oposition 10. If there exists a perfect asymmetfidimited-



If the codeX over the alphabet of sizg is perfect, then its imply “large” codes for symmetric errors, would concludatth
size satisfies , Construction 1 is optimal. Optimality is achieved in thisea
Iz Z (”) )i — q" since given the ‘flargg” code for symmetrlc errors implied
i by the reverse direction, Construction 1 can be invoked to
yield code of the same size as the original “large” code for
asymmetric/-limited-magnitude errors. The purpose of this

i=0
Substituting the latter into the former we get

Lo/n\ a\" . " subsection is to show that asymptotically, Constructiotivégy
- ,ZO i - ? q=4q the largest possible codes for asymmetrlamited-magnitude
1=
errors.
which completes the proof. ]

Alternatively, perfect codes are codes which induce a pE;Pefinition 11. Define the ratR of a codeC of lengthn over an
tition of the space into error spheres. As was already notedphabet of sizq as
wheng’ = ¢+ 1, the t asymmetric/-limited-magnitude error 1
sphere coincides with the Hamming mettisymmetric error R = P logq C|
sphere. Thus, taking to be a perfect code in the Hamming )
metric (e.g., Hamming or Golay codes), produces perfed1€relC| is the number of codewords (h

asymmetric/-limited-magnitude error-correcting codes ovetrheorem 12.If C is at asymmetrid-limited-magnitude error-

an alphabet of sizg, whereq’ | q. correcting code with rat® and block-length: that tends to
Other perfect codes may exist even whgn# ¢ + 1. For infinity, then

example, whent = 1, the asymmetric/-limited-magnitude
error sphere is the semi-cross examined by Stein in [14].
One may wonder if anyinherently new perfect code is
produced by Construction 1A. The answer, unfortunately, is
no: Construction 1A simply takes translations of the tiling
provided by the base code to accommaodate for the larger
alphabet. This is depicted in the following example.

1) Whent¢ = 1 and for arbitraryt, there exists a code,
constructed by Constructidh with rate of at leasR.

2) For general!{ and fort = o(n/logn) (i.e.,
lim, . tlogn/n = 0, or in words,t has a slower
asymptotic growth compared tg/ log n), there exists a
codeC, constructed by Constructiob, with rate of at
leastR.

Example 2.Let X be the perfect ternary length= 2 code ca-

pable of correcting one asymmettidimited-magnitude error,

~ = {00,11,22}. The code induces a tiling &% with the
error sphere, and is shown in FiguteSince this tiling is with
wrap-around, it also induces a natural tiling with wraptard
of Z%k for everyk € N. Specifically, forC, the code over an
alphabet of siz& produced fromz by ConstructionlA, the
resulting tiling is also shown in Figur

Proof: We first introduce the following notation. Let
AlM,(n,t) be the size of the largest lengthcode that cor-
rectst asymmetrid-limited-magnitude errors over an alphabet
of sizea. Let Asym,(n, t) be the size of the largest length
code that corrects asymmetric errors (symbols change only
in the upward direction, with no magnitude limit), over an
alphabet of sizex. Finally, let S,(n,t) be the size of the
largest lengthn code that correct¢ symmetric errors, over

‘ ‘ ‘ ‘ an alphabet of siza. S,(n,t) used here is a replacement
l l_ of the more commonly used,(n,d) [8, Ch.2], whereby the

parameter! stands for the minimum Hamming distance of the

: ! code instead of the number of correctable symmetric errors
@ @ - (thereforeS, (n, t) = Aq(n, 2t +1)).
. ‘ @ ‘ - To avoid the excessive use of tHe| operator, assume
‘ 1 that (¢ +1) | g. The set of allg” words over the alphabet
’ ’_ of size g is partitioned by the quotient groU:ﬁ;l/ZZ+l into
- — - — : q"/(¢+1)" subsets, each of sizg + 1)". In other words,
| : each subset contains a single word whose symbol-wise modulo
’ ; ’ v £+ 1 equals the all zero vector. In addition to this vector, the
subset contains the sum of that vector with @H 1)" — 1
@ (®) non-zero vectors over the alphabet of siz¢ 1. Each subset
Figure4. In Example 2, the tilings induced by (a) the coBeand (b) the has the property that no two words within it differ in any
codeC coordinate by more thafi A sample such partition far = 2,
g =4 and/ =1 is given below.

B. Asymptotic Optimality of Construction 1 0 0 8 g 2

The implication of Construction 1 is that “large” codes (1) (1) 1 2 g
for symmetric errors over an alphabet of sige- 1 imply 1 111 313
“large” codes for asymmetri¢-limited-magnitude errors over
any larger alphabet. Showing the reverse implication, mameThis property is equivalent to havingy(x,z) < n+ 1 for
that “large” codes for asymmetri¢limited-magnitude errors everyx, z in the subset.
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Suppose there is a codg that correctst asymmetric/- ]
limited-magnitude errors. Then there exists at least obsety  Combining Lemma 13 with (6), fof = 1 we obtain
with at least |C| (¢ + 1)"/q" codewords ofC. Since any N g\
two codewords, z in that subset satisfyl;(x,z) < n +1, (E) Sa(n,t) < AlMgy(n, t) <n (E) Sa(n, t).
each such pair has to satisfylax(N(x,z), N(z,x)) > t. _ _
In other words, the codewords 6f that belong to the same While Lemma 14 end (6) imply, for generé
subset, form a code that corredgtsasymmetric errors with g \n 2t g \n
no magnitude limit of size at leas€| (¢ + 1)"/q". Without (11)"Ses1(n, t) < AlMg(n, t) < ()% (;4)"Se41(n, t).
loss of generality, assume the subset with the most codewoTdking the logarithm, dividing by: and taking the limitz —
is the one that contains the all zero codeword. Generalityds, the upper and lower bounds &f/M,(n, t) are identical
maintained since neitheN(x,z) nor N(z,x) are changed for both/ = 1 and for generaf (under the restrictions ohof
when a constant vector is subtracted from bathand z. part 2 of the theorem). Hence asymmetriimited-magnitude
Consequently, the codewords of this subset imply the exgste codes obtained from symmetric codes by Construction 1 are
of a code over an alphabet of size+ 1 that correctst asymptotically optimal. u
asymmetric errors with no magnitude limit. Formally,

Asymyi1(n ) > (L2) AlMg(n, t). C. Comparison to Varshamov Codes
On the other hand, Construction 1 and Theorem 7 providePrior to this paper's introduction of the asymmetric(-
the following lower bound om\(M, (1, t): limited-magnitude error model, the closest error modet tha
., achieves this correction capability is the g-ary asymroetri
AlMg(n,t) = (74)"Se1(n,t) error model proposed by Varshamov [15]. In particular, the

known codes for the Varshamov channel are better than known
codes for symmetric channels. According to the Varshamov
Sei1(n, t) < (‘%1) AlM;(n, t) < Asymyq(n,t)  (6) model, parameterized by an integer param@teif a vector
hich i . ith the trivial i i < X= (x1,...,x,) overQ" is transmitted, the channel output is
which is consistent with the trivial |r?equa|t$g.+1(n,t) < avectorx + e overQ", such that; > 0 ands”_, ¢; < T (the
Asym“l(”'t). (any code for symmetric errors is al_so a C?Odﬁ dition and summation are over the reals). Whes t/, a
for asymmetnc errors). The proof of the theorem is achiev error-correcting code for the Varshamov channel is al¢o a
by. bourr]1d|][1gf| th? galp betwees).1 (1, ) and Asymy.iq (1, £) asymmetric/-limited-magnitude error-correcting code. Since
using the following lemmas. the T = t¢ Varshamov channel allows errors that are not
Lemma 13.[4]: Sy(n,t) > FpAsymy(n,t). allowed b% trr:_efr?symm_etr(;d-limi:}gdr-]magnitulqke ICh.annhel (i.e.,
Proof: See [10]. g °©rors with high magnitudes, which are unlikely in the targe
application), we expect the code constructions of this pape
Lemmal14.S,.1(n,t) > WAsymgH(n,t). yield better codes compared to the best known Varshamov

Proof: We will show that a code for symmetric errors cary odes. This section thus compares between sizes of codes

: . .that are obtained using Construction 1, and lower bounds,
be obtained from a code for asymmetric errors by expurgatmgovided in [13], on the sizes of various Varshamov codes
all but at least al/(nf)?* fraction of codewords of the P ’ '

. . This comparison is incomplete since it only discussesitres
asymmetric-error-correcting code. ) S !
. . : of the codes. Evidently, ourasymmetric/-limited-magnitude
Any two codewords in @ asymmetric-error-correcting code

have Hamming distance of at least 1. Any two codewords codes enjoy efficient encoding and decoding procedures,_ a
: > ) ; . roperty which Varshamov codes are not known to have in
in at symmetric-error-correcting code have Hamming distan&e . -

. . éneral. We also do not discuss the restrictions on the block
of at least2t + 1. The number of words (and in particular, a
upper bound on the number of codewords) that are at dista
betweent + 1 and 2t from a codeword of & asymmetric-

error-correcting code is

Combining the lower and upper bounds we obtain

sizesn of the code constructions, in order to avoid overloading
NCE i : : X
the discussion with secondary details.

1) Comparison for ¢ = 1: When the asymmetric errors
have a magnitude limit of = 1, we compare the codes of
2o\ n\ Construction 1 to Varshamov codes with= t. Whent = 1,

)=t Z taq b the two error models are identical and both constructions

=t =1 yield (different) codes that are perfect in that metric, w0

Since(,;) < n't/t, sizes areq"/(n+1). Whent = 2 Varshamov codes are
, known to haveg”/(n? +n + 1) codewords, while using the
o z ( n )Ei < (nf)Zt (punctured) Preparata codes [12, Ch.15] in Construction 1
L\t +i ’ gives2g" /(n +1)?, roughly twice as many codewords. For a

general, there exist Varshamov codes with sizélg (1 + 1)*.

If we apply Construction 1 with BCH codes with designed

distance2t + 1, we get the same code size. However, using
1 the Goppa codes [12, Ch.12] instead, is possibly superior to

Seva(n,t) > (ng)ZtAsym“l(n’t)' Varshamov codes with" /nf codewords.

and thus expurgating all but at leasf (n¢)?* of the code-
words, yields a code for symmetric errors:



€Xy
kminfo |m

2) Comparison for a General £: While for ¢ = 1 the advan-
tage of the codes for asymmetridimited-magnitude errors, kminfo |m
in terms of the code sizes is small, for largevalues these
codes are significantly larger than Varshamov codes. Even if T
we only use(Z + 1)-ary BCH codes in Construction 1, codes
of sizesq"/(n+ 1) are obtained, wheré = 2t//(¢ +1). (@ (b)
Comparing tog"/(n + 1) of Varshamov codes shows a
significant advantage to the favor of Construction 1.
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All its advantages notwithstanding, Construction 1 susffer
the shortcoming of not admitting a systematic represeantati (©)
overQ. A codeC over an alphabe® is said to be in systematic
form if its coordinates{xy,...,x,} can be partitioned into
an information setl = {xi,...,x;} and a parity sef® =
{Xk+1,---,xn}, such that each symbol ihis independent of ;5,4 (positional) mapping for theinformation symbols, and
other symbols inl, and each symbol itP is (non-trivially)  the Gray mapping for the parity symbol.
a function of symbols inl only. As seen in Figure 3(b): To decode, a word fro@*+1 is converted back to bits using
code symbols contain parity contribution. Each of these (e same mappings, and a binary Hamming decoder is invoked
symbols also has a pure-information component, so it ¢} they; coded bits. By construction, a sindle= 1 asymmetric
neither belong to the® set, nor to thel set of a systematic- orror gverQ translates to a single bit error in the Hamming
code coordinate set. This non-systematic structure imphiat . qeword: in thé information symbols, afi = 1 error flips
“many” code symbols contain some parity contribution: a baghe east-significant bit that is part of the Hamming codeyor
property in practice as it dictates accessing many Flads cel,qin the parity symbol, ah= 1 error flips exactly one parity

for each information update. In this section we propeg p i the column, thanks to the Gray code used in the mapping.

tematic asymmetric limited-magnitude error-correcting codes ) o

that have few parity symbols. The code proposed in Examp!e 3, together vy|tr_1 its en-
coding/decoding, can be generalized to &y 1 limited-
magnitudet asymmetric error-correcting code as stated by the

A. Systematic Codes for ¢ = 1 Limited-Magnitude Errors following proposition.

Figure5. Encoding Procedure for a Systematic Code

_ When the_error_magn_itudé is bounded byl, the codex Proposition 15. Let X be a binary systematic code of length
in Construction 1 is a binary code. As we show next for thig, ;... < 1., parity bits, for any two integensandb > 1. If

case, a modification of any code can be carried out, that s o,rrects symmetric errors, then it can be used to construct
yields a systematic code with the same correction capyabnna systematict asymmetrici — 1 limited-magnitude error-

The construction method of systematic codesffer 1 is first correcting code over an alphabet of size= 2°. This code
presented in the following example. has lengthh — m + r, of whichr symbols are parity symbols.

Example 3. In this example we propose a systematic variant proof: The general construction follows closely the one
to the codeCy, given in Examplel. The encoding function iy Example 3. Ther — m information bits are used to encode
given below generates a code that has the same correcofodeword ofz. Them < br parity bits are grouped into
capabilities ag’r;, namely any singlé = 1 asymmetric erroris columns ofb bits each. Then thesecolumns are mapped to
correctable, though the resulting code is different. Smedly, () symbols using the Gray mapping and information bits are
the dimensions of the systematic code are different. Far ﬁﬂhapped to symbols using the positional mapping. The prepert
example we assume that the alphabet size of the c@fe (81  that each asymmetric limited-magnitude error results ie on

— the number of parity bits in the binary code), compared &mmetric error in the codeword df is preserved for this
2% for arbitraryb in Cy. This assumption can be lifted with ageneral case. u

small increase in redundancy that depends on the actual code

parameters. For dm,k = n — m| binary Hamming cod& y, ) o )

the length of the systematic coderis- m + 1, compared to B Systematic Codes for £ > 1 Limited-Magnitude Errors

n in the non-systematic case. The systematic code is encodelf we try to extend the construction of the previous sub-
as follows. In Figure5 (a), km information bits are input to section to codes fof > 1 limited-magnitude errors, we
the encoder. The encoder then uses a binary Hamming encanfenediately face a stumbling block. Although generalized
to encode thé information bits of the top row into a lengthGray codes exist for non-binary alphabets, their propedie

n = k + m Hamming codeword (Figurg (b)). The parity bits not suffice to guarantee a similar general construction. The
of the Hamming codeword are now placed as a separate colugmicial property, that a single asymmetric limited-magdé
The mapping of bits t€) symbols, shown in Figurg (c), is the error translates to a single symmetric error in fiie- 1)-ary



code, is lost for the general case. For example, ifffer 2 a Proof: The key point in the proof is that an asymmetric
symbol represents the ternary reflected Gray codeWwoeéd, ¢-limited-magnitude error in a parity symbpbf C’ may only
then an error of magnitud2will result in the Gray codeword change(béj) out of thes parity symbol&béj), ) .-,<l>£j_>1 of ¥/,
0012, whose Hamming distance @001 is 2 and notl as mapped to this symbol. The way’ was extended fronk
required. Thus, a limited-magnitude error at this symboy mayjjows correcting errors in the added information symbats,
induce?2 errors for the ternary code. EVidently, this effect is |0ng as the pa”ty Symb0|s whogé columns were rep"ca’[ed
not unique to the/¢ + 1)-ary reflected Gray code, and there igre guaranteed to be error free. This fact can be verified
no mapping betweenp-ary symbols{o,l, o (1) — 1} by using a decoder foE’ that first computes the syndrome
and (¢ + 1)-ary b-tuples with this property. This subsectiortsing H' and then inputs this syndrome to a decoder Xor
proposes a construction for Systematic asymmd[.ﬂimited- Thust or less asymmetrié-limited-magnitude errors in any
magnitude error-correcting codes, for arbitrdry combination of information and parity symbols will result i
The construction builds on the non-systematic Construg-correctable error for the CodE. n
tion 1. Two modifications of Construction 1 need to be To clarify Construction 2 an example is now provided.
instituted to yield a systematic code. The first is using aeco@xample 4. Suppose we want to protezf information bits
¥’ that has different correction properties tharused before. with a systematic code that corre¢ts= 1 asymmetricd = 3
The second is a special mapping between parity symbols /ghited-magnitude error, over an alphabet of sjze 32. Since
Y’ and code symbols af’ over Q. t = 1 and? = 3, we takeX to be the quaternary Hamming
Letg andg’ = ¢+ 1 be the alphabet sizes of the cod¥s code. More specifically, we chooZeto be the[5,3] Hamming
andX’, respectively. Assume for simplicity that= 2(¢+ 1), code over the alphabet of sige= 4 whose parity-check matrix
for some integes. If this is not the case, the same constructiois given below.
can still be used, only the mappings betwe@hand Q will 1011 1 1
be slightly more complicated. H= [ 0111 2 3 }
1) The Code L’: Let L be a linear systematic code over ]
an alphabet of sizg’ = ¢+ 1. The number of information Them = 2 left column/s ofH correspond to the parity symbols
symbols off is denoteck, and the number of parity symbols©f £- Note that = 2(q')* ands = 2. _
is . The parity-check matrix of is denoted byH. Columns  Replicating th‘f right parity column we obtdiff, the parity-
{0,...,m—1Y} of H correspond to then parity symbols of Check matrix of.".
the codeX. Let H' be the parity-check matrix that is obtained H— { 1001 11 }
from H by replicating all columns inie {0,...,m — 1} such 0 1}j1 1 2 3

thati # 0 (mod s), and appending them t&l. H' is the  The encoding 020 bits of information into a codeword of a

parity-check matrix of the linear codE’ that hasm parity  systematic cod€’ with the specified parameters is described in

symbols andc + |m(s — 1) /s] information symbols. Figure 6. Shaded cells represent parity symbols and unshaded
2) The Mapping Q" «» Q for Parity Symbols: From the cells represent information symbols. In Figué), the top

m parity symbols ofZ’, each set of parity symbols, denoted two bit rows are used to encode a worddfover the Finite

cp(()]),...,d)g]_)l, is mapped to a single parity symbol 6f Field of size4. In the right part of Figur&(b), information bits

using the following formula are mapped to symbols ¢ using the usual binary to integer
' -1 conversion. In the left part, the parity symbolsdfare mapped
X = (P(()]) +2 z (p(/)( 0+ 1)1" (7) toa symbol ofQ using the mapping defined in equati6r).
! = Figure6(c) shows the final codeword 6f.

The systematic codé’ is now specified using its encoding AS implied by the constari in equation (7), only half of
function. the alphabe@ is used in the parity symbols. That is equivalent

to 1 extra redundanbit for each parity symbol of’’. Note
Construction 2. Let = be alk + m, k] linear code over the that the half factor is true for arbitrarg. Whenever?/ > 1,
alphabetQ’ of sizeq' = £+ 1. The systematic cod&’ over that amount of additional redundancy compares favorably to
the alphabe@ of sizeq = 2(¢ + 1)° hask + [m(s —1)/s| restricting the parity symbols to H&modulo/ + 1, (akin to
information symbols andm /s| parity symbols. The parity the Ahlswede et al. “all error-correcting” scheme [1]), wii
symbols are computed by taking the moddle- 1 of the in- allows using only al /(¢ + 1) fraction of the alphabe@ in
formation symbols, encoding them using a systematic emcogarity symbols. It is interesting to note however, thatriesihg
for ', and mapping the resulting parity symbols ove)’ to  the parity symbols to b@ modulo/ + 1 turns out to be optimal
[m/s] symbols oveR), as described 7). for the caset = n, as proved in [6].

Note that the length of the cod¥ is « + [m(s —1)/s| + Tc_) be_tter understand ConstrucFion 2, it may be ben_eficial
lm/s] = k + m, the length of the non-systematic code to view it as a concatenated coding schem_e. The ¥dis
Codes obtained by Construction 2 have the following errof- concatenation of the _out/er codé and an inner code for
correction capability. each sympol (th_e mappw@ < Q) that partially corrects an

asymmetric/-limited-magnitude error, to have the outer code
Theorem 16. C’ correctst asymmetric(-limited-magnitude X’ observe at most one symmetric error. Figure 7 illustrates
errors ifX. correctd symmetric errors. this view of the systematic code construction.
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binary array of sizes x n, taken from an array cod€ that
corrects a single bit error in each of at mbstolumns. Each
symbol ofx € C; 1 is composed from a symbol of the codeword
o and a bit vector of the codewokd as follows. For any,

BIElo]]2]0] - {

x; = (£+1)-Gray(d;) + o

Ol R RO O
—_ | O O O -
Ol Rr| R |k O
Ol R OO O

whereGray (i) is the sequential number of the vectoin a
(@) binary Gray code og bits. The cod€’; | contains allx| - [C]|
compositions of the codewords bfandC.

bo P Proposition18. The code Cy; is a (ty,t;) asymmet-
D _ I:I P ric/symmetricl-limited-magnitude error-correcting code.
o204 St | g, ook Decadngolyy fsperomen o seps Pl
11 plainasymmetric/-limite

magnitude error-correcting code (of Construction 1). Far t
t; coordinates that possibly suffered errors in the downward
direction, the first decoding step miscorrects these etmrs
exactly ¢ + 1 levels below their correct levels. Thus, for each

of thesetl miscorrections, the Gray mapping of the upper bits
|19 |12 I 17|14| 8 | of the symbol guarantees that the resulting error obseryed b

the codeC is a single bit error. [ ]
(c) Exam ; . .
ple 5 below illustrates the encoding and decoding of a

Figure6. Encoding of a systematic code with=1 and ¢ = 3 code originating from Construction 3.

(b) o

s parityr 7 Partial s parity Example 5. In this example we protect/ symbols over an
symbolty .o AM Error Q— Q| YMPOlSaiphabet of sizeq = 12 against t; = 2 asymmetric

of ' Error Recovery of ' errors plustI =1 symmetric error. Both the asymmetric and

1 bit symmetric errors have magnitude limit df= 2. In Figure8,
redundancy o is a codeword of the ternary repetition code that corrects
tr+t =3 symmetric errors. The bits oV , placed in two
rows, are a codeword of the (shortened) binary Hamming code
of length 14. Each column of V is mapped to an integer
VI. CODES FORASYMMETRIC AND SYMMETRIC in {0,1,2,3} using the Gray code, and the final codeword
LIMITED-MAGNITUDE ERRORS x combinesV and o through the formula

Figure 7. Concatenated Code view of Construction 2

In Flash memory applications, the _dominant error sources x=3-Gray(V) + 0o
may cause most of the errors to be in one known direction.
However, other, more secondary error sources can inject
errors that are more symmetrical in nature, but still have lo
magnitudes. To answer such plausible scenarios, we adalress o ‘ 2| 2 | 2 | 2 | 2 | % | 2 ‘
variation of the asymmetrié-limited-magnitude error model
to include a (small) number of symmetiidimited-magnitude
errors.

Definition17. A (ty,t;) asymmetric/symmetric/-limited-
magnitude error is a vectersuch that{i : e; # 0}| < t; +1t;. 111{0[1]0[0/[0
In addition,t of the indices ot satisfy—{ < e; < ¢, and the
remainingn — tl indices satisfip < e; < /.

In the following, we present a construction method for
codes C; ; that correct (t,t;) asymmetric/symmetric/- x ’ 11‘ 8 ‘ 2 ‘ 8 ‘ 5 ‘ 2 ‘ 5 ‘
limited-magnitude errors. This enhanced error corretitabi
is achieved by modifying Construction 1 with the additiofrigure 8. Example of a code for asymmetric and symmetric limited-

o : . . agnitude errors. From top to bottom: a codeworaf the ternary
of an auxiliary binary code and a special mapping frOIIrﬁf;petition code; a binary Hamming codeword arranged int>a

information bits tog-ary sympols. We assume for simplicity-, array and its Gray mapping; the final codewardobtained by
thatg = 25(¢ + 1), for some integes. combiningo and V.

Construction 3. Leto = (o3, ..., 0,,) be a codeword of a code 3such cod be obtained by length, binary ¢ i

. o uch codes can pe obtaine y len , DInary error-correcting
L, over "’?n alphabet of S’Zﬁi“' 1, tflat corrects - tT +_ tI codes, or more cleverly, using J.K. Wolf’s Tensor-Produades construction
symmetric errors. Le¥ = (01, ...,0,) be a two-dimensional method [16].
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Decoding of the sample code above is illustrated in FiQureis done by relaxing the programming accuracy requirements,
The codeword in (a) is corrupted Byasymmetric (upward) and using the codes to correct the resulting programming
errors and downward error; the resulting word is given in (b)errors. Since the Flash programming mechanism is inhgrentl
In (c) the result of correcting asymmetridimited-magnitude probabilistic, the introduction of “intentional” programing
errors is given. The “corrected” arrdy is shown in (d), and errors in a controlled way can significantly reduce the ayera
the top bit of the third column from right (marked with a boldprogramming time and improve the write performance. Such
face0) is found to be in error. Finally, in (e) the third symbohn outcome would be highly desirable given the inferiority
from right (in bold face) is adjusted levels upward after a of Flash devices in write performance compared to their

miscorrection was detected at the previous step. read performance, and to the sequential write performahce o
hard-disk drives. The programming speedup is next analyzed
(@) codeword ’11‘ 8 ‘ 2 ‘ 8 ‘ 5 ‘ > ‘ 5 ‘ quantitatively by calculating the savings in programmiimggt

as a function of? (the correctable error magnitude of the
employed codes).
The behavior of a typical optimized Flash programming
(b)  corrupted ’11‘10‘ > ‘ 8 ‘4 ‘3 ‘5 ‘ sequence is shown in the graphs of Figure 10, which is
taken from [3]. The integers of the horizontal axis représen
the program-pulse sequential numbers and the vertical axis
represents electric-current levels to which Flash cells ar
(c) A¢M decoded ’11‘ 8 ‘ 2 ‘ 8 ‘ ) ‘ ) ‘5 ‘ programmed. A circle on the a graph represents a current
level achieved by a pulse at some point along the programming
sequence. The different graphs in Figure 10 represent amogr
sequences with different target current values. As can be

~ ol1Tol1lol0ol1 clearly seen, most of the progress toward the target value is
(d) correctedV achieved by the early pulses, and the numerous later pulses
1/1/0j1/0/0]0 are used for a fine asymptotic convergence to a value very

close to the target. Therefore, having even a small error
13 resiliency against asymmetric limited-magnitude erroas ¢
. allow the programming sequence to terminate long before
(€) StM adjusted ’ 11‘ 8 ‘ 2 ‘ 8 ‘ 5 ‘ 2 ‘ 5 ‘ hitting the target value (due to the asymptotic nature of the
programming curves) thus significantly speeding up memory
Figure9. Example of decoding asymmetric and symmetric limitedaccess. Increasing the error resiliency beyond the flatgfart
magnitude errors. (a) Codeword. (b) Codeword corrupteddyna o rve does not add significant benefits, as at the steeper

metric and symmetric limited-magnitude errors. (c) Firsetading fth h ical . f .
step: correction of asymmetric limited-magnitude?#) errors. (d) Part of the curve the vertical concentration of programming

Resulting corrected codeword is decoded using a Hamming de-points becomes sparser.
coder. (e) Adjusting the miscorrection of the symmetrioefound
in the previous step.

&

Note that the amount of redundancy (of both and V )
required in the example to corrd@, 1) asymmetric/symmetric
errors is smaller than iV is not restricted and the repetition
code is taken over an alphabet of sizé+ 1 = 5 (that scheme
would correc symmetric{ = 2 limited magnitude errors).

G05.5n A
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The counter-intuitive part of Construction 3 is tHahary

Gray mappings are used regardless of the error-magnitude
This fact implies that the codes andC cooperate with each
other to achieve the prescribed correction capabilityeottee [ & . 30n4
C would need to operate over a larger alphabet/for 1.

]
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VII. SPEEDING UPFLASH ACCESS WITHASYMMETRIC e e ke el
LIMITED-MAGNITUDE ERROR-CORRECTING CODES

Error-correcting codes are usually used for Forward Error
Correction (FEC), namely to protect the data integrity aghi Figure10. Performance of a Flash adaptive program sequence [3].
uncontrolled errors. In this section we show that asymmetrThe circles on each curve describe the results of an iteratio-
limited-magnitude error-correcting codes, in additiontbe 9ramming algorithm for a given target value.

standard FEC capabilities shown earlier in the paper, can be

used to speed up the writifigorocess to Flash devices. This To supplement th? e_xp_erlmental _ewdence above, that tol-
erance to asymmetric limited-magnitude errors can spged-u

“Memory write is referred to aprogramming in the Flash literature the programming sequence, a quantitative analysis of the ti
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savings is now carried out. The inputs to a Flash programmikignce we have the following relationship between the lower

algorithm are thénitial andtarget current levels; its output is a level I; and the final (higher) level; ;:

programming pulse of some width and amplitude, that attempt

to move closer to the target level, under some constraimts. Tlit1 = I; +6; ,  &; ~ Exponential[—1In(e)/(Ir — ;)]

have an analytic description of the programming sequence, 9)

we need to model the programming algorithm in a way th&tote that the parameter of the exponential distributiord,of

captures its main design constraints in practice. In Flagh each step depends on the starting levgl that is itself a

devices, preventingver-programming, whereby the program- random variable.

ming result exceeds the target level, is a crucial consiidera  Starting from an initial levely, the programming algorithm

taken by the programming algorithm. The reason for thggcursively updates the cell level according to (9), anghsto

being that Flash devices do not support single-cell erases, after then'™ step if I, > Ir — A, whereA is the maximum

an over-programming instance requires erasing a full Flaghowed deviation from the target levelr. Discussed in

block, an operation that is very costly in terms of time andetail later, the parametex specifies the device tolerance to

device wear. The analysis that follows, strongly builds leatt programming errors in the downward direction. A pictorial

property of Flash devices. illustration of the modeled programming sequence is given i
Suppose a Flash cell is to be programmed from a lowEigure 12.

level I; to a higher target levelr. Since the changé in

the current level is a random variable whose distribution [F

depends on the chosen programming pulse, we model it as

an exponentially distributed random variable with meai/ p. on L1
© will be determined by the programming algorithm as a
function of I;, Ir, and subject to a constraint of fixing a low
probability of over-programming. Specifically, will be taken ‘
such that Iy
Pr(li+6>1Ir) =€ bl I
%)
€ is a global parameter that specifies the allowable prolabili e I
of over-programming. Substituting the exponential disttion
of 4, we get the integral equation &1
[o.0]
/ wexp(—pd)ds = e © I
Tt Figure12. A pictorial illustration of the modeled programming
(See Figure 11 for illustration.) sequence. On the left side are the initial levgl the target level
Ir and the tolerance parametér In the middle is a sequence of ex-
ponentially distributed level incremends, 65, . . ., &, resulting from
pdf(3) the programming algorithm. On the right side are the instagbus
levels I; until the process terminates &t.
I
To analyze the performance of the programming algorithm,
we need to find the expected number of stepsuch that
L1 <Ip—A<L],
However, given the compléstructure of the random process
I;, finding the mean of: is hard. Instead, we will approximate
‘ I;'s mean crossing time by the (deterministic) crossing time
Ir—1I; \ 0 of the mean off;. This latter calculation is significantly easier
€ since we can use the linearity of expectation to obtain a

. . o recursive formula for the mean df. The accuracy of that
Figure11. Choice of a programming distribution based on the speci- imati b tablished usi tration do
fied probability of over-programming. For starting leveland target approximation can be established using concentrationdoun

level Ir the parameten of the exponential distribution is chosen sucf(e-_g- Chebyshev in(_aqua.llity), however for the discussiore he
that the marked area under the probability density functicmph a first order approximation should suffice.

equalse (the specified probability of over-programming) Now taking the mean of equation (9) we write
. . - 1 — -
Solving (8) and rearranging we get i1 1=L+E [E} =T+ K(Ip—T) (10)
i
In(e)

H=- Ir—1I; 5I; is a Markov process with an uncountable number of states



13

whereK. = —1/In(e). Rewriting (10) provides a recurrencez is an integer specifying the target increase in discretelgev

relation on the expected programmed levels the part of the programming duration saved by the code equals
Ii——H:Ti(l _Ke) + Kl 10g(£+1)
Solving the recurrence for initial levé) we get the expression loga
n ‘ as long asa < q— /. The mediaf percentage savings is
I, = Ip(1 — Ko)" + IpKe z (1-Ke) ! obtained by takingt = 4/2 and is equal to
i=1
log(¢+1)

which after simplification becomes .
P log(q/2)

Iy = Ip = (1 = Ke)"(Ir — Io) (1) For a sample number of levels = 32, the median savings
Now, by equating (11) tdr — A we can calculate the timy in programming time suggested by the model is plotted in
when the sequence of meahscrossedy — A: Figure 13.

Ir—(1-K)N(Ip—Ip) =Ir — A % Savings

that gives

- 10g<1p — Io) — log(A)
 —log(1—Ke)

The importance of (12) is that it describes how the number 39/0
required pulse®N depends on the error margin To compare
the programming speed of Flash devices with and without
an asymmetric limited-magnitude error-correcting code, w,
define two different error marging}. and A, respectively
(the subscript stands foicoded and the subscriptc stands for
uncoded, and obviouslyA. > A,.). The difference between
the corresponding numbers of pulsdg. and N, is then

~ log(Ac/Auc)

cT - log(l —Ke) Figure 13. Percentage of program-time savings as a function of the
code’s magnitude limit parametér Significant savings are suggested

A conservative assumption is to s&t = (£ +1)Ayc, wherel  even for smalll and returns are diminishing for growing

is the parameter of the asymmetfidimited-magnitude error-

correcting code. This assumption corresponds to allowieg t As seen in both Figure 13 and Table I, while even small
uncoded device a tolerance of one level (over the discretglues suggest significant savings, increadirgeyond some
alphabetQ), and the coded device a tolerance/cddditional point exhibits diminishing returns and does not signifibant

levels for the total o + 1 levels. Under that assumption, thecontribute to increased savings in programming time. Note

N

(12)

B

1 3 3 it
NMC_

savings in the number of programming pulses equals that this last qualitative observation is one we have ajread
log(¢ +1) made when discussing Figure 10 earlier in the sub-section.
Nuc — Ne = m (13) Thus both analytical and experimental evidence motivage th

application of asymmetric limited-magnitude error-catheg
codes (with smallt), as clearly codes for symmetric errors
will not be an efficient solution for programming speed-up.

For an over-programming probability = 0.01 the above
equals
Nuc - NC = 4.08 log(f + 1)

Values of savings for different values b6fare given in Table I. VIIl. CONCLUSIONS ANDEUTURE RESEARCH

? | Ny — N; This paper proposes a new coding technique that is moti-

1 2.84 vated by multi-level Flash memories. Defining a natural new

g g:gg error model has opened the way to a simple but powerful con-

) 657 struction method that enjoys good storage and implementati

5 7.31 efficiencies. By an interplay between symbol mappings and

6 7.94 constraints on the full code block, several useful extersio
TABLE | to the basic code construction are achieved. An attractive

APPROXIMATE AVERAGE SAVINGS IN PROGRAMMING PULSES FOR

SAMPLE VALUES ORf property of the codes herein, is that the coding parameters

n,t,f need not be fixed for a Flash memory device family.
After implementing the simple circuitry to support this dogl

Another quantity of interest is the percentage of savings; _ o , o _
The median savings is a simple approximation to the averagigs,

(Nuc - NC)/NMC %100, which d_epen(.tls on the partiCUIar dif'Which has an unwieldy expression. For snfgitompared tq) it is a relatively
ferencelr — I. For a programming window aff — Iy = a/AA, good approximation.
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method in general (modulo and other arithmetic operationg)o] T. Kleve, “Error correcting codes for the asymmetricanhel,” Dept.
different code parameters can be chosen, depending on the Mgag;ema“csl University of Bergen, Norway, Tech. Rep. 983-81,
application, by using varying external coding modules f(ﬁ1 y
the symmetric error-correcting code. Many of the strengths
of this construction method were not explored in the cuf2l
rent paper. When the reading resolution is larger than thg]
code alphabet size (e.g., readers that give a real number
rather than an integer), improved decoding techniques ean b
readily applied using “limited-magnitude erasures” oresth
soft interpretations of the read symbols. Better systamatis]
codes may be obtained by observing the relation between the
limited-magnitude errors and the errors they impose on th%]
low-alphabet code, and then replacing the symmetric error-
correction properties we required (which are too strondh wi
various Unequal Error Protection properties. An intergpti
open problem is showing (if true) the asymptotic optimality

] J. Leech and N. Sloane, “Sphere packing and error-ctimg codes,”
Canadian J. Math., vol. 23, no. 4, pp. 718-745, 1971.

F. MacWilliams and N. Sloanélhe Theory of Error-Correcting Codes.
Amsterdam, The Netherlands: North Holland, 1977.

R. McEliece, “Comments on ‘A class of codes for asymiigethannels
and a problem from the additive theory of number$EEE Trans. on
Inform. Theory, vol. 19, no. 1, p. 137, Jan. 1973.

] S. Stein, “Packings oR" by certain error spheres/EEE Trans. on
Inform. Theory, vol. 30, no. 2, pp. 356-363, Mar. 1984.

R. Varshamov, “A class of codes for asymmetric chanaals a problem
from the additive theory of numberslEEE Trans. on Inform. Theory,
vol. 19, no. 1, pp. 92-95, Jan. 1973.

J. K. Wolf, “An introduction to tensor product codes aagplications to
digital storage systems,” iRroc. |EEE Information Theory Workshop,
Chengdu, China, 2006, pp. 6-10.

of Construction 1 for all values of andt. This fact lies upon
the existence of a proof to the following conjecture.

Conijecture 1. For anya andt, A,(n,t) (size of largest-ary
code for symmetric errors) arfésym,(n,t) (size of largest-
ary code for asymmetric errors) satisfy the following edyal

! 1
Jlim —log, [Aa(n,t)| = lim —log, [Asym,(n, t)|

(This was proved here far = 2 and for restricted if a > 2).
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