
Distributed Computing Column 49
Coding for Distributed Storage

Idit Keidar
Dept. of Electrical Engineering, Technion

Haifa, 32000, Israel
idish@ee.technion.ac.il

Storage systems nowadays are increasingly distributed. While disk arrays, which are a form of
a tightly coupled distributed system, have been in use for over two decades, the trend today is to
move towards networked, widely dispersed distributed storage comprised of loosely coupled nodes.
Coding plays an important role in both contexts, as it can help provide fault-tolerance without
an excessive storage overhead. Indeed, minimizing storage redundancy for a given level of fault-
tolerance was the first requirement considered in the design of codes for distributed storage systems.
Over the years, numerous other considerations have come to light, driving the coding community
to develop solutions that cater the various needs of distributed storage systems. The current shift
towards networked storage has raised the need for yet additional properties from codes, which are
the subject of much ongoing research.

This column deals with advances in coding theory that are (or might be) applicable to dis-
tributed storage. It begins with a primer by Yuval Cassuto, describing the different considerations
in distributed storage, as well as codes designed to address them. Yuval lists a range of requirements
from codes for distributed storage. The list begins with properties required in disk arrays, such as
low redundancy and low encode/decode complexity, and continues to considerations that arise in
wide-area distributed storage such as degraded reads and efficient rebuild. The latter is the focus
of our second contribution, by Anwitaman Datta and Frédérique Oggier. Their article gives an
overview of codes that aim to achieve better repairability in networked distributed storage systems.
In particular, Anwitaman and Frédérique consider the rebuild cost in the face of concurrent failures.

Many thanks to Yuval, Anwitaman, and Frédérique for their contributions!

Call for contributions: I welcome suggestions for material to include in this column, including
news, reviews, open problems, tutorials and surveys, either exposing the community to new and
interesting topics, or providing new insight on well-studied topics by organizing them in new ways.

79

What Can Coding Theory Do for Storage Systems?

Yuval Cassuto
Dept. of Electrical Engineering, Technion

Haifa, 32000, Israel
ycassuto@ee.technion.ac.il

Abstract

Storage systems and coding theory are two very different but highly interdependent engineer-
ing disciplines. The development of storage systems has impacted research in coding theory,
and coding-theoretic contributions changed the way storage systems work. The presentation
aims to give a short summary of the different problems solved by coding theory at the service
of storage systems.

1 Introduction

Designing a working and performant storage system is a challenging engineering feat. Such a system
is built on tremendous amount of knowledge and knowhow, with endless optimizations to fit the
real-world conditions. One decision that is made very early in the design is how the system will
address the issue of node failures. On the one hand, the processes that cause failures are complex
and non-deterministic. On the other hand, the fault tolerance of the system needs to be clearly
and unequivocally conveyed to the customer. The bridge between these different environments
is provided by codes, which are combinatorial objects with well defined and provable properties
and behaviors under certain conditions. The most common code used for fault tolerance is the
repetition code, more commonly known as replication in storage-system terminology. When a data
unit is replicated n times, it is clear that any n− 1 or less missing units can be tolerated.

More generally, a storage system implements a code with n coding units spread across n nodes,
and r of the n coding units are redundant. The size of the coding unit is a parameter that is
determined by both the code properties (e.g., encoding/decoding complexity) and by the system
characteristics (e.g., the typical access granularity to the system). In most practical storage systems
the code has to be systematic, i.e., is composed of two types of coding units: data units and parity
units. Parity units are calculated from data units using some arithmetic operations.

Since the code is deeply engrained in the system and its operation, it needs to satisfy different
requirements so as to not interfere with the normal operation of the system, or cast a burden on its

ACM SIGACT News 80 March 2013 Vol. 44, No. 1

performance. In this short presentation, we discuss a few of these code requirements, and briefly
mention the coding-theoretic techniques used to achieve them. We focus here on low redundancy,
low encoding/decoding complexity, low update complexity, degraded-read efficiency, and rebuild effi-
ciency. Each is discussed in a separate section. The sections are given in a roughly chronological
order, according to the times when the topic was put in the spotlight of coding theory research. By
no means do we claim that the storyline or examples described here are the best representatives
of the subject matter. Additionally, the sheer amount of high quality publications in these areas
allows the inclusion of but a tiny sample of works we find most convenient for the presentation.

2 Low Redundancy

The principal goodness criterion of a storage system is the storage efficiency, defined as the amount
of logical storage available to the customer, divided by the amount of physical storage used by the
system. Since in most cases the storage capacity is the main feature of the system, and the physical
storage media is the dominant component in bill-of-materials costs, it is clear why a high storage
efficiency is a valuable property. An equivalent objective to maximizing the storage efficiency is to
minimize the storage redundancy, where the latter is defined as the amount of physical storage that
depends on information stored elsewhere in the system, and thus cannot be used by the customer
to store arbitrary data. The main reason to use redundancy in storage systems is to avoid the loss
of precious customer data when failures are incident upon system components. So implicit to any
redundant storage-system design is the fact that the cost of losing data is significantly higher than
the cost of the hardware that carries the data.

It is a fortunate coincidence that a large body of work in the field of information theory was in
place to assist in the quest for low-redundancy reliable storage systems. While primarily motivated
by digital communications [23] applications, the field of information theory provided storage sys-
tems with well-developed constructive and analytic tools to address the reliability vs. redundancy
tradeoff. For example, the concept of erasures, used by (erasure-coded) storage systems to describe
full-node failures, was introduced by Peter Elias as early as in 1954 [14]. In fact, the erasure chan-
nel is considered in information theory as the simplest non-trivial noisy channel, achieving great
success in obtaining constructive coding results and analytical understanding.

The greatest contribution of classical coding theory to storage systems is the family of Reed-
Solomon (RS) codes [21]. The key appeal of RS codes is that they achieve optimality with respect to
erasure correction – known as the MDS1 property – and they do so for all combinations of number
of nodes, number of correctable erasures, and coding unit size (not smaller than log the number of
nodes). In fact, the lower bound on the coding unit size (as a function of the number of nodes),
limiting in other applications, is a non-issue for storage systems that anyhow use unit sizes greater
than anything necessary for RS code existence. To deploy an RS code in a storage system, each
coding unit of size m bits is regarded as an element from GF(2m), a Galois field with 2m elements.
Correspondingly, the encoding, update, and erasure-decoding operations are implemented using
finite-field arithmetic (additions, multiplications, reciprocations, exponentiations) over GF(2m). It
is important to note that multiplication of two GF(2m) elements requires multiplying a pair of
polynomials with m binary coefficients, which requires O(m2) bit operations in a straightforward
implementation, or O(m log m log log m) operations using much trickier spectral techniques. As
a result, RS codes over large coding units in general require complex hardware implementations

1MDS=Maximum Distance Separability

ACM SIGACT News 81 March 2013 Vol. 44, No. 1

and non-trivial designs. Despite this inherent difficulty, RS codes are very dominant in storage
system implementations, a lot thanks to their rich structure that attracted a massive amount of
research toward their efficient realization. One flavor of RS codes that was found most apt for
implementation is the Cauchy-matrix RS codes [6].

3 Low Encoding/Decoding Complexity

On the ground of RS codes’ non-trivial implementation formed a new branch of coding theory,
one that aims to replace the complex arithmetic by simple eXclusive OR (XOR) operations. The
objects of study in that new branch are called array codes [3]. As their name implies, array
codes are defined over two-dimensional arrays carrying b × n coding units (data+parity). Moving
from one-dimensional coding theory to two-dimensions allows combining simple XOR operations
on small coding units, with a full-column erasure model2 corresponding to a full-node failure in the
storage system. Array codes also enjoy simpler, geometrically specified design, compared to the
algebraically specified RS codes. Thus a hardware/software implementor can observe the coding
XOR operations directly, without the overhead of an intermediary layer of finite-field arithmetic.
The encoding of array codes can be specified pictorially by a parity-group diagram, which gives the
parity constraints the array bits need to satisfy. For example, each shape in the diagram of Figure 1
shows a parity constraint among the coding units that carry it. This particular example depicts a
simple horizontal parity, but any two-dimensional parity groups can be specified in a similar way.
It is clear why a code that has a simple geometric specification is advantageous for implementation.

Figure 1: Geometric specification of the horizontal parity. Each coding unit on the rightmost column is the
XOR of all the units to its left that carry the same shape.

The fact that array codes use simple XOR operations does not mean that they do not enjoy a
rich algebraic structure. In fact, many of the ideas used for array-code constructions originated from
a paper that developed an algebraic framework for array codes. In 1993, Blaum and Roth [4] showed
that MDS array codes for any number of erasures can be obtained by simple geometric specification
of parity groups. Specifically, taking the r parity groups as diagonals with slopes {0, . . . , r − 1}
yields an r-erasure MDS code when the array dimensions are (p − 1) × (n ≤ p), for some prime
p. This construction and the algebraic framework that supports it (RS-like check matrices over a
polynomial ring) were the foundation upon which many practically successful diagonal-based array
codes were constructed [1, 2, 12, 18].

An example of a diagonal parity is given in Figure 2.
Figure 1 and Figure 2 together specify the encoding rules of two parity columns of a r = 2 array

code.
2also called phased burst erasures in the literature.

ACM SIGACT News 82 March 2013 Vol. 44, No. 1

Figure 2: A parity-group specification of a slope 1 diagonal parity. The diagonals wrap around from the
top back to the bottom, skipping an imaginary row mandated by the algebraic framework of [4].

4 Low Update Complexity

One aspect of storage systems not captured by traditional coding theory is the update problem. The
operation model assumed by traditional coding theory is one with an encoder emitting codewords
to a channel, and a decoder that corrects the garbled codewords. In a storage system, a “codeword”
may be as large as the entire content of data+parity in the system. Therefore, selective update,
and not full encoding is the operation whose efficiency counts. The update complexity of a code
is defined as the average total number of updated coding units (data+parity) needed for a single
data-unit update. The importance of the update complexity is that it multiplies the time and wear
penalty of writing to the storage system in normal operation, even if no failures occur! Thus a
good array code must take care to update only a few parity units for each update of a data unit.
A fundamental and easy to prove lower limit on the update complexity now follows.

Proposition 1. A code that corrects r erasures must have update complexity at least r + 1.

It is clear that if a data update results in r or less total code updates, then if the columns of
these r update locations are all erased, it is not possible to recover the data.

But when calculating the update complexity of popular RAID-6 array codes such as EVEN-
ODD [1] and RDP [12], we find that they do not quite meet this fundamental bound. Both codes
correct r = 2 erasures with an update complexity close to 4 = r + 2. More precisely, their (slightly
different) update complexities are 4 − o(1), where o(1) tends to 0 as the array dimensions go to
infinity. This suboptimality costs 33% in writing time and wear. For general r erasures, the up-
date complexity of the array-code construction of [2] is 2r − o(1), reflecting a factor 2 gap from
optimality.

It turns out [5] that to obtain an update complexity of exactly r + 1, one needs to give up
an important property of the code: having dedicated parity columns in the array. This result
motivated the exploration of MDS array codes with optimal update complexity, whose parity bits
are spread across all array columns, and not confined to r parity columns as in EVENODD and
RDP.

4.1 Optimal update-complexity MDS array codes

The prospects of deploying in storage systems array codes that have both optimal redundancy
(MDS) and optimal update complexity have motivated significant coding-theory research in this
direction. A precursory example of the existence of such codes was found in [27], where r = 2 codes

ACM SIGACT News 83 March 2013 Vol. 44, No. 1

were constructed for any (p − 1)/2 × (p − 1) array with p a prime. More such r = 2 codes were
added by [26] for (p− 1)× 2(p− 1) arrays with p a prime. Other codes for r = 3, 4 were obtained
by [19]. Finally, for all these parameters, MDS optimal-update codes were constructed with the
cyclic property [8], which reduces the implementation complexity of the codes.

The parity bits in all known optimal-update MDS codes are laid out in rows of the array. An
example of a specification of such a r = 3 code is given in Figure 3. This code has 6 information

Figure 3: Example of an r = 3 cyclic MDS code with optimal update complexity.

bits a0, . . . , a5, and 6 parity bits whose XOR operations are specified in the bottom row. The MDS
property is seen in that all 6 information bits can be recovered from any set of r = 3 columns. The
optimal-update property is found in that each information bit appears in r = 3 parity bits.

Moving from the column parity layout to the row layout of optimal-update codes introduces
one advantage (+) and one disadvantage (−), as described in the following.

+ Parity-write load balancing. When a bulk of updates is applied to the storage system, the
row layout balances the corresponding parity updates across the entire system. In contrast,
the column layout refers all parity updates to the same columns, which requires applying
external load balancing techniques such as striping.

− Shortening difficulty. In the dedicated parity columns case, a storage system with n′ nodes
could use any code with n ≥ n′ columns, with the remaining n − n′ columns implicitly set
to all zeros. In the row parity layout, every column has a parity component, and cannot be
removed from the array simply by setting all its bits to zero.

5 Giving Up MDS for Efficient Degraded Read

So far in the presentation, all the surveyed codes belonged to the class of MDS codes. But in
practice having strictly optimal redundancy may be secondary to more important system features.
This observation was made in [17], for the particular feature of efficient degraded reads. Degraded
reads are read operations that cannot be accomplished from their systematic locations in (yet to
be rebuilt) failing nodes, and must be calculated from a combination of data units and parity
units in non-failing nodes. For that purpose, [17] proposed the Pyramid construction, which is a
transformation of MDS codes to non-MDS codes such that data units in fewer columns are required
to perform a degraded read. This is done by taking a parity group of an MDS code and splitting
it to two or more parities, such that each is calculated from only a subset of the array columns.
Adding these “local” parities to the code allows reconstruction of data from a smaller subset of the
columns in small failure events.

In the process of splitting parity groups in the Pyramid transformation, the erasure correction
capabilities of the code are severely compromised. For example, a Pyramid code with r = 4
parity columns, generated by splitting one parity group of a r = 3 MDS code, can recover from
only 1/2 of the 4-erasure combinations. In contrast, the algebraic construction of [9] offers the

ACM SIGACT News 84 March 2013 Vol. 44, No. 1

same degraded-read capabilities while recovering from 7/8 of the 4-erasure combinations. It also
shows that with sparser parity groups the code can have significantly lower decoding and update
complexities, important enough features to motivate the minor loss of erasure correctability over
MDS codes.

There are many storage-system architectures in the literature that use codes with sub-optimal
redundancy to gain a more important system feature. This is a well motivated choice, which can
be made more efficient with a proper coding-theoretic modeling followed by constructions that are
optimal for some joint design parameters.

6 Efficient Rebuild

New code-design considerations are raised as erasure codes move from the comfort of a collocated
array to a wide-area distributed system. The first of these considerations was the amount of
information needed to be communicated in order to rebuild the content of a storage node after its
failure. Codes that aim to minimize the rebuild communication cost are called rebuilding codes or
regenerating codes. The problem of efficient rebuilding codes was introduced by [13], in which a
detailed characterization of the tradeoff between the code’s storage and communication efficiencies
was developed. The characterization includes both constructions and fundamental information-
theoretic limits. This work has motivated a large effort toward constructing efficient rebuilding
codes, and in particular ones that enjoy many of the good properties mentioned in earlier sections
(systematic, low redundancy, simple arithmetic, low update complexity). One of these constructions
is the Zigzag code [25], which simultaneously achieves the MDS property, optimal update complexity,
and optimal rebuilding. This impressive set of features comes with two caveats: arithmetic over
fields of size at least 3, and an exponential number of coding units in each column. (In comparison,
RS codes require a logarithmic number, and the array codes of Sections 3 and 4 require a linear
number.) These two caveats are shown in [25] to be necessary to achieve the triple optimality.

A related code-design consideration is to minimize the number of nodes that participate in the
rebuild. We note that this is a different consideration than minimizing the total rebuild commu-
nication, since the optimal schemes for the latter communicate (a little) information from all the
non-failing nodes in the system. Codes rebuilding from a small set of nodes are related to a well
studied concept in theoretical computer science called locally decodable codes. Characterization of
the achievability and limits for such codes was contributed in [16].

Apart from the two code-design considerations mentioned in the preceding paragraphs, several
others (such as self-repairing codes discussed later in this column3) were studied with similar
success. It is expected that with the growing ubiquity and diversity of distributed storage systems,
more such code-design considerations will meet rigorous coding-theoretic treatment. The resulting
constructions hold a true potential to improve distributed storage systems in various ways.

7 Future Directions

As these lines are written, many more codes for distributed storage systems are constructed by
different research groups around the world. So there is no real need to mark the directions for

3Datta and Oggier, An Overview of Codes Tailor-made for Better Repairability in Networked Distributed Storage
Systems, ACM SIGACT News 44(1), March 2013.

ACM SIGACT News 85 March 2013 Vol. 44, No. 1

the future, as it is happening anyhow. That said, it will be advantageous to mention here two
important areas of coding theory that so far were left out of the main thread of distributed-storage
codes. It is a matter of personal opinion that in the future they will take a more central role in
protecting and distributing data in storage systems.

1. LDPC codes. Low Density Parity Check (LDPC) codes are the main pillar of modern coding
theory [22]. In many applications they offer the state of the art performance. In storage
systems however, they did not receive significant research attention, despite the commonality
between them and array codes in using low-density matrices [15]. To connect between LDPC
codes and storage systems, we recently proposed a new two-dimensional erasure channel model
that combines node failures with random erasures within the failing nodes [10]. We showed
that over this channel a new two-dimensional LDPC construction outperforms traditional
algebraically constructed array codes. This new coding framework is not “storage system
ready” yet (for example, the codes are not given in systematic form), but we believe that it
has a high potential to become a practical alternative.

2. Fountain codes. The fountain coding framework [7] achieved great success in distributing
data over lossy network links. This success is attributed to the construction of very low
overhead codes with low complexity of decoding [20, 24]. When we use fountain codes for
storage, we need to distribute coded packets to network nodes, such that some global data-
recoverability properties are maintained. When nodes fail, rebuilding is done by redistributing
code packets between nodes to retain these global properties. In order for the fountain code to
support this use case, it must provide the nodes with a good idea of the current decodability
state of their code packets, at a finer granularity than able/not able to fully decode. A small
step toward this objective was taken in [11] by proposing a fountain code whose decoding
state is given by the sizes of the connected components of a graph. As a result, the node that
holds the coded packets can tell fellow nodes in the system which types of packets are best
for it at the current instant.

8 Conclusion

We hope that this short presentation made the case that coding theory has been instrumental
to the development of efficient storage systems. More importantly, we are certain that emerging
distributed storage-system architectures will enjoy even richer coding-theoretic contributions.

References

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an efficient scheme for tolerating
double disk failures in RAID architectures,” IEEE Transactions on Computers, vol. 44, no. 2,
pp. 192–202, 1995.

[2] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent parity symbols,”
IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 529–542, 1996.

[3] M. Blaum, P. Farrell, and H. van Tilborg, “Array codes,” Handbook of Coding Theory, V.S.
Pless and W.C. Huffman, pp. 1855–1909, 1998.

ACM SIGACT News 86 March 2013 Vol. 44, No. 1

[4] M. Blaum and R. Roth, “New array codes for multiple phased burst correction,” IEEE Trans-
actions on Information Theory, vol. 39, no. 1, pp. 66–77, 1993.

[5] ——, “On lowest density MDS codes,” IEEE Transactions on Information Theory, vol. 45,
no. 1, pp. 46–59, 1999.

[6] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman, “An XOR-based
erasure-resilient coding scheme,” TR-95-048, International Computer Science Institute, Tech.
Rep., August 1995.

[7] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach to reliable
distribution of bulk data,” in Proc. ACM SIGCOMM’98, Vancouver BC,Canada, 1998, pp.
56–67.

[8] Y. Cassuto and J. Bruck, “Cyclic lowest-density MDS array codes,” IEEE Transactions on
Information Theory, vol. 55, no. 4, pp. 1721–1729, 2009.

[9] ——, “Low-complexity array codes for random and clustered 4-erasures,” IEEE Transactions
on Information Theory, vol. 58, no. 1, pp. 146–158, 2012.

[10] Y. Cassuto and M. A. Shokrollahi, “Array-code ensembles -or- two-dimensional LDPC codes,”
in Proc. of the IEEE International Symposium on Info. Theory, St. Petersburg Russia, 2011.

[11] ——, “On-line fountain codes for semi-random loss channels,” in Proc. IEEE Information
Theory Workshop, Paraty, Brazil, 2011.

[12] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar, “Row-
diagonal parity for double disk failure correction,” in In Proceedings of the 3rd USENIX Con-
ference on File and Storage Technologies, San-Francisco CA, 2004.

[13] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network coding for
distributed storage systems,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp.
4539–4551, 2010.

[14] P. Elias, “The binary erasure channel,” MIT Information Theory Lectures, 1954.

[15] J. L. Fan, “Array codes as low-density parity check codes,” in Proc. of the Intl. Symp. on
Turbo Codes, 2000, pp. 543–546.

[16] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword symbols,”
ECCC: TR11-100, 2011, to appear in IEEE Trans. Info. Theory.

[17] C. Huang, M. Chen, and J. Li, “Pyramid codes: flexible schemes to trade space for access
efficiency in reliable data storage systems,” in In Proceedings of the Sixth IEEE International
Symposium on Network Computing and Applications, Cambridge, MA USA, 2007.

[18] C. Huang and L. Xu, “Star: An efficient coding scheme for correcting triple storage node
failures,” in In Proceedings of the 4th USENIX Conference on File and Storage Technologies,
San-Francisco CA, 2005.

ACM SIGACT News 87 March 2013 Vol. 44, No. 1

[19] E. Louidor and R. Roth, “Lowest-density MDS codes over extension alphabets,” IEEE Trans-
actions on Information Theory, vol. 52, no. 7, pp. 3186–3197, 2006.

[20] M. Luby, “LT codes,” in Proc. of the Annual IEEE Symposium on Foundations of Computer
Science FOCS, Vancouver BC, Canada, 2002, pp. 271–280.

[21] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM J. Appl. Math.,
vol. 8, pp. 300–304, 1960.

[22] T. Richardson and R. Urbanke, Modern coding theory. New York USA: Cambridge University
Press, 2008.

[23] C. Shannon, “A mathematical theory of communication,” Bell System Technical Journal,
vol. 27, no. 9, pp. 379–423, Oct. 1948.

[24] M. A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2551–2567, 2006.

[25] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with optimal rebuilding,”
arXiv:1112.0371 [cs.IT], 2011, submitted to IEEE Trans. Info. Theory, 10/2011.

[26] L. Xu, V. Bohossian, J. Bruck, and D. Wagner, “Low-density MDS codes and factors of
complete graphs,” IEEE Transactions on Information Theory, vol. 45, no. 6, pp. 1817–1826,
1999.

[27] G. Zaitsev, V. Zinov’ev, and N. Semakov, “Minimum-check-density codes for correcting bytes
of errors, erasures, or defects,” Problems Inform. Transm., vol. 19, pp. 197–204, 1981.

ACM SIGACT News 88 March 2013 Vol. 44, No. 1

An Overview of Codes Tailor-made for Better Repairability in
Networked Distributed Storage Systems

Anwitaman Datta Frédérique Oggier
Nanyang Technological University, Singapore
{anwitaman, frederique}@ntu.edu.sg

Abstract

The increasing amount of digital data generated by today’s society asks for better storage
solutions. This survey looks at a new generation of coding techniques designed specifically for the
maintenance needs of networked distributed storage systems (NDSS), trying to reach the best
compromise among storage space efficiency, fault-tolerance, and maintenance overheads. Four
families of codes, namely, pyramid, hierarchical, regenerating and locally repairable codes such
as self-repairing codes, along with a heuristic of cross-object coding to improve repairability
in NDSS are presented at a high level. The code descriptions are accompanied with simple
examples emphasizing the main ideas behind each of these code families. We discuss their pros
and cons before concluding with a brief and preliminary comparison. This survey deliberately
excludes technical details and does not contain an exhaustive list of code constructions. Instead,
it provides an overview of the major novel code families in a manner easily accessible to a broad
audience, by presenting the big picture of advances in coding techniques for maintenance of
NDSS.
Keywords: coding techniques, networked distributed storage systems, hierarchical
codes, pyramid codes, regenerating codes, locally repairable codes, self-repairing
codes, cross-object coding.

1 Introduction

We live in an age of data deluge. A study sponsored by the information storage company EMC
estimated that the world’s data is more than doubling every two years, reaching 1.8 zettabytes (1
ZB = 1021 Bytes) of data to be stored in 2011.1 This includes various digital data continuously
being generated by individuals as well as business and government organizations, who all need
scalable solutions to store data reliably and securely.

Storage technology has been evolving fast in the last quarter of a century to meet the numerous
challenges posed in storing an increasing amount of data and catering to diverse applications with

1http://www.emc.com/about/news/press/2011/20110628-01.htm

ACM SIGACT News 89 March 2013 Vol. 44, No. 1

different workload characteristics. In 1988, RAID (Redundant Arrays of Inexpensive Disks) was
proposed [23], which combines multiple storage disks (typically from two to seven) to realize a
single logical storage unit. Data is stored redundantly, using replication, parity, or more recently
erasure codes. Such redundancy makes a RAID logical unit significantly more reliable than the
individual constituent disks. Besides meeting cost effective reliable storage, RAID systems provide
good throughput by leveraging parallel I/O at the different disks, and, more recently, geographic
distributions of the constituent disks to achieve resilience against local events (such as a fire) that
could cause correlated failures.

While RAID has evolved and stayed an integral part of storage solutions to date, new classes of
storage technology have emerged, where multiple logical storage units (simply referred to as ‘storage
nodes’) are assembled together to scale out the storage capacity of a system. The massive volume of
data involved means that it would be extremely expensive, if not impossible, to build single pieces
of hardware with enough storage as well as I/O capabilities. By the term ‘networked’, we refer
to these storage systems that pool resources from multiple interconnected storage nodes, which in
turn may or not use RAID. The data is distributed across these interconnected storage units and
hence the name ‘networked distributed storage systems’ (NDSS). It is worth emphasizing at this
juncture that though the term ‘RAID’ is now also used in the literature for NDSS environments,
for instance, HDFS-RAID [1] and ‘distributed RAID’2, but in this article we use the term RAID to
signify traditional RAID systems where the storage nodes are collocated, and the number of parity
blocks per data object is few, say one or two (RAID-1 to RAID-6). Unlike in traditional RAID
systems where the storage disks are collocated, all data objects are stored in the same set of storage
disks, and these disks share an exclusive communication bus within a stand-alone unit, in NDSS,
a shared interconnect is used across the storage nodes, and different objects may be stored across
arbitrarily different (possibly intersecting) subsets of storage nodes, and thus there is competition
and interference in the usage of the network resources.

NDSS come in many flavors such as data centers and peer-to-peer (P2P) storage/backup sys-
tems. While data centers comprise thousands of compute and storage nodes, individual clusters
such as that of Google File System (GFS) [9] are formed out of hundreds up to thousands of nodes.
P2P systems like Wuala,3 in contrast, formed swarms of tens to hundreds of nodes for individual
files or directories, but would distribute such swarms arbitrarily out of hundreds of thousands of
peers.

While P2P systems are geographically distributed and connected through an arbitrary topology,
data center interconnects have well defined topologies and are either collocated or distributed
across a few geographic regions. Furthermore, individual P2P nodes may frequently go offline and
come back online (temporary churn), creating unreliable and heterogeneous connectivity. On the
contrary, data centers use dedicated resources with relatively infrequent temporary outages.

Despite these differences, NDSS share several common characteristics. While I/O of individual
nodes continues to be a potential bottleneck, available bandwidth, both at the network’s edges and
within the interconnect becomes a critical shared resource. Also, given the system scale, failure of a
significant subset of the constituent nodes, as well as other network components, is the norm rather
than the exception. To enable a highly available overall service, it is thus essential to tolerate both
short-term outages of some nodes and to provide resilience against permanent failures of individual
components. Fault-tolerance is achieved using redundancy, while long-term resilience relies on

2http://www.disi.unige.it/project/draid/distributedraid.html
3The current deployment of Wuala (www.wuala.com) no longer uses a hybrid peer-to-peer architecture.

ACM SIGACT News 90 March 2013 Vol. 44, No. 1

replenishment of lost redundancy over time.
A common practice to realize redundancy is to keep three copies of an object to be stored

(called 3-way replication): when one copy is lost, the second copy is used to regenerate the first
one, and hopefully, not both the remaining copies are lost before the repair is completed. There is
of course a price to pay: redundancy naturally reduces the efficiency, or alternatively put, increases
the overheads of the storage infrastructure. The cost for such an infrastructure should be estimated
not only in terms of the hardware, but also of real estate and maintenance of a data center. A US
Environmental Protection Agency report of 20074 indicates that the US used 61 billion kilowatt-
hours of power for data centers and servers in 2006. That is 1.5 percent of the US electricity use,
and it cost the companies that paid those bills more than $4.5 billion.

There are different ways to reduce these expenses, starting from the physical media, which has
witnessed a continuous shrinking of physical space and cost per unit of data, as well as reductions
in terms of cooling needs. This article focuses on a different aspect, that of the trade-off between
fault-tolerance and efficiency in storage space utilization via coding techniques, or more precisely
erasure codes.

An erasure code EC(n, k) transforms a sequence of k symbols into a longer sequence of n > k
symbols. Adding extra n − k symbols helps in recovering the original data in case some of the n
symbols are lost. An EC(n, k) induces a n/k overhead. Erasure codes were designed for data trans-
mitted over a noisy channel, where coding is used to append redundancy to the transmitted signal
to help the receiver recover the intended message, even when some symbols are erasured/corrupted
by noise (see Figure 1). Codes offering the best trade-off between redundancy and fault-tolerance,
called maximum distance separable (MDS) codes, tolerate n− k erasures, that is, no matter which
group of n− k symbols are lost, the original data can be recovered. The simplest examples are the
repetition code EC(n, 1) (given k = 1 symbol, repeat it n times), which is the same as replication,
and the parity check code EC(k + 1, k) (compute one extra symbol which is the sum of the first k
symbols). The celebrated Reed-Solomon codes [26] are another instance of such codes: consider a
sequence of k symbols as a degree k − 1 polynomial, which is evaluated in n symbols. Conversely,
given n symbols, or in fact at least (any) k symbols, it is possible to interpolate them to recover
the polynomial and decode the data. Think of a line in the plane. Given any k = 2 or more points,
the line is completely determined, while with only one point, the line is lost.

This same storage overhead/fault tolerance trade-off has also long been studied in the context
of RAID storage units. While RAID 1 uses replication, subsequent RAID systems integrate parity
bits, and Reed-Solomon codes can be found in RAID 6. Notable examples of new codes designed to
suit the peculiarities of RAID systems include weaver codes [12], array codes [29] as well as other
heuristics [11]. Optimizing the codes for the nuances of RAID systems, such as physical proximity
of storage devices leading to clustered failures are natural aspects [3] gaining traction. Note that
even though we do not detail here those codes optimized for traditional RAID systems, they may
nonetheless provide some benefits in the context of NDSS, and vice-versa.

A similar evolution has been observed in the world of NDSS, and a wide-spectrum of NDSS have
started to adopt erasure codes: for example, the new version of Google’s file system, Microsoft’s
Windows Azure Storage [2] as well as other storage solution companies such as CleverSafe5 and
Wuala. This has happened due to a combination of several factors, including years of implementa-
tion refinements, ubiquity of significantly powerful but cheap hardware, as well as the sheer scale

4http://arstechnica.com/old/content/2007/08/epa-power-usage-in-data-centers-could-double-by-2011.ars
5http://www.cleversafe.com/

ACM SIGACT News 91 March 2013 Vol. 44, No. 1

Figure 1: Coding for erasure channels: a message of k symbols is encoded into n fragments before
transmission over an erasure channel. As long as at least k′ ≥ k symbols arrive at destination, the
receiver can decode the message.

of the data to be stored.
We will next elaborate how erasure codes are used in NDSS, and while MDS codes are optimal in

terms of fault-tolerance and storage overhead tradeoffs, why there is a renewed interest in the coding
theory community to design new codes that take into account maintenance of NDSS explicitly.

2 Networked Distributed Storage Systems

In an NDSS, if one object is stored using an erasure code and each ‘encoded symbol’ is stored at
a different node, then the object stays available as long as the number of node failures does not
exceed the code recovery capability.

Now let individual storage nodes fail according to an i.i.d. random process with the failure prob-
ability being f . The expected number of independent node failures is binomially distributed, hence
the probability of losing an object with an EC(n, k) MDS erasure code is

∑k
j=1

(
n

n−k+j

)
fn−k+j(1−

f)k−j . In contrast, it is f r with r-way replication. For example, if the probability of failure of
individual nodes is f = 0.1, then for the same storage overhead of 3, corresponding to r = 3 for
replication and to an EC(9, 3) erasure code, the probabilities of losing an object are 10−3 and
∼ 3 · 10−6 respectively. Such resilience analysis illustrates the high fault-tolerance that erasure
codes provide. Using erasure codes, however, means that a larger number of storage nodes are
involved in storing individual data objects.

There is however a fundamental difference between a communication channel, where erasures
occur once during transmission, and an NDSS, where faults accumulate over time, threatening data
availability in the long run.

Traditionally, erasure codes were not designed to reconstruct subsets of arbitrary encoded blocks
efficiently. When a data block encoded by an MDS erasure code is lost and has to be recreated,
one would typically first need data equivalent in amount to recreate the whole object in one place
(either by storing a full copy of the data, or else by downloading an adequate number of encoded

ACM SIGACT News 92 March 2013 Vol. 44, No. 1

(a) Data retrieval: as long as k′ ≥ k nodes are alive, the
object can be retrieved.

(b) Node repair: one node has to recover the object, re-
encode it, and then distribute the lost blocks to the new
nodes.

Figure 2: Erasure coding for NDSS: the object to be stored is cut into k, then encoded into n
fragments, given to different storage nodes. Reconstruction of the data is shown on the left, while
repair after node failures is illustrated on the right.

blocks), even in order to recreate a single encoded block, as illustrated in Figure 2.
In recent years, the coding theory community has thus focused on designing codes which better

suit NDSS nuances, particularly with respect to replenishing lost redundancy efficiently. The focus
of such works has been on (i) bandwidth, which is typically a scarce resource in NDSS, (ii) the
number of storage nodes involved in a repair process, (iii) the number of disk accesses (I/O) at
the nodes facilitating a repair, and (iv) the repair time, since delay in the repair process may leave
the system vulnerable to further faults. Note that these aspects are often interrelated. There
are numerous other aspects, such as data placement, meta-information management to coordinate
the network, as well as interferences among multiple objects contending for resources, to name
a few prominent ones, which all together determine an actual system’s performance. The novel
codes we describe next are yet to go through a comprehensive benchmarking across this wide
spectrum of metrics. Instead, we hope to make these early and mostly theoretical results accessible
to practitioners, in order to accelerate the process of such further investigations.

Thus the rest of this article assumes a network of N nodes, storing one object of size k, encoded
into n symbols, also referred to as encoded blocks or fragments, each of them being stored at
distinct n nodes out of the N choices. When a node storing no symbol corresponding to the object
being repaired participates in the repair process by downloading data from nodes owning data (also
called live nodes), it is termed a newcomer. Typical values of n and k depend on the environments
considered: for data centers, the number of temporary failures is relatively low, thus small (n, k)
values such as (9, 6) or (13, 10) (with respective overheads of 1.5 and 1.3) are generally fine [1]. In
P2P systems such as Wuala, larger parameters like (517, 100) are desirable to guarantee availability
since nodes frequently go temporarily offline. When discussing the repair properties of a code, it is
also important to distinguish which repair strategy is best suited: in P2P systems, a lazy approach
(where several failures are tolerated before triggering repair) can avoid unnecessary repairs since
nodes may be temporarily offline. Data centers might instead opt for immediate repairs. Yet,

ACM SIGACT News 93 March 2013 Vol. 44, No. 1

proactive repairs can lead to cascading failures6. Thus in all cases, ability to repair multiple faults
simultaneously is essential.

In summary, codes designed to optimize the maintenance process should take into account
different code parameters, repair strategies, the ability to replenish single as well as multiple lost
fragments, and repair time. Recent coding works aimed in particular at:

(i) Minimize the absolute amount of data transfer needed to recreate one lost encoded block
at a time when storage nodes fail. Regenerating codes [6] form a new family of codes achieving
the minimum possible repair bandwidth (per repair) given an amount of storage per node, where
the optimal storage-bandwidth trade-off is determined using a network coding inspired analysis,
assuming that each new-coming node contacts d ≥ k arbitrary live nodes for each repair. Re-
generating codes, like MDS erasure codes, allow data retrievability from any arbitrary set of k
nodes. Collaborative regenerating codes [27, 16] are a generalization allowing simultaneous repair
of multiple faults.

(ii) Minimize the number of nodes to be contacted for recreating one encoded block, referred to
as fan-in. Reduction in the number of nodes needed for one repair typically increases the number
of ways repair may be carried out, thus avoiding bottlenecks caused by stragglers. It also makes
multiple parallel repairs possible, all in turn translating into faster system recovery. To the best of
our knowledge, self-repairing codes [17] were the first instances of EC(n, k) code families achieving
a repair fan-in of 2 for up to n−1

2 simultaneous and arbitrary failures. Since then, such codes
have become a popular topic of study under the nomenclature of ‘locally repairable codes’ - the
name being reminiscent of a relatively well established theoretical computer science topic of locally
decodable codes. Other specific instances of locally repairable code families such as [18, 10, 25], as
well as study of the fundamental trade-offs and achievability of such codes [13] have commenced in
the last years.

Local repairability come at a price, since either nodes store the minimum possible amount of
data, in which case the MDS property has to be sacrificed (if one encoded symbol can be repaired
from other two, any set of k nodes including these 3 nodes will not be adequate to reconstruct
the data), or the amount of data stored in each node has to be increased. A resilience analysis
of self-repairing codes [17] has shown that object retrieval is little impaired by it, and in fact, the
MDS property might not be as critical for NDSS as it is for communication, since NDSS have the
option of repairing data.

There are other codes which fall somewhere ‘in between’ these extremes. Prominent among
these are hierarchical and pyramid codes which we summarize first before taking a closer look at
regenerating and locally repairable codes.

3 Hierarchical and Pyramid codes

Consider an object comprising eight data blocks o1, . . . ,o8. Create three encoded fragments o1,
o2 and o1 + o2 using the first two blocks, and repeat the same process for blocks o2j+1 and o2j+2

(for j = 1...3). One can then build another layer of encoded blocks, namely o1 + o2 + o3 + o4

and o5 + o6 + o7 + o8. The fragment o1 + o2 may be viewed as providing local redundancy, while
o1 + o2 + o3 + o4 achieves global redundancy. The same idea can be iterated to build a hierarchy
(Figure 3), where the next level global redundant fragment is o1 +o2 +o3 +o4 +o5 +o6 +o7 +o8.

6For example http://storagemojo.com/2011/04/29/amazons-ebs-outage/

ACM SIGACT News 94 March 2013 Vol. 44, No. 1

Figure 3: Hierarchical codes.

Consequently, when some of the encoded fragments are lost, localized repair is attempted, and
global redundancy is used only if necessary. For instance, if the node storing o1 is lost, then nodes
storing o2 and o1 + o2 are adequate for repair. However, if nodes storing o1 and o1 + o2 are both
lost, one may first reconstruct o1 +o2 by retrieving o1 +o2 +o3 +o4 and o3 +o4, and then rebuild
o1.

This basic idea can be extended to realize more complex schemes, where (any standard) erasure
coding technique is used in a bottom-up manner to create local and global redundancy at a level,
and the process is iterated. That is the essential idea behind Hierarchical codes [7]. For the same
example, one may also note that if both o1 and o2 are lost, then repair is no longer possible. This
illustrates that the different encoded pieces have unequal importance. Because of such assymmetry,
the resilience of such codes have only been studied with simulations in [7].

In contrast, Pyramid codes [14] were designed in a top-down manner, but aiming again to
have local and global redundancy to provide better fault-tolerance and improve read performance
by trading storage space efficiency for access efficiency. Such local redundancy can naturally be
harnessed for efficient repairs as well. A new version of Pyramid codes, where the coefficients used
in the encoding have been numerically optimized, namely Locally Reconstructable Codes [15] has
more recently been proposed and is being used in the Azure [2] system.

We use an example to illustrate the design of a simple Pyramid code. Take an EC(11, 8) MDS
code, say a Reed-Solomon code with generator matrix G, of the form

[x1, . . . , x11] = [o1, . . . ,o8, c1, c2, c3].

A Pyramid code can be built from this base code, by retaining the pieces o1, . . . ,o8, and two
of the other pieces (without loss of generality, lets say, c2, c3).

Additionally, split the data blocks into two groups o1, . . . ,o4 and o5, . . . ,o8, and compute
some more redundancy coefficients for each of the two groups, which is done by picking a first
symbol c1,1 corresponding to c1 by setting o5 = . . . = o8 = 0 and c1,2 corresponding to c1 with
o1 = . . . = o4 = 0.

ACM SIGACT News 95 March 2013 Vol. 44, No. 1

This results in an EC(12, 8), whose codewords look like

[o1, . . . ,o8, c1,1, c1,2, c2, c3]

where c1,1 + c1,2 is equal to the original code’s c1:

c1,1 + c1,2 = c1.

For both Hierarchical and Pyramid codes, at each hierarchy level, there is some ‘local redun-
dancy’ which can repair lost blocks without accessing blocks outside the subgroup, while if there
are too many errors within a subgroup, then the ‘global redundancy’ at that level will be used.
One moves further up the pyramid until repair is eventually completed. Use of local redundancy
means that a small number of nodes is contacted, which translates into a smaller bandwidth foot-
print. Furthermore, if multiple isolated (in the hierarchy) failures occur, they can be repaired
independently and in parallel.

In contrast to Hierarchical codes, where analysis of the resilience has not been carried out,
Pyramid codes’ top-down approach allows to discern distinct failure regimes under which data is
recoverable, and regimes when data is not recoverable. For instance, in the example above, as long
as there are three or fewer failures, the object is always reconstructable. Likewise, if there are five
or more failures, then the data cannot be reconstructed. However, there is also an intermediate
region, in this simple case, it being the scenario of four arbitrary failures, in which, for certain
combinations of failures, data cannot be reconstructed, while for others, it can be.

Coinciding with these works, researchers from the network coding community started studying
the fundamental limits and trade-offs of bandwidth usage for regeneration of a lost encoded block
vis-a-vis the storage overhead (subject to the MDS constraint) culminating in a new family of codes,
broadly known as regenerating codes, discussed next.

4 Regenerating codes

The repair of lost redundancy in a storage system can be abstracted as an information flow graph
[6].

First, the data object is encoded using an EC(n, k) MDS code and the encoded blocks are stored
across n storage nodes. Each storage node is assumed to store an amount α of data (meaning that
the size of an encoded block is at most α, since only one object is stored). When one node fails, new
nodes contact d ≥ k live nodes and download β amount of data from each contacted node in order
to perform the repair. If several failures occur, the model [6] assumes that repairs are taken care
of one at a time. Information flows from the data owner to the data collector as follows (see Figure
4(a) for an illustration): (1) The original placement of the data distributed over n nodes is modeled
as directed edges of weight α from the sources (data owners) to the original storage nodes. (2) A
storage node is denoted by X and modeled as two logical nodes Xin and Xout, which are connected
with a directed edge Xin → Xout with weight α representing the storage capacity of the node.
The data flows from the data owner to Xin, then from Xin to Xout. (3) The regeneration process
consists of directed edges of weight β from d contacted live nodes to the Xin of the newcomer.
(4) Finally, the reconstruction/access of the whole object is abstracted with edges of weight α to
represent the destination (data collector) downloading data from arbitrary k live storage nodes.

ACM SIGACT News 96 March 2013 Vol. 44, No. 1

(a) Information flow graph for regenerating codes: each
storage node is modeled as two virtual nodes, Xin which
collects β amount of information from arbitrary d live
nodes, while storing a maximum of α amount of infor-
mation, and Xout, which is accessed by any data collector
contacting the storage node. A max-flow min-cut analysis
yields the feasible values for storage capacity α and re-
pair bandwidth γ = dβ in terms of the number d of nodes
contacted and code parameters n, k, where d ≥ k.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Repair cost (γ)

S
to

ra
ge

 (
α)

Benefit of collaboration: Storage−Bandwidth tradeoff

t=1
t=4
t=8

(b) Trade-off curve for the amount of storage space
α used per node, and the amount of bandwidth
γ needed to regenerate a lost node. If multiple
repairs t are carried out simultaneously, and the
t new nodes at which lost redundancy is being
created collaborate among themselves, then bet-
ter trade-offs can be realized, as can be observed
from the plot (done using k = 32, d = 48, n can
be any integer bigger than d + t).

Figure 4: The underlying network coding theory inspiring regenerating codes.

Then, the maximum information that can flow from the source to the destination is determined
by the max-flow over a min-cut of this graph. For the original object to be reconstructible at the
destination, this flow needs to be at least as large as the size of the original object.

Any code that enables the information flow to be actually equal to the object size is called a
regenerating code (RGC) [6]. Now, given k and n, the natural question is, what are the minimal
storage capacity α and bandwidth γ = dβ needed for repairing an object of a given size? This can be
formulated as a linear non-convex optimization problem: minimize the total download bandwidth
dβ, subject to the constraint that the information flow equals the object size. The optimal solution
is a piecewise linear function, which describes a trade-off between the storage capacity α and the
bandwidth β as shown in Figure 4(b) [t = 1], and has two distinguished boundary points: the
minimal storage repair (MSR) point (when α is equal to the object size divided by k), and the
minimal bandwidth repair (MBR) point.

The trade-off analysis only determines what can best be achieved, but in itself does not provide
any specific code construction. Several codes have since been proposed, most of which operate
either at the MSR or MBR points of the trade-off curve, e.g., [24].

The specific codes need to satisfy the constraints determined by the max-flow min-cut analysis,
however there is no constraint or need to regenerate precisely the same (bitwise) data as was lost
(see Figure 5 (a)). When the regenerated data is in fact not the same as that lost, but nevertheless
provides equivalent redundancy, it is called functional regeneration, while if it is bitwise identical
to what was lost, then it is called exact regeneration, as illustrated in Figure 5 (b). Note that the
proof of storage-bandwidth trade-off determined by the min-cut bound does not depend on the
type of repair (functional/exact).

ACM SIGACT News 97 March 2013 Vol. 44, No. 1

(a) An example of functional repair for k = 2 and
n = 4, adapted from [6]: an object is cut into 4 pieces
o1, . . . ,o4, and two linear combinations of them are
stored at each node. When the 4th node fails, a new
node downloads linear combinations of the two pieces
at each node (the number on each edge describes what
is the factor that multiplies the encoded fragment),
from which it computes two new pieces of data, dif-
ferent from those lost, but any k = 2 of the 4 nodes
permit object retrieval.

(b) An example of exact repair from [24]: an object o
is encoded by taking its inner product with 10 vectors
v1, . . . ,v10, to obtain oT vi, i = 1, . . . , 10, as encoded frag-
ments. They are distributed to the 5 nodes N1, . . . , N5 as
shown. Say, node N2 fails. A newcomer can regenerate
by contacting every node left, and download one encoded
piece from each of them, namely oT v1 from N1, oT v5

from N3, oT v6 from N4 and oT v7 from N5.

Figure 5: Regenerating codes: functional versus exact repair.

The original model [6] has since been generalized [16, 27] to show that in case of multiple
faults, the new nodes carrying out regenerations can collaborate among themselves to perform
several repairs in parallel, which was in turn shown to reduce the overall bandwidth needed per
regeneration (Figure 4(b) t > 1 representing the number of failures/new collaborating nodes).
Instances of codes for this setting, referred to as collaborative regenerating codes (CRGC) are rarer
than classical regenerating codes, and up to now, only a few code constructions are known [27, 28].

(Collaborative) regenerating codes stem from a precise information theoretical characterization.
However, they also suffer from algorithmic and system design complexity inherited from network
coding, which is larger than even traditional erasure codes, apart from the added computational
overheads. The value of fan-in d for regeneration has also practical implications. With a high fan-in
d even a small number of slow or overloaded nodes can thwart the repairs.

5 Locally repairable codes

The codes proposed in the context of network coding aim at reducing the repair bandwidth, and
can be seen as the combination of an MDS code and a network code. Hierarchical and Pyramid
codes instead tried to reduce the repair degree or fan-in (i.e., the number of nodes needed to be
contacted to repair) by using “erasure codes on top of erasure codes”. We next present some recent
families of locally repairable codes (LRC) [17, 19, 18, 25], which minimize the repair fan-in d, trying
to achieve d << k such as d = 2 or 3. Forcing the repair degree to be small has advantages in terms
of repair time and bandwidth, however, it might affect other code parameters (such as its rate, or
storage overhead). We will next elaborate a few specific instances of locally repairable codes.

The term “locally repairable” is inspired by [10], where the repair degree d of a node is called the
“locality d” of a codeword coordinate, and is reminiscent of locally decodable and locally correctable

ACM SIGACT News 98 March 2013 Vol. 44, No. 1

codes, which are well established topics of study in theoretical computer science. Self-repairing
codes (SRC) [17, 19] were to our knowledge the first (n, k) codes designed to achieve d = 2 per
repair for up to n−1

2 simultaneous failures. Other families of locally repairable codes based on
projective geometric construction (Projective Self-repairing Codes) [18] and puncturing of Reed-
Mueller codes [25] have been very recently proposed. Some instances of these latter codes can
achieve a repair degree of either 2 or 3.

With d = 2 resources of at most two live nodes may get saturated due to a repair. Thus
simultaneous repairs can be carried out in parallel, which in turn provides fast recovery from
multiple faults. For example, in Figure 6(a) if the 7th node fails, it can be reconstructed in 3
different ways, by contacting either N1, N5, or N2, N6, or N3, N4. If both the 6th and 7th node
fail each of them can still be reconstructed in two different ways. One newcomer can contact first
N1 and then N5 to repair N7, while another newcomer can in parallel contact first N3 then N1 to
repair N6.

(a) An example of self-repairing codes from [17]: the object
o has length 12, and encoding is done by taking linear com-
binations of the 12 pieces as shown, which are then stored
at 7 nodes.

(b) An example of self-repairing codes from [18]:
The object o is split into four pieces, and xor -ed
combinations of these pieces are generated. Two
such pieces are stored at each node, over a group of
five nodes, so that contacting any two nodes is ade-
quate to reconstruct the original object. Further-
more, systematic pieces are available in the sys-
tem, which can be downloaded and just appended
together to reconstruct the original data.

Figure 6: Self-repairing codes.

Figure 6(b) shows another example illustrating how the fan-in can be varied to achieve different
repair bandwidths while using SRC. If a node, say N5, fails, then the lost data can be reconstructed
by contacting a subset of live nodes. Two different strategies with different fan-ins d = 2 and d = 3
and correspondingly different total bandwidth usage have been shown to demonstrate some of the
flexibilities of the regeneration process.

Notice that the optimal storage-bandwidth trade-off of regenerating codes does not apply here,

ACM SIGACT News 99 March 2013 Vol. 44, No. 1

since the constraint d > k is relaxed. Thus better trade-off points in terms of total bandwidth
usage for a repair can also be achieved (not illustrated here, see [18] for details).

Recall that if a node can be repaired with d < k other nodes then there exist dependencies among
them. The data object can be recovered only out of k independent encoded pieces, and hence when
the k nodes include d + 1 nodes with mutual dependency, then the data cannot be recovered from
them. LRCs however allow recovery of the whole object using many specific combinations of k
encoded fragments. From the closed form and numerical analyses of [17] and [18], respectively, one
can observe that while there is some deterioration of the static resilience7 with respect to MDS
codes of equivalent storage overhead, the degradation is rather marginal. This can alternatively be
interpreted as that for a specific desired value of fault-tolerance, the storage overhead for using LRC
is negligibly higher than MDS codes. An immediate caveat emptor that is needed at this juncture
is that, the rates of the known instances of locally repairable codes in general, and self-repairing
codes in particular, are pretty low, and much higher rates are desirable for practical usage. The
static resilience of such relatively higher rate locally repairable codes, if and when such codes are
invented, will need to be revisited to determine their utility. Such trade-offs are yet to be fully
understood, though some early works have recently been carried out [10, 13].

6 Cross-Object Coding

All the coding techniques we have seen so far address the repairability problem at the granularity of
isolated objects that are stored using erasure coding. However, a simple heuristic of superimposing
two codes, one over individual objects, and another across encoded pieces from multiple objects [4]
as shown in Figure 7, can provide good repairability properties as well.

Consider m objects O1, . . . , Om to be stored. For j = 1, . . . ,m, object Oj is erasure encoded
into n encoded pieces ej1, . . . , ejn, to be stored in mn distinct storage nodes. Additionally, parity
groups formed by m encoded pieces (with one encoded piece chosen from each of the m objects)
can be created, together with a parity piece (or xor), where w.l.o.g, a parity group is of the form
e1l, . . . , eml for l = 1, . . . , n, and the parity piece pl is pl = e1l + . . .+eml. The parity pieces are then
stored in additional n distinct storage nodes. Such an additional redundancy is akin to RAID-4.

This code design, called Redundantly grouped coding is similar to a two-dimensional product
code [8] in that the coding is done both horizontally and vertically. In the context of RAID systems,
similar strategy has also been applied to create intra-disk redundancy [5]. The design objectives
here are somewhat different, namely: (i) the horizontal layer of coding primarily achieves fault-
tolerance by using an (n, k) erasure coding of individual objects, while (ii) the vertical single parity
check code mainly enables cheap repairs (by choosing a suitable m) by creating RAID-4 like parity
of the erasure encoded pieces from different objects.

The number of objects m that are cross-coded indeed determines the fan-in for repairing iso-
lated failures independently of the code parameters n and k. If m < k, it can be shown that the
probability that more than one failure occurs per column is small, and thus repair using the parity
bit is often enough - resulting in cheaper repairs, while relatively infrequently repairs may have to
be performed using the (n, k) code. The choice of m determines trade-offs between repairability,
fault-tolerance and storage overheads which have been formally analyzed in [4]. Somewhat sur-
prisingly, the analysis demonstrates that for many practical parameter choices, this cross-object

7Static resilience is a metric to quantify a storage system’s ability to tolerate failures based on its original config-
uration, and assuming that no repairs to compensate for failures are carried out.

ACM SIGACT News 100 March 2013 Vol. 44, No. 1

Figure 7: Redundantly grouped coding: a horizontal layer of coding is performed on each object
using an (n, k) code, while a parity bit is computed vertically across m objects, where m is a design
parameter.

coding achieves better repairability while retaining equivalent fault-tolerance as maximum distance
separable erasure codes incurring equivalent storage overhead.

Such a strategy also leads to other practical concerns as well as opportunities, such as the issues
of object deletion or updates, which need further rigorous investigation before considering them as
a practical option.

7 Preliminary comparison of the codes

The coding techniques presented in this paper have so far undergone only partial evaluation and
benchmarking, and more rigorous evaluation of even the stand-alone approaches is ongoing work for
most. Thus, it is somewhat premature to provide results from any comparative study, though some
preliminary works on the same have also recently been carried out [22] taking into consideration
realistic settings where multiple objects are collocated in a common pool of storage nodes, and
multiple storage nodes may potentially fail simultaneously, all creating interferences between the
different repair operations competing for the limited and shared network resources. Instead, we give
one example of a theoretical result by considering the repair bandwidth per repair in the presence
of multiple failures for some of these codes, and we provide an overview of what a system designer
may expect from all these codes in Table-1. We further enumerate several other metrics that need
to be studied to better understand their applicability.

One would not allow in practice failures to accumulate indefinitely, and instead a regeneration
process will have to be carried out. If this regeneration is triggered when precisely x out of the n
storage nodes are still available, then the total bandwidth cost to regenerate each of the n−x failed
nodes is depicted in Figure 8. Note that delayed repair where multiple failures are accumulated
may be a design choice, as in P2P systems with frequent temporary outages, or an inevitable effect
of correlated failures where multiple faults accumulate before the system can respond.

For locally repairable codes such as SRC the repairs can be done in sequence or in parallel,
denoted γseq and γprl respectively in the figure. This is compared with MDS erasure codes (γeclazy)
when the repairs are done in sequence, as well as with RGC codes at MSR point (γMSRGC) for a

ACM SIGACT News 101 March 2013 Vol. 44, No. 1

Code Family Main Design
Objective

MDS Fan-in d Simultaneous
Repairs

Bandwidth
per
Repair

EC/RS noisy channels yes k ≤ n− k 1 + k−1
t

RGC [6] min. repair band-
width

yes ≥ k 1 d
d−k+1

CRGC [27, 16] min. repair band-
width

yes ≥ k t d+t−1
d−k+1

SRC [17] min. fan-in no 2 ≤ n−1
2 2

Pyramid [14] localize repairs
(probabilistically)

no depends depends depends

Hierarchical [7] localize repair (prob-
abilistically)

no depends depends depends

Cross-object coding
[4]

constant repair fan-
in (probabilistically)

no depends:
m or k

depends depends:
m or k

Table 1: Code design overview: We specify ‘depends’ to some of the metrics, to signify that the
corresponding value depends on the specific fault pattern and possible code parameters. A case in
point being general Pyramid or Hierarchical codes. They have several parameters, the details of
which we have not delved into in this high level survey. But, one can already note from the simple
Hierarchical code example discussed in this paper that parallel repairs may be possible sometimes
(for instance when o1 and o4 fail simultaneously), while it may have to be done in a serialized
manner (for example, if o1 and o1 + o2 fail simultaneously), while it may be impossible in other
scenarios (such as when o1 and o2 fail simultaneously). The other aspects of repair likewise may
vary, depending on failure pattern as well as code parameters.

8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

9

10

available nodes ‘x’

re
pa

ir
tr

af
fic

 p
er

 lo
st

 b
lo

ck

n=31, k=8

γ
prl

γ
seq

γ
eclazy

γ
MSRGC

 (d=k+1)

γ
MSRGC

 (d=k+2)

Figure 8: Comparison among traditional erasure codes, regenerating codes and self-repairing codes
(derived theoretically in [17]): Average traffic normalized with B/k per lost block for various choices
of x (B is the size of the stored object) for (n=31,k=8) encoding schemes. For parallel repairs using
erasure codes the traffic is k = 8 (not shown). The SRC code parameters are denoted as SRC(n,k).

ACM SIGACT News 102 March 2013 Vol. 44, No. 1

few choices of d. The bandwidth need has been normalized with the size of one encoded fragment.
We notice that for up to a certain point, self-repairing codes have the least (and a constant of 2)
bandwidth need for repairs even when they are carried out in parallel.

For larger number of faults, the absolute bandwidth usage for traditional erasure codes and
regenerating codes is lower than that of self-repairing codes. However given that erasure codes and
regenerating codes need to contact k and d ≥ k nodes respectively, some preliminary empirical
studies have shown the regeneration process for such codes to be slow [21] which can in turn make
the system vulnerable. In contrast, because of an extremely small fan-in d = 2, self-repairing codes
can support fast and parallel repairs [17] while dealing with a much larger number of simultaneous
faults. Comparison with some other codes such as hierarchical and pyramid codes has been excluded
here due to the lack of necessary analytical results, as well as the fact that the different encoded
pieces have assymetrical importance, and thus, just the number of failures does not adequately
capture the system state for such codes.

Given that repair processes run continuously or as and when deemed necessary, the static
resilience is not the most relevant metric of interest for storage system designers. Often, another
metric, namely mean time to data loss (MTTDL) is used to characterize the reliability of a system.
MTTDL is determined by taking into account the cumulative effect of the failures along with that
of the repair processes. For the novel codes discussed in this manuscript, such study of MTTDL is
yet to be carried out in the literature. However, a qualitative remark worth emphasizing is that,
precisely because of the better repair characteristics such as fast repairs, some of these codes are
likely to improve MTTDL significantly. Whether the gains outweigh the drawbacks, such as the
lack of MDS property (and consequent poorer static resilience), is another open issue.

8 Concluding remarks

There is a long tradition of using codes for storage systems. This includes traditional erasure
codes as well as turbo and low density parity check codes (LDPC) coming from communication
theory, rateless (digital fountain and tornado) codes originally designed for content distribution
centric applications, or locally decodable codes emerging from the theoretical computer science
community to cite a few. The long believed mantra in applying codes for storage has been ‘the
storage device is the erasure channel ’.

Such a simplification ignores the maintenance process in NDSS for long term reliability. This
realization has led to a renewed interest in designing codes tailor-made for NDSS. This article
surveys the major families of novel codes which emphasize primarily better repairability. There
are many other system aspects which influence the overall performance of these codes, that are yet
to be benchmarked. This high level survey is aimed at exposing the recent theoretical advances
providing a single and easy point of entry to the topic. Those interested in further mathematical
details depicting the construction of these codes may refer to a longer and a more rigorous survey
[20] in addition to the respective individual papers.

Acknowledgement

A. Datta’s work was supported by MoE Tier-1 Grant RG29/09. F. Oggier’s work was supported
by the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03.

ACM SIGACT News 103 March 2013 Vol. 44, No. 1

References

[1] Apache.org. HadoopFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID, 2012.

[2] B. Calder, et al., ”Windows Azure Storage: a highly available cloud storage service with strong
consistency” Twenty-Third ACM Symposium on Operating Systems Principles, SOSP 2011.

[3] Y. Cassuto, J. Bruck, “Low-Complexity Array Codes for Random and Clustered 4-Erasures”,
IEEE Transactions on Information Theory, 01/2012.

[4] A. Datta and F. Oggier, “Redundantly Grouped Cross-object Coding for Repairable Storage”,
Asia-Pacific Workshop on Systems, APSys 2012.

[5] A. Dholakia, E. Eleftheriou, X-Y. Hu, I. Iliadis, J. Menon, K.K. Rao, “A new intra-disk
redundancy scheme for high-reliability RAID storage systems in the presence of unrecoverable
errors”, ACM Transactions on Storage, 2008.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright and K. Ramchandran, ”Network Coding
for Distributed Storage Systems” IEEE Transactions on Information Theory, Vol. 56, Issue 9,
Sept. 2010.

[7] A. Duminuco, E. Biersack, “Hierarchical Codes: How to Make Erasure Codes Attractive for
Peer-to-Peer Storage Systems” , Eighth International Conference on In Peer-to-Peer Comput-
ing, P2P 2008.

[8] P. Elias, “Error-free coding”, Transactions on Information Theory, vol. 4, no. 4, September
1954.

[9] S. Ghemawat, H. Gobioff, S-T. Leung, ”The Google file system”, ACM symposium on Oper-
ating systems principles, SOSP 2003.

[10] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, “On the locality of codewords symbols”,
Electronic Colloquium on Computational Complexity (ECCC), vol. 18, 2011.

[11] K. M. Greenan, X. Li, J. J. Wylie, “Flat XOR-based erasure codes in storage systems: con-
structions, efficient recovery, and tradeoffs”. IEEE conference on Massive Data Storage, 2010.

[12] J. L. Hafner, ”WEAVER codes: highly fault tolerant erasure codes for storage systems”, 4th
conference on USENIX Conference on File and Storage Technologies, FAST 2005.

[13] H. D. L. Hollmann, “Storage codes - coding rate and repair locality”, International Conference
on Computing, Networking and Communications, ICNC 2013.

[14] C. Huang, M. Chen, and J. Li, “Pyramid Codes: Flexible Schemes to Trade Space for Ac-
cess Efficiency in Reliable Data Storage Systems”, Sixth IEEE International Symposium on
Network Computing and Applications, NCA 2007.

[15] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Lin, S. Yekhanin, “Erasure
Coding in Windows Azure Storage”, USENIX conference on Annual Technical Conference,
USENIX ATC 2012.

ACM SIGACT News 104 March 2013 Vol. 44, No. 1

[16] A.-M. Kermarrec, N. Le Scouarnec, G. Straub, “Repairing Multiple Failures with Coordinated
and Adaptive Regenerating Codes”, The 2011 International Symposium on Network Coding,
NetCod 2011.

[17] F. Oggier, A. Datta, “Self-repairing Homomorphic Codes for Distributed Storage Systems”,
The 30th IEEE International Conference on Computer Communications, INFOCOM 2011.
Extended version at http://arxiv.org/abs/1107.3129

[18] F. Oggier, A. Datta, “Self-Repairing Codes for Distributed Storage – A Projective Geometric
Construction”, IEEE Information Theory Workshop, ITW 2011.

[19] F. Oggier, A. Datta, “Homomorphic Self-Repairing Codes for Agile Maintenance of Distributed
Storage Systems”, http://arxiv.org/abs/1107.3129

[20] F. Oggier, A. Datta, “Coding Techniques for Repairability in Networked Distributed Storage
Systems”, http://sands.sce.ntu.edu.sg/CodingForNetworkedStorage/pdf/longsurvey.
pdf, September 2012.

[21] L. Pamies-Juarez, E. Biersack, “Cost Analysis of Redundancy Schemes for Distributed Storage
Systems”, arXiv:1103.2662, 2011.

[22] L. Pamies-Juarez, F. Oggier, A. Datta, “An Empirical Study of the Repair Performance of
Novel Coding Schemes for Networked Distributed Storage Systems”, arXiv:1206.2187, 2012.

[23] D. A. Patterson, G. Gibson, R. H. Katz “A case for redundant arrays of inexpensive disks
(RAID)” ACM SIGMOD International Conference on Management of Data, 1988.

[24] K. V. Rashmi, N. B. Shah, P. Vijay Kumar, K. Ramchandran, “Explicit Construction of
Optimal Exact Regenerating Codes for Distributed Storage”, Allerton 2009.

[25] A. S. Rawat, S.Vishwanath, “On Locality in Distributed Storage Systems”, IEEE Information
Theory Workshop, ITW 2012.

[26] I. S. Reed, G. Solomon, “Polynomial Codes Over Certain Finite Fields”, Journal of the Society
for Industrial and Appl. Mathematics, no 2, vol 8, SIAM, 1960.

[27] K. W. Shum, “Cooperative Regenerating Codes for Distributed Storage Systems”, IEEE In-
ternational Conference on Communications, ICC 2011.

[28] K. W. Shum, Y. Hu, “Cooperative Regenerating Codes”, arXiv:1207.6762, 2012.

[29] I. Tamo, Z. Wang, J. Bruck, “MDS Array Codes with Optimal Rebuilding”, arXiv:1103.3737,
2011.

ACM SIGACT News 105 March 2013 Vol. 44, No. 1

