
Placement and Read Algorithms for High
Throughput in Coded Network Switches

Rami Cohen and Yuval Cassuto
Department of Electrical Engineering

Technion - Israel Institute of Technology
Technion City, Haifa 3200003, Israel

Email: rc@campus.technion.ac.il, ycassuto@ee.technion.ac.il

Abstract—Coded switches write incoming packets with re-
dundancy to increase the flexibility to read them later without
contention. An important question pertaining to coded switches
is what policy to follow when placing the coded packets in
the switch memory. We study this question by proposing two
such placement policies: cyclic placement and (block-) design
placement. We show that these policies offer many advantages
in switching throughput, algorithmic efficiency, and analysis
amenability.

I. INTRODUCTION

While mostly hidden from the public eye, network
switches (and routers) are the workhorses carrying the im-
mense growth of internet and cloud services. Scaling the
switches to meet data demands is becoming more challenging
with each product generation. To support the surging switch-
ing rates, the switches are designed in massively parallel
architectures, with the switching fabric now comprising nu-
merous memory units operated at their maximal bandwidth.
With these parallel multi-unit memories come serious mem-
ory contention issues, whereby multiple requested packets
need to be read at the same time instant from the same
bandwidth-limited memory unit (MU).

An effective way to reduce memory contention is by
introducing coding within the switch. Arriving packets are
written to the switch memory with some prescribed re-
dundancy, which later adds flexibility to avoid contention
between multiple packets requested for read simultaneously.
Each arriving packet is divided into k chunks, to which n−k
additional chunks are added by an encoder. The n chunks
are then written to memory, one chunk per MU all written
in parallel. Upon packet request, a subset of these n coded
chunks are read to reconstruct the pure uncoded packet for
outbound transmission. Coded switches work the tradeoff of
a graceful increase in writing load, in return for potentially
much higher read throughput.

Different approaches have been proposed for switch cod-
ing. In [1] and then in [2] coding is done under a strong
model guaranteeing simultaneous reconstruction of worst-
case packet requests. An alternative approach has been
suggested in [3], wherein standard MDS codes are used
with the objective of improving the average read throughput
through efficient read algorithms for coded packets. This
paper is a continuation of that latter approach in the direction
of stronger and more practical switch coding schemes, which
use existing codes in a clever way. Whereas the main focus
of [3] is on maximizing read throughput for completely
unstructured layout of packet chunks in MUs, here we add to
the scope clever ways to place packet chunks in MUs at the
write path. In particular, we develop two new practical packet
placement policies, and provide their efficient optimal read

algorithms. The first scheme, cyclic placement, exemplifies a
case where the MDS property can be lifted without losing the
k out of n property. The second, (block-) design placement,
is based upon the use of combinatorial designs for choosing
MU sets for the chunks, which admits an extremely efficient
optimal read algorithm. For both placement schemes we
derive closed-form analytical expressions giving lower and/or
upper bounds on their average throughputs. The outcome
from this study is that the block-design placement policy
emerges as most attractive, thanks to both high throughput
performance and low complexity of the read algorithm.

The paper is structured as follows. In Section II, we pro-
vide the problem formulation and conditions for the existence
of a full-throughput solution. We then develop two practical
placement policies and their optimal read algorithms in
Section III. Finally, the paper is concluded in Section IV.

II. PROBLEM FORMULATION AND ANALYSIS TOOLS

A. Problem formulation

A multi-MU memory system of a network switch (or
router) writes packets upon their arrival, and reads them
later for their outbound transmission. Out of the (typically
numerous) packets currently stored in the switch memory,
a set of L packets is requested each time instant, with
the expectation that the memory system will read all of
them in that time instant with no contention on MUs. In
a coded switch, each packet consists of k chunks, which
are MDS-encoded into n chunks. These encoded chunks
are stored in n distinct MUs out of N available ones
(1 ≤ k ≤ n ≤ N ), where overlapping is allowed (i.e., two or
more packets may share one or more MUs). The MU index
set is {0, 1, ..., N − 1}, where for each packet an MU set S
contains the n indices of the MUs storing the chunks of the
packet. The L packets requested for read define a collection
of L sets S1, . . . ,SL, specifying which MUs store the chunks
of each packet. Our objective is to read as many packets as
possible in a single time instant, under the constraint that
each MU can read only one chunk per time instant due to
limited memory bandwidth. Recall that k chunks out of the n
encoded packet chunks are sufficient for recovering a packet.
Hence given {Si}Li=1 we wish to assign MUs to packets such
that at least k MUs are available to a packet, and the number
of read packets is maximal. This problem is termed as the
[n, k]-maximal throughput problem (nkMTP) [3].

Example 1: Suppose that the L = 3 requested packets are
stored in the MU sets S1 = {1, 2, 3, 4} ,S2 = {1, 2, 5, 6}
and S3 = {3, 4, 5, 6}. If k = 2, then an optimal solution is
to read packet 1 from MUs 1 and 2, packet 2 from MUs 5
and 6 and packet 3 from MUs 3 and 4, resulting in three
read packets.



Without any assumption on the structure of the sets
{Si}Li=1, nkMTP is NP-hard for k ≤ n ≤ 3 [3]. Our method
around this hardness, which we develop in this paper, is to
introduce structure to the sets, thereby simplifying both the
read algorithm and the resulting read-throughput analysis.
This structure will be introduced through two new packet-
placement policies in the write path. Let us denote by L∗

the maximal number of packets that can be read out of
the L requested packets. We concentrate on the existence
of an L∗ = L (full throughput) solution, which is desired
in practice to avoid delaying or reordering the read packets
before fulfilling the request.

B. Full-throughput conditions

We start with deriving a sufficient condition on the exis-
tence of an L∗ = L solution. An nkMTP instance can be
represented as a generalized graph matching problem on a
bipratite graph with the packets and MUs being the disjoint
vertex sets [3]. In this representation, packet vertices need to
be matched to disjoint sets of k MU vertices. According to
the extended Hall’s theorem [4], the L packet vertices can
be matched (i.e., an L∗ = L solution exists) if and only if∣∣∣∣∣∣

⋃
j∈L
Sj

∣∣∣∣∣∣ ≥ k |L| (1)

for every subset L ⊆ {1, 2, ..., L}. We will refer to (1) as
the Hall’s condition. In words, this condition requires at least
k|L| distinct MUs in each L sub-family of the L MU sets.
Let us extend the set notation to represent intersections of
MU sets, that is, SI

∆
=
⋂
j∈I
Sj , for I ⊆ {1, 2, ..., L}.

Theorem 1: Let S1, ...,SL (L ≥ 2) be the MU sets of an
nkMTP instance. Then an L∗ = L solution exists if

∀i, j : i 6= j, |Si ∩ Sj | ≤
2(n− k)

L− 1

∆
= tmax. (2)

Proof Denote by Φs,L the sum of cardinalities of intersec-
tions of s distinct sets taken from the MU sets indexed by a
certain set L

Φs,L =
∑

I⊆L,|I|=s

|SI | . (3)

As an example, if L is the set {1, 2, 3}, then Φ2,L is
|S1 ∩ S2| + |S1 ∩ S3| + |S2 ∩ S3|. Using the inclusion-
exclusion principle, Hall’s condition is equivalent to the
requirement

n|L| − Φ2,L +

|L|∑
s=3

(−1)
s−1

Φs,L ≥ k|L| (4)

for every L ⊆ {1, 2, ..., L}, |L| ≥ 2 (note that for |L| = 1
we get the requirement n ≥ k that always holds). The

sum
|L|∑
s=3

(−1)
s−1

Φs,L is non-negative, as it compensates

for over-subtraction of pairwise intersection cardinalities in
the inclusion-exclusion process. Therefore, (4) holds if the
inequality

Φ2,L ≤ |L| (n− k) (5)

holds for every L. We can bound Φ2,L by bounding the
pairwise intersection cardinalities:

Φ2,L =
∑

i 6=j⊆L

|Si ∩ Sj | ≤
(
|L|
2

)
max
i 6=j⊆L

|Si ∩ Sj | . (6)

Finally, combining (6) and (5), the inequality (5) holds when

max
i6=j⊆L

|Si ∩ Sj | ≤
2(n− k)

|L| − 1
. (7)

We now observe that the condition of the theorem (2) implies
(7) because |L| ≤ L for every L.

In addition to the sufficient condition of Theorem 1, we
also have a necessary condition for the existence of a full-
throughput solution. Since each packet requires at least k
MUs, the following coverage condition must hold∣∣∣∣∣

L⋃
i=1

Si

∣∣∣∣∣ ≥ kL, (8)

which amounts to requiring (1) only for L = {1, 2, ..., L}.
We will use the conditions above to obtain bounds on
the probability of a full-throughput solution when random
instances are considered. As the pairwise condition (2) is
sufficient, its probability (when an instance is drawn at
random) serves as a lower bound. On the other hand, the
coverage condition (8) is necessary, and its probability serves
as an upper bound.

III. PLACEMENT POLICIES AND OPTIMAL READ
ALGORITHMS

In this section, two placement policies that posses certain
structural properties are introduced. In practice, packets are
stored in MU sets in a random-like manner for improved
write rates and better MU load balancing. Thus, we consider
ensembles of random instances characterized by k, n,N,L
and the placement policy in use, where an instance is
obtained by an independent and uniform placement of L
packets. We then provide probabilistic analysis of the full-
throughput performance for each placement policy. Apart
from probabilistic analysis, we provide efficient optimal read
algorithms for both placement policies.

A. Cyclic placement

In the first placement policy we propose, termed as cyclic
placement, the MU sets are restricted to contain n cyclic con-
secutive MU indices. As an example, if n = 3 and N = 4,
the possible MU sets are {0, 1, 2} , {1, 2, 3} , {2, 3, 0} and
{3, 0, 1}. This policy is an extension of the consecutive
placement policy [3], in which wrap-around is not allowed
(i.e., the last two sets in the example above are forbidden).
The advantage of the cyclic placement is that it distributes the
load evenly among MUs, while the consecutive placement
puts higher load on the lower/upper MU indices. We will also
see that with cyclic placement the structure of the optimal
read solution lifts the need of using MDS codes, where
simple (e.g., binary) cyclic erasure codes are sufficient.

Let us think of the MUs as N discrete points on a circle,
where an MU set is an arc covering n cyclic consecutive
points. An example for such a circle-arc representation is
provided in Fig. 1. To find a lower bound on the probability
of a full-throughput solution in an instance drawn from a
cyclic ensemble, we calculate the probability pcyc

pair that the
pairwise intersection cardinalities of the MU sets are at most
tmax (see Theorem 1). We assume that tmax is an integer,
otherwise we take its integral part.

Theorem 2: Consider an instance drawn at random from a
cyclic nkMTP ensemble. The probability that the maximum



Fig. 1: Cyclic nkMTP instance in a circle-arc representation.
The marks on the inner circle represent N = 12 MUs, where
the L = 6 outer arcs represent packets stored each in n = 4
cyclic consecutive MUs.

pairwise intersection cardinality is at most tmax is

pcyc
pair = N1−L

L−1∏
i=1

(N − L (n− tmax) + i). (9)

Proof Consider a circle-arc representation of the cyclic
nkMTP instances. Assume clockwise order, and that each
packet arc does not precede the first packet arc. Each placed
packet prevents the placement of the start of any other packet
in its first n−tmax MUs. In a legal placement (i.e., when the
pairwise intersection cardinality is at most tmax), there are
N−L(n−tmax) MUs that do not belong to the first n−tmax

MUs of any packet. Thus, the number of legal placements
(given the order constraint above) is equivalently the number
of ways to partition N − L(n − tmax) MUs to L sets of
cyclic consecutive MUs. Thinking of the latter MU sets as
gaps, they can be distributed in

(
N−L(n−tmax)+L−1

L−1

)
ways,

which is the number of L non-negative integers (gap lengths)
whose sum is N −L(n− tmax) [5]. Each legal placement is
obtained (uniquely) as a combination of 1) the starting MU
for the first drawn packet, 2) a gap configuration, and 3) a
permutation of the other L − 1 packets. Hence to get the
total number of legal placements we multiply the number
of gap configurations by N (the number of possible starting
points for the first packet) and by (L − 1)! (the number of
permutations of L−1 packets). After normalizing by the total
number of (legal and illegal) placements NL, we obtain (9).

Equipped with the circle-arc representation, the probability
that a random cyclic instance satisfies the coverage condition
(8) is the probability that at least kL points of the circle are
covered once L arcs of n cyclic consecutive points are placed
on the circle at random. In [6, Th. 1], the full probability
distribution of the number of vacant points in this case is
derived. From this distribution we find the probability that
at least kL MUs are covered, which we denote by pcyc

cover.
Note that when an uncoded (i.e., n = k) cyclic placement
is used, pcyc

cover becomes exact, as the coverage condition
becomes both necessary and sufficient. To that end, we have
both lower (pcyc

pair) and upper (pcyc
cover) bounds on the full-

throughput probability for the cyclic placement.
As the packets are placed in n cyclic consecutive MUs,

every intersection between two MU sets consists of cyclic
consecutive MUs. Thus, there exists a solution of a cyclic
nkMTP instance where the k MUs assigned to each read
packet are cyclic consecutive. Based on this observation,
we propose a read algorithm that finds a solution with this

property. Let us assume a circle-arc representation. Define
an order of the packets with respect to packet j0, such that
the packets are sorted according to their arcs’ starting points
relatively to packet j0’s starting point in clockwise order.

Example 2: Consider the cyclic instance in Fig. 1,
where the order is with respect to the topmost packet
arc ({11, 0, 1, 2}). The ordered packets are {11, 0, 1, 2},
{1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}, {7, 8, 9, 10} and
{9, 10, 11, 0}.
In the algorithm we begin with two empty sets Λ and Ω,
which will eventually contain the read packets and their
assigned MUs, respectively. We also initialize the sets Λj

and Ωj (for j = 1, 2, ..., L) as empty sets. The following
algorithm solves optimally a cyclic nkMTP instance.

Algorithm 1: (Cyclic placement, optimal read algorithm)
For j = 1, 2, ..., L, do:

1) Consider the set of packets
{
S̃i
}L

i=1
sorted with re-

spect to packet j. Set i := 1.
2) If |S̃i| ≥ k, add i to Λj , and add the first k MUs in S̃i

to Ωj . Remove the added MUs from all other packets.
3) Set i := i + 1. If i ≤ L, go to Step 2. Otherwise, go

to Step 4.
4) If |Λj | > |Λ|, set Λ := Λj , Ω := Ωj .
Theorem 3: The set of packets Λ and their corresponding

MUs in Ω found by Algorithm 1 are an optimal solution to
a cyclic nkMTP instance.

Proof As we saw, there exists an L∗ solution in which the
k MUs assigned to a read packet are cyclic consecutive. We
further show that without loss of generality, there is at least
one packet j0 in the solution that is assigned its first k MUs.
If there is no such packet, we can shift the solution counter-
clockwise until this condition is met. Given that j0 is a packet
assigned its first k MUs, we prove that the algorithm finds
the optimal solution in iteration j = j0. To prove this, note
that once the packets are sorted with respect to packet j, we
have a consecutive nkMTP instance. This instance can be
solved greedily as in steps 2-3 of Algorithm 1, as proved in
[3, Theorem 5]. Finally, maximizing the size of the packet
set Λj over all indices j is guaranteed to give the optimal
solution, because at least one packet j is qualified as a j0
that is in the optimal solution with its first k MUs.

Algorithm 1 requires simple sorting and comparison oper-
ations rendering this algorithm efficient. The k MUs assigned
to a read packet in Algorithm 1 are cyclic consecutive.
Thus, the n − k MUs not assigned to the packet are cyclic
consecutive as well, and they can be viewed as a cyclic burst
of n−k erasures. An example is shown in Fig. 2. Such bursts
can be corrected using an [n, k] binary cyclic code, as cyclic
codes are capable of recovering from any cyclic burst erasure
of length up to n − k [7]. The use of binary cyclic codes
simplifies the coding process considerably. The reason is that
non-trivial MDS codes require non-binary field arithmetic
and impose certain restrictions on the code parameters, which
can mostly be lifted once cyclic binary codes are used.

B. Design placement
In this sub-section, we propose a new placement policy,

based on combinatorial block designs, which turns out to
be the most promising. Inspired by the sufficient condition
of Theorem 1, we choose for the packets MU sets with
overlap at most tmax. We do so by using the so called t-
designs [5] with carefully chosen parameters. A t-(N,n, λ)



Fig. 2: A solution of a cyclic nkMTP instance (k = 2, n = 4).
’+’ denotes an MU assigned to the packet where ’X’ denotes
an MU not assigned to the packet (erasure).

design consists of n-element subsets (blocks) taken from a
set of N elements, such that every t elements taken from
the set appear in exactly λ subsets. Constructing designs for
a certain set of parameters is largely an open problem, and
one usually refers to a list of known block designs, such as
in [8]. Our interest lies in block designs with t = tmax + 1
and λ = 1, such that the pairwise intersection cardinality is
at most tmax. When λ = 1, t-designs are known as Steiner
systems, and they contain (when exist) b =

(
N
t

)
/
(
n
t

)
blocks

[5]. We use the notation t-(N,n) for Steiner systems (where
λ = 1 is implied).

Example 3: Consider the set S = {1, 2, 3, 4, 5, 6, 7}. The
blocks S1 = {1, 2, 3} ,S2 = {1, 4, 5} ,S3 = {1, 6, 7} ,S4 =
{2, 4, 6} ,S5 = {2, 5, 7} ,S6 = {3, 4, 7} and S7 = {3, 5, 6}
form a 2-(7, 3) Steiner system. There are

(
7
2

)
/
(

3
2

)
= 7 blocks

in this design, known as Fano plane [5].
The placement policy we propose here, termed design

placement, is based on constraining the MU sets to be the
design blocks. It is sufficient that the L MU sets are different
design blocks, and the request is full-throughput by the
design properties and the sufficient pairwise condition (2).
Thus, the probability that a random design nkMTP instance
contains a full-throughput solution is lower bounded by the
probability that the L MU sets are distinct. To find this
probability, we use the balls-and-bins model [9]. In this
model, there are L balls and b bins (recall that b is the
number of blocks in the design), where the balls are placed
independently and uniformly at random in the bins. The
probability of L non-empty bins serves as a lower bound
on Pr(L∗ = L) for a design nkMTP ensemble, and is given
as

pdes
pair =

(
b

L

)
1

bL

L∑
j=0

(−1)
j

(
L

j

)
(L− j)L. (10)

We note that if k > n/2, each block can serve only one
packet, and pdes

pair is the probability of a full-throughput
solution rather than a lower bound.

Let us take a concrete example. For the case L = 3
and n = k + 1 we can take the 2-(k2 + k + 1, k + 1)
Steiner system [5], which is suitable for a system with
N = k2 + k + 1 MUs. The sufficient pairwise condition
(2) requires for these parameters tmax = n − k = 1, which
is guaranteed by the t = 2 parameter of the design. To have
a full-throughput solution we need that the L = 3 blocks
drawn from the k2 + k + 1 blocks of the design will be all
distinct. In Fig. 3, we plot pdes

pair, the design nkMTP lower
bound on Pr(L∗ = L), in comparison to the cyclic nkMTP
lower and upper bounds on Pr(L∗ = L) (pcyc

pair and pcyc
cover,

respectively). For comparison we plot the upper bound on
the full-throughput probability when no structure is imposed

Fig. 3: A comparison of full-throughput performance bounds
(n = k + 1, N = k2 + k + 1).

on the MU sets, denoted puni
over, as derived in [3]. The exact

probability for an uncoded cyclic placement is found using
the coverage condition (8), and in this case it coincides with
pcyc

cover. We also plot pcyc
sim, the only graph in Fig. 3 obtained

using simulations, which is the empirical Pr(L∗ = L) in the
cyclic case. The results clearly demonstrate that the design
policy exhibits significantly superior performance.

We now turn to show how a design nkMTP instance can
be solved efficiently. We assume here that the L packets are
stored in L distinct MU sets (blocks), otherwise a subset of
packets stored in distinct blocks is considered. It turns out,
and proven next, that an extremely efficient optimal read
algorithm exists owing to the fact that the sufficient pairwise
condition is strong enough that an optimal solution does not
need to use MUs contained in sets of more than two packets.
Denote by

.

Si the MUs indexed in Si that are not shared by
any other packet, and by

.

Sij the MUs indexed in both Si
and Sj but not in any other MU set. Clearly, the sets

.

Si and
.

Sij are disjoint. In addition, denote by xiij (resp. xjij) the
number of MUs assigned in the optimal solution to packet
i (resp. j) out of the set

.

Sij (where two disjoint subsets of
MUs are taken from

.

Sij). We have to find xiij and xjij using
the following system of inequalities

|
.

Si|+
∑
j 6=i

xiij ≥ k, for i = 1, 2, ..., L, (11)

s.t. xiij + xjij ≤ |
.

Sij |, for 1 ≤ i 6= j ≤ L.

The above is an integer linear program (ILP) admitting a total
unimodular constraint matrix, hence can be solved optimally
and efficiently by a standard linear program (LP). However,
it can be proved that a much simpler algorithm than LP can
solve this optimally. For clarity and lack of space, we pretend
in the sequel that the sizes of the sets

.

Sij are all even. We
later explain how we can adapt the assignment algorithm and
correctness proof to the general case.

Proposition 4: Assume that
∣∣∣Ṡij∣∣∣ are all even. Then setting

xiij = xjij =
∣∣∣Ṡij∣∣∣ /2 results in a valid solution of (11).



Proof According to the inclusion-exclusion principle,∣∣∣Ṡi∣∣∣ =
∑
J⊇{i}

(−1)
|J |−1 |SJ |, (12)∣∣∣Ṡij∣∣∣ =

∑
J⊇{i,j}

(−1)
|J |−2 |SJ |.

∣∣∣Ṡij∣∣∣ /2 are integers, since
∣∣∣Ṡij∣∣∣ are all even. Let us examine

a certain i. Substitute the right-hand sides of (12) in the
first inequality of (11) as follows:

∣∣∣Ṡi∣∣∣ is substituted by the
sum expanding it in (12), and each xiij is substituted by half

the sum expanding
∣∣∣Ṡij∣∣∣. Each set J ⊇ {i} appears in the

combined sums once due to
∣∣∣Ṡi∣∣∣, and additional |J |−1 times

(with an opposite sign) due to the summation of
∣∣∣Ṡij∣∣∣ over

j 6= i. The left-hand side of the first inequality in (11) then
becomes

n− 1

2

∑
j 6=i

|Sij |+
1

2

∑
J⊇{i},|J |≥3

(−1)
|J |−1

(3− |J |) |SJ |

(13)

= n− 1

2

∑
j 6=i

|Sij |+
1

2

∑
J⊇{i},|J |≥4

(−1)
|J |

(|J | − 3) |SJ |.

We claim that the right sum in (13) is non-negative. This
sum counts the number of occurrences of MUs in intersection
sets of 4 packets or more that include packet i, multiplied by
the factor (|J | − 3)/2, and with alternating signs. Consider
a certain MU shared by exactly T ≥ 4 packets including
packet i. This MU appears in

(
T−1
|J |−1

)
intersection sets of

cardinality 4 ≤ |J | ≤ T (we subtract 1 as the packet index
i is always contained in J ). The contribution of this MU to
the count is

1

2

T∑
|J |=4

(−1)
|J |

(|J | − 3)

(
T − 1

|J | − 1

)
(14)

=
1

2

2∑
|J |=0

(−1)
|J |

(|J | − 2)

(
T − 1

|J |

)
= (T − 3)/2 ≥ 0,

where we used the binomial identities
T∑

j=0

(−1)
j

(
T

j

)
=

T∑
j=0

j(−1)
j

(
T

j

)
= 0. (15)

This means that the right sum in (13) is indeed non-negative.
Now, |Sij | ≤ tmax, so (13) is lower-bounded by

n− 1

2

∑
j 6=i

tmax = n− 1

2
(L− 1) tmax = k, (16)

meaning that at least k MUs are assigned to packet i.

We now sketch how the simple half assignment of Propo-
sition 4 can be adapted to the case when

∣∣∣Ṡij∣∣∣ are not all
even. In this case, there exists an optimal assignment of either
floor/ceiling values of

∣∣∣ .Sij∣∣∣ /2 to xiij and xjij . To find this
assignment, we construct an undirected graph whose vertices
are the packet indices, and connect two vertices i and j by an
edge if

∣∣∣Ṡij∣∣∣ is odd. We then remove from the graph vertices
not connected by an edge to any other vertex. An orientation
of an undirected graph is an assignment of a direction to
each edge in the graph (leading to a directed graph). There

Fig. 4: An orientation example where the number of edges
entering/existing a vertex differs by at most one.

always exists an orientation such that the number of edges
entering and exiting a vertex differs by at most one, and
it can be found in in time linear in the number of edges
[10]. An example is shown in Fig. 4. Equipped with such
an orientation of the undirected graph constructed above,
an edge entering vertex j from vertex i is interpreted as
contributing the floor value of

∣∣∣Ṡij∣∣∣ /2 to xjij . An edge in the

opposite direction contributes the ceiling value of
∣∣∣Ṡij∣∣∣ /2 to

xiij . In addition, Ṡij of even cardinality contribute
∣∣∣Ṡij∣∣∣ /2 to

both xiij and xjij . By extending Proposition 4, the assignment
above can be proved to be optimal.

IV. CONCLUSION

In this paper we studied two coded-switch placement poli-
cies and their respective read algorithms. The advantages of
the cyclic placement is that cyclic binary codes can be used
instead of MDS codes, and a maximal-throughput solution
can be found with an efficient algorithm. The advantage
of the design placement is that full-throughput solutions
can be found instantly by an extremely simple assignment
algorithm. Both policies are shown to be amenable for
closed-form analysis, providing an important tool to predict
the performance of coded switches. Important future direc-
tions are finding tractable algorithms for weaker sufficient
conditions, considering other natural placement policies,
and constructing non-MDS codes that give similarly good
throughput performance in this framework.

ACKNOWLEDGEMENT

This work was supported in part by the Israel Science
Foundation, the Israel Ministry of Science and Technology,
and by the Intel ICRI-CI center.

REFERENCES

[1] Z. Wang, H. M. Kiah, and Y. Cassuto, “Optimal binary switch
codes with small query size,” 2015 IEEE International Symposium
on Information Theory (ISIT), pp. 636–640, June 2015.

[2] Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck, “Codes for network
switches,” 2013 IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 1057–1061, July 2013.

[3] R. Cohen and Y. Cassuto, “Algorithms and throughput analysis for
MDS-coded switches,” 2015 IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 656–660, June 2015.

[4] M. Viderman, “LP decoding of codes with expansion parameter above
2/3,” Information Processing Letters, vol. 113, no. 7, pp. 225 – 228,
2013.

[5] J. H. van Lint and R. M. Wilson, A course in combinatorics. Cam-
bridge University Press, 2001.

[6] G. Barlevy and H. N. Nagaraja, “Properties of the vacancy statistic
in the discrete circle covering problem,” FRB of Chicago, Tech. Rep.,
2015.

[7] W. Ryan and S. Lin, Channel codes: Classical and modern. Cam-
bridge University Press, 2009.

[8] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs,
Second Edition (Discrete Mathematics and Its Applications). Chap-
man & Hall/CRC, 2006.

[9] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[10] A. Bondy and U. Murty, Graph theory. Springer, 2008.


