
Detection and Coding Schemes for Parallel
Interference in Resistive Memories

Yuval Ben-Hur and Yuval Cassuto
Viterbi Department of Electrical Engineering, Technion – Israel Institute of Technology

yuvalbh@campus.technion.ac.il, ycassuto@ee.technion.ac.il

Abstract—This paper studies the problem of reliable resistive-
memory readout through the rigorous lens of communication
theory. The most dominant reliability issue in resistive memory
can be modeled as interference of resistances in parallel to a
measured resistance. For this special type of interference we de-
velop detection and coding schemes that are shown to effectively
mitigate the effects of sneak-path errors. The uniqueness of this
study is that the proposed models combine theoretical rigor with
practical richness, hence enabling deep contributions to very real
problems.

I. INTRODUCTION

The ever-increasing demand for storage capacity drives a
constant need to scale the storage density, while maintaining
its power efficiency and reliability. As the flash technology for
non-volatile memories (NVMs) seems to reach a scaling bar-
rier, recent advancements in the fabrication of resistive devices
suggest promising alternative technologies. First to emerge
was the memristor technology [1], which was later joined by
other technologies similarly implementing memory crossbar
arrays of resistive cells. The key in all those technologies is
that the memory cell is a passive two-terminal device that can
be both read and written over the simple crossbar structure.
This feature offers a huge density advantage, but at the cost
of poor isolation between cells resulting in severe access and
reliability issues. Mitigating these issues is a highly motivated
objective, given the far-reaching impact resistive arrays can
strike on future computing systems. In addition to storing bits,
resistive arrays have been shown to be capable of performing
logic operations [2]–[5], analog and neural computation [6]–
[8], and vector similarity calculations [9]. In all those exciting
applications too, we are in need to solve the fundamental issues
of the crossbar array.

The importance of enabling reliable resistive arrays did not
escape the eye of the research community, which contributed
works toward modeling, detection and repair of faults in
resistive arrays [10], [11]. The greatest efforts were pointed
to solve the most fundamental problem of resistive arrays
called sneak paths. When a cell in a crossbar array is read,
a voltage is applied upon it, and current measurement de-
termines whether it is in a low-resistance state (logical 1)
or a high-resistance state (logical 0). Sneak paths are an
effect by which in parallel to the desired measurement path,
alternative current paths passing through other array cells
distort the cell measurement, and result in read errors. The
sneak-path problem was addressed by numerous works with

different approaches and at various system layers. Alternative
memory architectures, which include a modification of the
cell technology and/or the entire array structure, have been
proposed to decrease or eliminate sneak paths [12]–[14]. Other
approaches concentrate on low-level electric analysis, which
is meant to clean distorted measurements [15]–[18]. Finally,
information-theoretic analysis and mitigation of sneak paths is
studied in [19]–[22].

Despite these intensive research efforts over the last few
years, sneak paths remain an open problem for designers
of next-generation memory architectures. Our aim in this
work is to lay down a structured framework for sneak-path
mitigation, upon which deep and rigorous theoretical tools
can be harnessed to solve the problem. Although related ideas
have been considered before [23], [24], this is the first study
that casts the fundamental problem of resistive-array readout
as a communication problem, with sneak paths modeled as a
special type of interference. To emphasize the fundamentals
of the problem, we start the study one step before the complex
realities of resistive memory: Section II formulates a detection
problem where a resistance is measured with a random number
of parallel interfering resistances plus an additive noise. For
this formulation we develop two detection schemes: an optimal
maximum a posteriori probability (MAP) detector and a simple
threshold detector. In Section III we refine the model to fit the
scenario of real resistive arrays. Toward that end we analyze
the resistances of different sneak-path types, and incorporate
cell non-linearity into the model. In Section IV we move to
propose and analyze sneak-path reduction methods. Our main
contribution in this section is a coding scheme on 2×2 words
that is shown to reduce sneak-path incidence significantly,
while enjoying simple encoding, decoding and analysis. The
benefits of the tools developed in the paper are demonstrated
in Section V showing simulation results of bit-error rates in
various practical scenarios. Finally, we conclude the paper and
suggest future work in Section VI.

II. DETECTION SCHEMES FOR PARALLEL INTERFERENCE

A. Model formulation

Consider a set of N hypotheses {Hi}Ni=1 that represent N
different resistance values {Ri}Ni=1. Assume the cell resistance
is measured in parallel to other resistors in the array. We
denote the measured resistance by r and the resistance of each
parallel resistor by R. The number of such parallel resistors is
denoted by L. We consider a situation where the interfering

Fig. 1: Plots of the distributions of r for R = 250Ω with
L = 0, 1 and 2. The N = 2 hypotheses: H1 : R1 = 100Ω and
H2 : R2 = 1000Ω. The noise standard deviation is ση = 50Ω.

resistance R is known, but L is a data-dependent random
variable, which is typically unknown during the measurement.
In addition, we consider a Gaussian measurement noise η,
which is added to the measured resistance and is independent
of its value. Hence, given the i-th hypothesis, from elementary
electric theory (resistors in parallel), the measured resistance
can be written as the inverse sum of reciprocals of the original
resistance and L components with resistance R:

ri =

(
1

Ri
+
L

R

)−1
+ η. (1)

Interestingly, this simple disturbance of the measured value
imposes a fundamental challenge on the task of detecting the
hypothesis. The difficulty stems from the unique nature of
this disturbance: even relatively low values of L may result in
severe drops in the measured resistance. For example, Fig. 1
depicts a scenario where even L = 1 shrinks the margin
between hypotheses significantly. Detection errors occur when
two hypotheses become close enough (due to the values of L
and R) so that the additive noise causes cross-over between
them. Practically, the detector assumes an upper bound Lmax
on the value of L, beyond which reliable detection is not pos-
sible. The value of Lmax depends on the problem parameters
and on the specific detector used.

B. Optimal Detection

An optimal detector for the model presented in (1) can be
derived from the Maximum A-Posteriori (MAP) estimator of
the hypothesis i, given the measurement r. We work under
the assumption that the following distributions are known: the
probability mass function of the interference order (pL (·)), the
probability density function of the additive noise (fη (·)), and
the prior probability of each hypothesis (qi). Let us define the
posterior function of the i-th hypothesis as a weighted sum of
conditional posteriors

Λi (r) = qi
∑

0≤L≤Lmax

fη

(
r −

(
1

Ri
+
L

R

)−1)
pL(L). (2)

The function pL(L) needs to be obtained from the interfer-
ence characteristics. In the next section we show how it can be
derived analytically for resistive memory arrays. Given that,
our proposed detector is

îMAP = arg maxi∈{1,...,N}Λi (r) , (3)

which is the optimal MAP detector up to the assumption that
the distribution of L is cut off at Lmax.

C. Optimal Threshold Detection
The MAP detector of the previous sub-section may be

optimal, but also very complex to implement. It essentially
needs to consider every possible (Hi, L) pair in an exhaustive
manner. Alternatively, a simpler detector may divide the r axis
to fixed regions, and map each region to a hypothesis. In this
formulation, we have to determine a set of N − 1 thresholds
{τi}N−1i=1 that separate between the decision regions of differ-
ent hypotheses. Formally, given a resistance measurement of
r, the output of this detector is

îTH(r) = {i : τi−1 ≤ r ≤ τi}.

Since the measured resistance is non-negative by definition, we
can immediately define τ0 = 0 and τN = ∞. The other τis
need to be set such that the probability that îTH(r) 6= i, where
i is the correct hypothesis, is minimized. Since r is monotone
in the resistance Ri, the hypotheses Hi need to be ordered
in ascending Ri, and the decision region for hypothesis i is
continuous. Minimizing the error probability of the threshold
detector îTH(r) by optimization calculus gives the conditions

Λi (τi) = Λi+1 (τi) . (4)

However, since a closed-form solution of (4) is difficult, we
make an assumption that simplifies the derivation of the τis.
We replace the sums of Gaussians in Λi and Λi+1 (see (2))
by the single Gaussians that make the two hypotheses closest,
that is, those that correspond to Li = 0 and Li+1 = Lmax.
Hence, the threshold values with this approximation are

τi ≈
1

2

[
1

Ri+1
+ Lmax

R

]−2
−R2

i + 2σ2 log
[
qi
qi+1

pL(0)
pL(Lmax)

]
[

1
Ri+1

+ Lmax

R

]−1
−Ri

.

(5)
Note that the τi values depend on the assumed Lmax. For good
performance this Lmax should be the largest value of L that
still has significant probability to occur according to pL(·).
When we set Lmax = 0, (5) degenerates to the threshold
estimator for pulse-amplitude modulation (PAM) with non-
uniform levels [25].

In Fig. 2 we show examples for detecting different distri-
butions of r. In (a) a threshold detector works well, but in (b)
threshold detection is sub-optimal because the L distribution
interleaves the decision regions of H1 and H2.

(a) R1 = 100Ω,R2 =
1000Ω,R = 250Ω. Threshold
detector, τ1, is marked by a
dashed line.

(b) R1 = 500Ω,R2 =
1000Ω,R = 750Ω. Optimal
regions are not continuous even
if Lmax = 1.

Fig. 2: Example of detectors for N = 2 hypotheses with
different resistance values (ση = 50Ω).

(a) (b)

Fig. 3: (a): physical illustration of a crossbar array. Every row-
column intersection is connected by a single resistive cell. (b): logical
illustration of a crossbar array. White cells represent logical 0 bits,
and black cells represent logical 1 bits.

III. APPLICATION TO RESISTIVE MEMORY

Equipped with Section II’s framework and tools for parallel-
resistance detection, we now turn to refine them toward their
application in resistive memories. A resistive crossbar array
has m rows and n columns, and at the intersection of row i
and column j lies the resistive cell (i, j). Parallel-resistance
interference occurs in resistive crossbar arrays by an effect
called sneak paths. When reading the cell (i, j), the resistance
measurement of cell (i, j) is influenced by parallel (sneak)
paths consisting of resistances of other array cells. Fig. 3
depicts a resistive crossbar in physical and logical illustrations.
A sneak path is defined logically as a closed path originating
from and returning to location (i, j), and traversing logical-
1 cells through alternating vertical and horizontal steps. For
example, cell (4, 1) in Fig. 3b has a sneak path composed of
cells (4, 2), (2, 2), and (2, 1).

A. Heterogeneous Path Types and Cell Non-Linearity

In resistive memory a logical 1 bit is represented by low
resistance, and a logical 0 bit by high resistance. To meet
this convention, we adapt our notation and define R(b) as the
resistance value used to represent the logical bit b ∈ {0, 1}.
With the notation of Section II we have R(1) = R1 and
R(0) = R2.

To capture the interference induced by sneak paths, we
need to find the resistance values that occur in parallel to the

(a) The cell (4,1) in Fig. 3b has
L = 2 sneak paths involving
kr = 2 rows and kc = 2
columns.

(b) The cell (3,1) has L = 2
sneak paths involving kr = 2
rows and kc = 1 column. Cell
(2,1) is shared between paths.

Fig. 4: L = 2 sneak paths with different types.

resistance R(bi,j) of the read cell at location (i, j). Recall that
in Section II we assumed the simplistic model that the parallel
resistance has a fixed value R, with a random multiplicity L.
To extend the model to the more realistic scenario of sneak
paths, we focus on the most dominant interference, which is
caused by sneak paths of three cells all with the low resistance
level R(1). Sneak paths with more than three cells also exist,
but their effect on data reliability is much less significant due
to the much higher parallel resistances they induce. Because
of the crossbar structure, the parallel resistance does not only
depend on the number L of sneak paths affecting cell (i, j), but
also on the type of the sneak-path combination. For L sneak
paths affecting cell (i, j) we define the type as the number of
rows kr and the number of columns kc participating in the
L sneak paths (not counting row i and column j). In Fig. 4
we show two examples of L = 2 sneak paths having different
types. For L up to 3, we characterize in Table I all types and
their corresponding parallel resistance αL,kr,kc in multiples of
R(1). Combinations of kr, kc not in the table can be obtained
from included columns by row-column symmetry. For each
L, the types are ordered by increasing interference severity
(decreasing parallel resistance). The reason we stop at L = 3
is that we reached a parallel interference of 1 · R(1) (right
most column), which is as low as a legal hypothesis for the
measured cell.

L 0 1 2 3
rows (kr) 0 1 1 2 2 1 2 3
columns (kc) 0 1 2 2 2 3 3 3
αL,kr,kc ∞ 3 2 3/2 2 5/3 6/5 1

TABLE I: Types of L = 0, 1, 2 and 3 sneak-paths.

Another adaptation required to the model of Section II is
considering the non-linearity of the memory cells. So far we
assumed that the cells in the sneak path each contributes
resistance R(1) to its branch in the circuit. But real resistive
cells are commonly manufactured with non-linearity, such that
R(1) is their resistance only under the full Vdd voltage. When

participating in sneak paths, cells are under voltages that are
fractions of Vdd (for example Vdd/3 in Fig. 4a), in which case
their resistance is higher. In the refined model we define the
cell non-linarity by the constant κ, setting the ratio between
the cell resistance in a sneak path to its resistance when read
with the full Vdd.

Combining both model refinements, we can re-write the
expression for the read resistance value for cell (i, j) as

rbi,j (L, kr, kc) =

(
1

R(bi,j)
+

1

αL,kr,kcκR(1)

)−1
+ η. (6)

B. MAP and Threshold Detection

In this sub-section we provide the expressions for the MAP
and threshold detectors with the refinements of the parallel-
resistance model to resistive arrays with sneak paths. There are
two hypotheses in this case: bi,j = 1 and bi,j = 0. The prior on
the bit values is defined by Pr(bi,j = 1) = 1−Pr(bi,j = 0) =
q, where q is known. We obtain the optimal MAP decision on
bi,j by marginalization over all values of L, kr, kc, as follows∑

L,kr,kc
fη (r − r1 (L, kr, kc)) Pr(L, kr, kc)∑

L,kr,kc
fη (r − r0 (L, kr, kc)) Pr(L, kr, kc)

b̂=1

≷
b̂=0

1− q
q

.

The distribution Pr(L, kr, kc) can be calculated combinatori-
ally in closed form, but we omit this for lack of space. Here too
we can simplify the detector by truncating the sum at Lmax.

For threshold detection, the expression for the threshold
resistance between the two hypotheses is given by

τ =

[
1

R(0) + 1
αminκR(1)

]−2
−R(1)2 + 2σ2 log

[
q

1−q
pL(0)

pL(Lmax)

]
2

([
1

R(0) + 1
αminκR(1)

]−1
−R(1)

)
(7)

where αmin is chosen among the values of αL,kr,kc with
0 ≤ L ≤ Lmax. We show bit-error rate (BER) results for
the refined threshold and MAP detectors in Section V.

IV. SNEAK-PATH REDUCTION METHODS

The principal scaling challenge of resistive memories is the
fact that the occurrence of sneak paths significantly increases
as the array dimensions grow. From our detection results
in previous sections it is clear that reliable readout is not
possible when the number of sneak paths affecting the read
cell is above some threshold of Lmax sneak paths. Thus, it
is highly motivated to devise schemes that for given array
dimensions will reduce the occurrence of multiple sneak paths,
in particular more than Lmax of them affecting an array cell.
In this section we propose a method to reduce sneak-path
occurance using a coding scheme specially designed for that
purpose. Afterwards, we discuss a common hardware method,
called cell selectors, to reduce sneak-path occurance.

A. Sneak-path Reducing Code

Since sneak paths is a data-dependent effect, it can also be
mitigated by cleverly adapting the stored physical bits. The
simplest and most immediate way to reduce sneak paths is by

distribution shaping (also called q shaping), that is, changing
the fraction of array bits that store the value 1 (low resistance).
In Section III this fraction was denoted by q. It is clear that
fewer 1s in the array mean fewer sneak paths affecting a read
cell. But constraining the array bits to have low q also has
an adverse effect on the storage rate of the array. Thanks to
the simplicity of q shaping, we have a full characterization
of the sneak-path distribution in the array as a function of q
and the array dimensions m,n [22]. The following is a simple
adaptation of a theorem from [22].

Proposition 1. For a cell in a crossbar array whose bits are
chosen i.i.d. Bernoulli with parameter q, the probability that
there are exactly l sneak paths affecting the cell equals

pL(l) =

m−1∑
u=0

n−1∑
v=0

pu,v

(
uv

l

)
ql(1− q)uv−l, (8)

where pu,v =
(
m−1
u

)(
n−1
v

)
qu+v(1− q)m−1−u+n−1−v .

The q that gives the sneak-path distribution in (8) also
induces a storage rate R = R(q) ≤ 1. To get a better sneak-
path distribution than (8) for the same rate R, we next propose
a coding scheme based on encoding the array with 2×2 blocks.

Setting the parameter q in the distribution-shaping method
“shapes” the array bits to have fewer sneak paths. Our main
idea in the proposed coding scheme is that better sneak-path
shaping can be obtained when imposing a richer structure on
the array bits. The structure that we choose for the coding
scheme is 2×2 blocks whose properties induce low incidence
of sneak paths. 2 × 2 blocks give advantage in sneak-path
mitigation, while their small size still allows simple encoding
and decoding at a small access granularity of a pair of array
rows, using known methods of distribution shaping.
The 2×2 shaping code. Consider the 16 possible assignments
to a 2× 2 bit word. To reduce sneak-path incidence, we first
forbid using the 5 assignments that have 1s in more than
half of the word (4 assignments with three 1s and the all-1
assignment). Now comes our key observation that among the
assignments with two 1s, those with the two 1s in the same
row or column are more prone to having multiple sneak paths
affecting the same cell location. Because of that we forbid
these 4 assignments as well. This leaves our code with 7
words out of the 16 possibilities. The 7 words divide into three
symmetry classes according to their weight (see Table II), and
the code is decided by determining the probabilities p0, p1, p2
of words in these three respective classes. Before discussing

Word Probability Words

p0

[
0 0
0 0

]
p1

[
1 0
0 0

]
,
[
0 1
0 0

]
,
[
0 0
1 0

]
,
[
0 0
0 1

]
p2

[
1 0
0 1

]
,
[
0 1
1 0

]
TABLE II: 2× 2 code-words and probabilities

the important problem of choosing the probabilities p0, p1, p2

to optimize sneak-path reduction, we derive a closed-form
expression for the sneak-path distribution given the chosen
probabilities.

Theorem 2. Let the crossbar array store bits whose 2 × 2
blocks are chosen i.i.d. from the 7 legal assignments with
probability p0, p1, p2 for each word with weight 0, 1 and 2,
respectively. The probability that an array cell is affected by
exactly l sneak paths equals

p′L(l) =

n
2−1∑
u=0

m
2 −1∑
v=0

p′u,v · p′l|u,v, (9)

where

p′u,v =

(n
2 − 1

u

)(m
2 − 1

v

)
·

(2p1 + 2p2)
u+v

(1− 2p1 − 2p2)
n/2−1−u+m/2−1−v (10)

and

p′l|u,v =

(
uv

l

)
(p1 + p2)

l
(1− p1 − p2)

uv−l
. (11)

Proof. We derive the probability p′L(l) by conditioning on the
number of 1s in the read cell’s row, which we denote by u,
and the number of 1s in the cell’s column, which we denote
by v. Observe the 2×2 words in Table II. Each 1 in the cell’s
row or column results from one of two weight-1 words (two
other weight-1 words have no 1s in that row or column), or
from one of the two weight-2 words. Also, we ignore the 1s
from the word of the read cell itself, because they cannot cause
sneak paths. This explains the expression for p′u,v in (10). Now
given u, v, we have uv pairs of a 1 in the cell’s row and a 1 in
the cell’s column. We examine the word intersecting the row
and column of words corresponding to the pair of 1s. It can
be seen that in all cases there are exactly two assignments to
this word that cause a sneak path: one weight-1 word and one
weight-2 word (the identities of these two words depend on
the location of the pair 1s within their words). This explains
the expression for p′l|u,v in (11).

The proof of Theorem 2 reveals an important advantage of
the 2× 2 coding scheme: even though each row, column and
their intersection, that potentially cause a sneak-path, can have
one of 73 = 343 word combinations, the symmetries in the
problem simplify the analysis and yield compact and wieldy
expressions. The simplest and most effective method to set the
probabilities p0, p1, p2 is weight minimization. Lower weights
necessarily imply lower average number of ones within the
array, and therefore less sneak-path in general. In that method,
we are given a prescribed storage rate R, and look for the
combination of p0, p1, p2 that satisfy the constraints: 1) p0 +
4p1 + 2p2 = 1, 2) R(p0, p1, p2) = R (the rate associated with
such a distribution is its entropy), and minimizing the expected
codeword weight W(p0, p1, p2) = p1 + 2p2. In Fig. 5 we plot
for each rate R the possible tail probabilities (Pr{L > 3})
obtained by 2×2 coding with different p0, p1, p2 distributions.

Fig. 5: Sneak-path tail probabilities as a function of storage
rate. Showing 2×2 coding with weight minimization and other
distributions, and compared to q shaping (with 0 ≤ q ≤ 0.5).

For comparison, we show the same tail probability with simple
q shaping. Weight minimization is shown to give the lowest tail
probability among all p0, p1, p2 distributions, and significantly
lower than q shaping. In the next section we also show the
favorable effect of 2× 2 coding on the BER results.

B. Cell Selectors

A popular hardware method to mitigate the problem of
resistive-array scaling due to sneak paths is by introducing
cell selectors. To each memory cell a selector device is added
in series, and blocks the reverse current flowing in sneak
paths. Our model for cell selectors assumes they fail i.i.d.
with probability pf . When reading cell (i, j), if there is a 3-
cell sneak path affecting cell (i, j) such that a selector failure
occurs in the path cell not in row i and not in column j,
then the sneak path will be active despite the selectors. With
this behavior we now modify the sneak-path distribution to
accommodate cell selectors. Given u 1s in row i and v 1s in
column j, the probability to have l active sneak paths with
selectors and q shaping is

p̃l|u,v =

(
uv

l

)
(pfq)

l (1− pfq)uv−l , (12)

and the probability to have l active sneak paths with selectors
and 2× 2 coding is

p̃′l|u,v =

(
uv

l

)
[(p1 + p2) pf]

l
[1− (p1 + p2)pf]

uv−l
. (13)

The expressions for pu,v and p′u,v are unchanged with selectors
compared to (8) and (9), respectively.

V. SIMULATION RESULTS

In this section, the performance of the detection and coding
schemes presented throughout this paper are evaluated via
simulations. We consider the bit-error rate (BER) as a primary
performance criterion for the various schemes. The simulations

Fig. 6: BER of the MAP detector for several array sizes, with q =
0.5, pf = 10−3 and κ = 1.

were conducted using resistance values of R(1) = 102 [Ω]
and R(0) = 104 [Ω] with varying values of the noise standard
deviation ση . m and n denote the crossbar array dimensions,
and κ is the non-linearity coefficient. q is the prior input
probability of bit assignments of 1, and R denotes the storage
rate. All BER simulation of uncoded arrays (q = 0.5) were
conducted with a selector fault probability of pf = 10−3, and
the coded arrays were simulated without selectors (pf = 1).

First, we conduct a comparison between the error rates of
the MAP detector for several sizes of crossbars. Fig. 6 shows
that as the array dimensions grow, so does the error rate.
Specifically, the graph shows that error rates of around 10−6

can be achieved even in a noise regime of 20%−30% of R(1).
In addition, the step-like behavior of the error-rate plot can
be observed: it abruptly changes its growth rate from steep
to moderate and vice-versa. This phenomenon stems from
the discrete nature of the interference itself. The Gaussians
that assemble the likelihood functions expand their overlap as
the noise magnitude increases. When a Gaussian related to
some L overlaps with another Gaussian, the error rate grows
steeply. But when they are already blended, the error rate
reaches a certain saturation, until the overlap of the following
Gaussian becomes dominant. These conclusions are supported
also by Fig. 7, which shows a comparison of a naı̈ve detector
(threshold in R(1)+R(0)

2), the threshold detector and the MAP
detector. It is seen that for low noise levels the threshold
detector gives comparable performance to MAP, but at some
point they diverge to the favor of the MAP.

In the context of 2 × 2 coding, we show in Fig. 8 a
comparison of error rates with 2 × 2 coding and without
(using q shaping instead), for several storage rates. The results
show a clear advantage for the coded scheme, which improves
the error rate in almost an order of magnitude for all of the
examined storage rates. Using this code, or alternatively using
more reliable selectors (i.e. smaller pf), enables to enlarge the
overall crossbar size while maintaining the error rate.

Fig. 7: BER comparison between different detectors for a 16 × 16
array with pf = 10−3 and κ = 1.

Fig. 8: BER of 2 × 2 coding (solid curves) vs. q shaping (dashed
curves) for different storage rates. Array dimensions are m = n = 8,
pf = 1 and κ = 1.

VI. CONCLUSION

In this paper we provided a formal treatment for the problem
of resistive-array readout. This treatment yielded constructive
tools to combat sneak paths in both the detection and coding
layers. Clearly the framework and tools developed here can be
extended and improved in many directions. In the theoretical
direction it is important to derive error analysis for different
detectors. In the coding direction, the most interesting is
to construct codes that optimize sneak-path reduction in the
presence of cell selectors.

VII. ACKNOWLEDGEMENT

The authors wish to thank Shahar Kvatinsky for valuable
discussions. This work was supported in part by the Intel
Center for Computing Intelligence and by the Israel Science
Foundation.

REFERENCES

[1] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[2] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proceedings of the 2009 IEEE/ACM International Symposium on
Nanoscale Architectures, pp. 33–36, IEEE Computer Society, 2009.

[3] T. Raja and S. Mourad, “Digital logic implementation in memristor-
based crossbars,” in International Conference on Communications, Cir-
cuits and Systems (ICCCAS), pp. 939–943, IEEE, 2009.

[4] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: design
principles and methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014.

[5] R. Ben-Hur and S. Kvatinsky, Processing within a Memristive Memory.
2016.

[6] M. Di Ventra, Y. V. Pershin, and L. O. Chua, “Putting memory into
circuit elements: memristors, memcapacitors, and meminductors [point
of view],” Proceedings of the IEEE, vol. 97, no. 8, pp. 1371–1372, 2009.

[7] D. Chabi, W. Zhao, D. Querlioz, and J.-O. Klein, “Robust neural
logic block (nlb) based on memristor crossbar array,” in IEEE/ACM
International Symposium on Nanoscale Architectures, pp. 137–143,
IEEE, 2011.

[8] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
“Memristor-based multilayer neural networks with online gradient de-
scent training,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 10, pp. 2408–2421, 2015.

[9] Y. Cassuto and K. Crammer, “In-memory hamming similarity com-
putation in resistive arrays,” in IEEE International Symposium on
Information Theory (ISIT), pp. 819–823, IEEE, 2015.

[10] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Detection, diagnosis,
and repair of faults in memristor-based memories,” in IEEE 32nd VLSI
Test Symposium (VTS), pp. 1–6, IEEE, April 2014.

[11] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Modeling, detection,
and diagnosis of faults in multilevel memristor memories,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 5, pp. 822–834, 2015.

[12] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,”
Microelectronics Journal, vol. 44, no. 2, pp. 176–183, 2013.

[13] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. Fahmy, and K. N. Salama,
“Memristor multiport readout: A closed-form solution for sneak paths,”
IEEE Transactions on Nanotechnology, vol. 13, no. 2, pp. 274–282,
2014.

[14] X. Wang, M. Chen, Y. Shen, and X. Hu, “A new crossbar architecture
based on two serial memristors with threshold,” in International Joint
Conference on Neural Networks (IJCNN), pp. 1–6, IEEE, July 2015.

[15] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky,
and R. S. Williams, “Writing to and reading from a nano-scale cross-
bar memory based on memristors,” Nanotechnology, vol. 20, no. 42,
p. 425204, 2009.

[16] S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive
devices array: Data-dependent statistical model and self-adaptable sense
resistance for rrams,” Proceedings of the IEEE, vol. 100, pp. 2021–2032,
June 2012.

[17] C. Liu and H. Li, “A weighted sensing scheme for reram-based cross-
point memory array,” in IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pp. 65–70, IEEE, July 2014.

[18] M. Zidan, H. Omran, R. Naous, A. Sultan, H. Fahmy, W. Lu, and K. N.
Salama, “Single-readout high-density memristor crossbar,” Scientific
reports, vol. 6, 2016.

[19] P. P. Sotiriadis, “Information capacity of nanowire crossbar switching
networks,” IEEE Transactions on Information Theory, vol. 52, no. 7,
pp. 3019–3032, 2006.

[20] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints
in memristor crossbar arrays,” in IEEE International Symposium on
Information Theory Proceedings (ISIT), pp. 156–160, IEEE, 2013.

[21] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “On the channel induced by
sneak-path errors in memristor arrays,” in International Conference on
Signal Processing and Communications (SPCOM), pp. 1–6, IEEE, 2014.

[22] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Information-theoretic sneak-
path mitigation in memristor crossbar arrays,” IEEE Transactions on
Information Theory, vol. 62.

[23] R. Naous, M. A. Zidan, A. Sultan-Salem, and K. N. Salama, “Memristor
based crossbar memory array sneak path estimation,” in 14th Interna-
tional Workshop on Cellular Nanoscale Networks and their Applications
(CNNA), pp. 1–2, IEEE, 2014.

[24] T. Luo, O. Milenkovic, and B. Peleato, “Compensating for sneak
currents in multi-level crosspoint resistive memories,” in 49th Asilomar
Conference on Signals, Systems and Computers, pp. 839–843, IEEE,
2015.

[25] J. G. Proakis and M. Salehi, Digital Communications. McGraw-Hill,
2008.

