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Abstract

This paper proposes a general optimization framework to allocate computing resources to
the compression of massive and heterogeneous data sets incident upon a communication
or storage system. The framework is formulated using abstract parameters, and builds on
rigorous tools from optimization theory. The outcome is a set of algorithms that together can
reach optimal compression allocation in a realistic scenario involving a multitude of content
types and compression tools. This claim is demonstrated by running the optimization
algorithms on publicly available data sets, and showing up to 25% size reduction, with
equal compute-time budget using standard compression tools.

1 Introduction

Data compression is an essential tool in almost every computing environment, reduc-
ing the amount of data sent over networks and stored in various devices. Compression
algorithms are now widely deployed in a variety of components and sub-systems within
the core infrastructure of large information-technology systems. In particular, lossless
data compression now drives two very central information services: web networking
(via compressed HTML content), and virtual/cloud storage (via inline-compressed
block storage). In both environments, and more generally so, the system objective
is to maximize the utility of compression given the limited available computing re-
sources.

Indeed, deciding how to allocate computing resources to compression tasks is
a highly non-trivial problem, with significant ramifications on communication and
storage efficiency. Unfortunately, known research results give only a very partial
answer to this compression-optimization problem. Prior solutions to this problem
considered either specific or limited scenarios, which are hard to extend to the reality
of complex systems charged with compressing massive and heterogeneous data sets.

In this work we develop and study a novel framework toward finding the optimal
allocation of computing resources for content pending compression in the system.
The main strength of this framework lies in its generality. The system’s compression
tools and its incident data are specified using abstract parameters that are easily
computed from the pending compression task. Then the optimal allocation is found
using rigorous tools from optimization theory. For the sake of clarity, we present the
framework in two steps: in Section 3 the optimization is explained when a single type
of document is pending compression; then the fully heterogeneous scenario of multiple
document types is addressed in Section 4. An evaluation on massive real data sets in
Section 5 shows that the new framework can improve the compression efficiency for
every computing budget, and typically by significant amounts.



2 Background and Related Work

We survey some background and prior work on compression in systems with limited
computing resources. It is now a standard feature for compression tools to offer an
effort-adjustment parameter that allows the user to trade CPU resources for com-
pression ratio. Typically this parameter is specified as an integer level in the range 1
to 9.

There is an extensive research on compression performance in the context of
energy-awareness in both wireless [1] and server [2] environments. Inline compres-
sion decision [3] presents an energy-aware algorithm for coarse-grain optimization,
i.e., answering the “compress or not compress” question per MapReduce job. Simi-
larly, the same ”compress or not” question is addressed for real-time storage systems
in [4] by a fast sampling of the content compressibility. Finer-grain adaptive compres-
sion [5] mixes compressed and uncompressed packets in CPU-bound systems, and [6]
extends the mixing idea when a single document is compressed with a novel par-
allelized compression tool. A web-server system implementing dynamic load-aware
elastic compression is detailed in our recent previous work [7].

To the best of our knowledge, this paper presents the first general optimization
framework not tailored to a specific application, with ability to handle heterogeneous
content and a variety of compression tools simultaneously. In particular, it can also
work with relatively new compression techniques [8–10].

3 Setup Mixing Optimization, Single-Document

In this section we present an algorithm that finds the optimal setups given a single
document to compress and a time budget for completion, using a given set of com-
pression tools. The term document refers to some data object we wish to compress,
with the idea that either the data object is very large or there are many instances
of objects similar to it (by some content characteristics). Optimality in this context
means that the data-size reduction achieved by the compression is maximized over
all setup assignments allowable by the time budget. We further show that mixing
as few as two setups is always sufficient for optimality. Building upon this notion of
optimal setups and mixing for a single-document, in the next section we present an
optimization algorithm for a multiple-documents system.

3.1 Setup mixing

A key feature of our algorithm is a fine-grained effort adjustment. The interpretation
we give to the fine-grained operation is a weighted mix between several compression
setups, where each setup may be a different compression tool and/or a configuration
of such a tool.

To illustrate what setup mixing is, we start with a conventional compression of a
single file, and only then turn to present the concept of setup mixing. Suppose we
need to run a conventional compression job of a file f that must be completed within
a given time budget. We first obtain an estimate of the size reduction and effort



(a) Two sample setups and
their performance for f : com-
pression time and output size.

(b) Simple non-mixing algo-
rithm - a budget strictly be-
tween the points 1 and 2 can-
not be fully utilized.

(c) Mixing setups 1 and 2
achieves full processing uti-
lization and reduces the out-
put size.

Figure 1: The motivation for setup mixing, single-document.

exhibited by each of the compression setups. Figure 1a shows the time it takes to
compress f in each of two compression setups 1 and 2, and the resulting compressed
size of f . Each setup may be a different compression tool and a specific configuration;
for example, setups 1, 2 may be, for example, two different configurations of the gzip
utility. The x coordinate designates the time each setup takes to compress f . The
y coordinate designates the resulting compressed size of f achieved by each setup.
Setup 2 has a higher computation effort (longer running time) but better (smaller-
size) compression outcome compared to setup 1.

In Figure 1b we see how the two setups might be used by a näıve non-mixing
algorithm to compress f . The x axis in Figure 1b expresses the instantaneous time
budget allowed for the compression of f . Suppose that the current time budget is t′

time units, as marked with a vertical dashed line on Figure 1b. It is clear from the
plot that setup 2 cannot be used, given the time budget t′; on the other hand, setup
1 does not use the entirety of t′.

Figure 1c shows a desirable mix of setups 1 and 2, which fully utilizes the interme-
diate processing time budget t′ between the x locations of the two points. Ultimately,
any budget t′ satisfying t1 < t′ < t2 can be utilized, yielding an improved average
compressed size of b′ satisfying b2 < b′ < b1. In graphical view, that means that
several points on the line connecting points 1 and 2 would be achieved by mixing
setups. In more general terms, mixes allow achieving points on any line connecting
two different setups in these plots.

In practice, mixes can be performed in one of several ways: (a) When parallel
compression [11] is applicable, each thread may use a different setup. (b) In a web-
server, which typically serves several requests at once, mixing is achieved by changing
the fraction of requests served by each setup [7]. (c) With large files, it may be
possible to switch configurations after every block of input bytes (as can be done
with standard gzip and a wrapping script).



3.2 Finding the useful mixes

Given the aforementioned motivation for mixing setups, we now present the algorithm
that finds the useful mixes of setups. To this end we explained why mixing two setups
is beneficial. Now, we show how mixes can be further enhanced when the content’s
nature is known in advance. The elements of the algorithm are now defined:

mix A mix is a set of at least two different setups used to serve a compression job
of a document. For example, the mix 3,5 means that part of the document is
compressed with setup 3 and the rest with setup 5.

useful mix A useful mix is a mix that provides the smallest compressed output size
for some time budget. When a specific instantaneous time budget is given, we refer
to the corresponding useful mix as the optimal mix.

useful setups A useful setup is a setup that participates in at least one useful mix.
Hence useful setups form a subset of the setups. The meaning of useful setups and
useful mixes is explained in the remainder of this section.

In Proc. 1 below we present an algorithm to obtain the useful setups, which will
later be shown to span all the useful mixes, and each of the useful mixes utilizes up to
two of those useful setups for any time budget. The input to Proc. 1 are pairs {(ti, bi)},
one for each setup, denoting the time and size resulting from compressing the content
with setup i. The algorithm first removes setups that result in a larger size compared
to a setup with lower computation time, or consume the same computation time as
a setup with no larger size. Then Proc. 1 finds the convex-hull of the remaining
setups. A convex-hull of a set of points {(ti, bi)} is defined as the set of (t, b) points
that can be obtained by taking any convex combination of points in {(ti, bi)}, i.e.∑

i θi(ti, bi), with θi ≥ 0 and
∑

i θi = 1 (note how the θi coefficients precisely capture
the mixing of compression setups). Lastly, the setups on the lower polygonal chain of
the convex-hull are marked as useful setups. The lower polygonal chain of a convex-
hull includes all the points in the hull that have the minimal b value for a given t value
among all the hull points. As shown later, setups not on the lower polygonal chain
of the convex-hull are never useful, since for any such setup there exists a mix of two
setups on the polygonal chain giving smaller average output size for a given average
compression time. The proof that the polygonal chain vertices are the only useful
setups is given under Claim 1, accompanied by an intuitive graphical illustration.

Claim 1. The setups found as the vertices of the lower polygonal chain of the convex
hull are the only useful setups. Useful mixes will always be of two setups connected
by an edge on the lower polygonal chain.

Proof. We give a proof sketch with the general intuition. A full mathematical proof
can be given by formulating the problem as a linear program, and using the KKT
optimality conditions (a well-known tool from the theory of convex optimization) [12]
to show that mixing two setups is always optimal. We first note that by the definition
of the convex-hull, any setup not on the lower polygonal chain has a point on the
polygonal chain strictly below it in the vertical direction. Therefore, such a setup
cannot be useful as it is dominated by a mix of useful setups giving a smaller output



Proc. 1 Produce a list of useful setups for a document and their convex-hull.

1. Determine ti, bi for each setup.
2. Sort the setups in ascending ti values, with bi used as a secondary index in de-

scending order.
3. for all setups i do
4. if bi ≥ bi−1 or ti == ti+1 then
5. Remove setup i
6. end if
7. end for
8. Find the convex-hull of the remaining points {(ti, bi)}.
9. for all setups i on edges of the lower polygonal chain do

10. Mark setup i as useful setup.
11. end for

size for the same processing time (see for example setup 4 in Figure 2a). Now we
need to prove that for any time budget t, the useful mix is given by the intersection
between the polygonal chain and the vertical line x = t. This is easily seen from the
fact that, again by the definition of the convex-hull, any mix of any number of setups
results in a point not below the polygonal chain.

A graphical illustration of the proof sketch appears in Figure 2a. The solid line
intervals show the lower polygonal chain calculated for a set of m = 6 setups by a
convex-hull algorithm. For a given time budget t′ : t3 ≤ t′ ≤ t5, Claim 1 ensures that
the optimal mix will include setups 3 and 5, and no others. Looking at the edges
connecting each useful setup to its predecessor, from convexity one can see that the
slopes of these edges follow a non-increasing order. These slopes represent the amount
of size reduction obtained per additional processing-time unit, and thus capture the
benefit of moving to a higher setup on this edge. Formally, we define the benefit of
a compression setup as the ratio of the size-reduction-delta to the time-delta of the
edge that leads to it from left on the convex-hull. The benefit is measured in units
of bytes/sec. Figure 2b shows the benefits of all the useful setups in the example. In
the next section we use the benefit representation to handle the multiple-document
optimization.

3.3 Finding the optimal mix, given a time budget

Given m useful setups ordered in increasing running time, and t′ (time budget), we
need to determine the optimal mix a, b to use and the fractions of files ra, rb that each
setup in the mix will serve. The non-trivial case is when t1 < t′ < tm, then the mix
is the adjacent useful setups a, b such that tb ≤ t′ ≤ ta. The respective fractions are:
ra = b t′−tb

ta−tb
c and rb = 1− ra.



(a) The polygonal chain (solid edges) and use-
ful setups (solid vertices). All mixes below the
polygonal chain are infeasible given the avail-
able setups. All mixes above the chain are infe-
rior to mixes on the chain.

(b) The benefit per useful setup (except for 1) -
the setups are always ordered in non-increasing
order of their benefits.

Figure 2: Finding the useful setups - an illustrative example with m = 6 setups,
where setup 4 is found inferior (not useful).

4 Mixing Multiple Documents

In this section we discuss the realistic scenario of a system that compresses multiple
different documents using multiple available compression tools. The solution for this
scenario will build strongly on the optimization framework developed in the previous
section for a single document. Specifically, the core of this section is an algorithm that
finds the optimal selection of compression setups for the documents in the system.

4.1 Compression of multiple documents

In the multiple-document setting, each document in general has a different convex-
hull, hence the compression optimization has to consider multiple convex-hulls jointly.
In particular, in the terminology of Section 3 each document will in general have a
different set of useful setups, because the compression efficiency of each tool and
setup depends on the information characteristic of the document. For example, a
web server typically generates several categories of HTML pages (news, sports, etc.).
While different in content, all pages in a category are usually similar in terms of
compressibility, so for the purpose of the compression optimization we may regard
each category as one distinct document.

Recalling the definition of compression benefit from Section 3, we say that two
distinct data objects q, r can be represented by the same document if they have the
same set of useful setups, and each useful setup has the same benefit. The above
criterion is soft, in the sense that compression performance may not be much affected
if it holds only approximately.



4.2 Finding a sequence of useful multi-document setup combinations

To find the optimal compression strategy in the multiple-documentsetting, we are
faced with a complex problem of assigning to each distinct document a compression
setup from a multitude of available setups. The different documents may have very
different compression behaviors under the same setups. Further, it is possible that
system constraints will require each document to choose from a different set of setups.

We show in the sequel that this problem can in fact be solved efficiently. The key
step toward the solution is an algorithm that merges the individual convex-hulls of the
documents into a single convex-hull, by which the system can easily find the optimal
setup combination for a given compute-time budget. This algorithm is presented
formally in Proc. 2. The input to the algorithm are n documents, and its output is
a sequence of setup combinations for the n documents. Each combination is given as
a length n vector whose i-th element is a useful setup of document i. The elements
of the vectors in the sequence are non-decreasing in every coordinate. Therefore, the
vectors in the sequence represent setup combinations with increasing total compute
time.
Proc. 2 Given n documents, produce a sequence of length n vectors representing
setup combinations.

1. for all documents i do
2. run Proc. 1 and obtain the useful setups and the convex-hull
3. set si, the i-th coordinate of the setup vector, to the lowest useful setup of

document i
4. from the convex-hull calculate Di – a decreasing ordered list of benefits for the

useful setups of i, except for setup si
5. end for
6. output setup vector (s1, ..., sn)
7. repeat
8. i? ← i | Di has the largest first item among all D’s
9. si? ← next useful setup of document i? that is > si?

10. remove the first item from Di?

11. output setup vector (s1, ..., sn)
12. until all D’s are empty

Proc. 2 is best understood with an example. Figure 3 gives such an example for
n = 2 documents. For the 2 input documents, Figure 3a shows the useful setups and
the convex-hulls. Recall that the output of Proc. 2 is a sequence of length 2 vectors
specifying setup combinations for the 2 documents. This output sequence can be seen
on the labels of Figure 3b read from left to right. Setups for document 1 appear as
integers s in the first coordinate of the vectors, and for document 2 as integers s′ in
the second coordinate. Notice that between adjacent vectors in the sequence exactly
one of the two elements is increased by at least one setup (in this specific example
all changes are +1 because the useful setups happen to be contiguous). In Figure 3b
we show, in addition to the setup-combination sequence itself, the slopes in bytes/sec
showing the benefits of the setups chosen for increase in every step of the sequence.



(a) Two documents and the convex-hull of each doc-
ument separately, with slopes showing benefits in
bytes/sec.

(b) The merged convex-hull: a sequence
of setup combinations and slopes showing
the benefits of increased setups.

Figure 3: Building a merged convex-hull to handle multiple documents.

4.3 Finding optimal setup-combinations given compute-time budget

Now that we know how to merge n convex-hulls into a non-decreasing sequence of
setup combinations, we turn to specify how the merged sequence can be used to find
the optimal setup combination given an arbitrary compute-time budget. The key
idea is as follows. We first calculate the required compute time when the lowest
useful setups are used for all documents. We can calculate this time from the convex-
hulls of the individual documents and the size and/or number of instances of each
document pending compression. Then we move to the next setup-combination vector
in the output sequence, and repeat the calculation of required compute time. We
continue progressing on the sequence of setup combinations until we hit the last setup
combination that is within the compute-time budget. Progressing to an adjacent
vector in the output sequence amounts to increasing a setup for the single document
(i? in Proc. 2) that gives the highest incremental benefit at the current compute-time
allocation. As we approach the compute-time budget in this progression, at some
point we expect the budget to fall in between adjacent setup combinations in the
sequence. As we did for the single-document setting in Section 3.3, here too we will
mix two adjacent setup combinations. Since exactly one document changes setup
between the two adjacent combinations, the final assignment of compression setups
to documents will have at most one document mixing two useful setups, while all
other documents will use one useful setup for all their instances.

The nice property of the above optimization is that we do not have to know
anything about the compression algorithms implemented in the system. We only
need to know, in the most abstract way, the ordering of the benefits between the
useful setups of the documents pending compression.

5 Evaluation

This section serves to demonstrate the high potential advantage offered by the new
optimization framework. To capture the most realistic circumstances for such an
optimization, our evaluation will use data from the publicly-available enwiki [13]
repository. In addition to working with real massive data-sets, our evaluation will



(a) pagelinks in gzip. (b) langlinks in gzip (c) history in bzip2. (d) history in xz.

Figure 4: Single-document convex-hull of each of the four given documents. The
number labels are the useful setups, and the connecting lines are the convex-hull.

also mimic the way these files are compressed by enwiki snapshot generators.
The data-set: The data-set we use is a complete copy of the English Wikipedia

dumps in XML, along with some metadata, and a number of raw database tables
in SQL form. These snapshots are provided once or twice a month, after running
time-consuming heavy compression for at least 10 days, over more than 12 TB of
page histories (as of 2014). For example, the snapshot contains two sets of 169 files of
page histories in two compression formats, namely bzip2 and 7z (LZMA). Additional
sets also contain gzip forms of various data, making the overall compression task
extremely complex and difficult to plan.

Per-document convex-hull: Figures 4a-4d show the output size and compute
time of four of the different documents spanning the enwiki database. The compute
time was measured with current standard implementations of bzip2, gzip, and xz (for
the 7z/LZMA format) for Mac, using a single CPU and considering all 9 standard se-
tups provided by each of the mentioned tools. The plots also show the resulting useful
setups found by Proc. 1. Note that the plots of Figure 4 describe three very different
compression algorithms, but this fact is not an issue for our abstract optimization
framework.

Merging the documents and assigning setups: Figure 5a shows the benefit
calculated for each document and useful setup, except for the lowest setups. The
benefits are plotted in non-increasing order. This order is the same as the order by
which Proc. 2 changes setups between adjacent setup-combinations in the output se-
quence. Figure 5b compares between the results of the optimization given in Section 4
to the näıve approach of selecting the same numeric setup to all documents. Each
point on the plots represents a compression job for four enwiki documents, where
the chosen setups appear on the label1. For our results the label is a quadruple of
setups, each for one document (in general referring to different compression tools),
and for the curve shown for comparison the label designates the setup number chosen
for all documents. The vertical coordinate shows the total compressed size, and the
horizontal coordinate shows the consumed compute time. It can be observed that the
lower curve resulting from this paper’s algorithms gives superior compression for all
compute budgets except for the extreme ones (none of which is a practical choice: one
is poor compression, the other prohibitive compute cost). The advantage is indeed
significant: up to 25% stronger compression for the same compute budget. Another
advantage lies in the ability to limit the compute budget to half the maximum re-
quired, with only 0.7% compromise of compression size.

1To avoid clutter, only part of the labels appear on the figure.



(a) The benefits of the useful setups for the en-
wiki documents, sorted in non-increasing order.

(b) Results for compressing enwiki: 100MB of
the first two documents and 1GB of the last two.

Figure 5: Evaluation of compression for four enwiki documents.

6 Conclusion

This paper is the first step toward the goal of fully optimized compression in systems.
Future directions include algorithmic enhancement of standard compressors for finer
control of their bytes/sec benefits, and joint optimization for additional criteria.
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