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Abstract—In this paper, we discuss bounds and approximations
for the decoding threshold of LDPC codes over the q-ary partial
erasure channel (QPEC), introduced in [1]. The QPEC has a
q-ary input, and its output is either one symbol or a set of
2 ≤ M ≤ q possible symbols. We show how an upper bound
on the decoding threshold can be derived using a single-letter
recurrence relation, when M > q/2. In addition, we discuss
complexity issues in the calculation of the threshold, and provide
two approximation models that lead to reasonable results with a
fraction of the complexity required for the exact calculation.

I. INTRODUCTION

Linear codes constructed from low density matrices, known
as low-density parity-check (LDPC) codes [2], [3], offer low
complexity in implementation, with good performance under
iterative decoding [4]. These codes were shown to achieve per-
formance close to the capacity for several important channels,
using efficient decoding algorithms.

LDPC codes are part of several digital communication
standards, such as 10GBase-T Ethernet and WiMax [5]. They
have performance exceeding in many cases that of turbo
codes. In particular, iterative decoding algorithms used in
LDPC codes are usually easier to implement, and are also
parallelizable in hardware.

In several works by Richardson et al. [6], [7], an extensive
analysis of LDPC codes over binary memoryless symmetric
(BMS) channels is provided. It is shown that in many cases,
LDPC codes exhibit a threshold phenomenon. That is, when
the noise parameter of the channel is below a certain threshold,
an arbitrary small error probability can be achieved. This
analysis was extended to q-ary LDPC codes, such as done
in [8], [9].

In [1], a new channel model was introduced, named the q-
ary partial erasure channel (QPEC). This channel has a q-ary
input, where its output is known up to M possible symbols
(2 ≤ M ≤ q). The q-ary erasure channel (QEC) is a special
case of the QPEC when M = q > 2, and the BEC is a special
case of the QPEC when M = q = 2. However, unlike the
determination of the decoding threshold for the BEC/QEC,
finding the threshold for the QPEC when M < q involves
non-trivial density evolution equations, as shown in [1].

Several bounds and approximation models were suggested
in [1] for estimating the decoding threshold of LDPC codes
used over the QPEC. In this paper, we offer a new upper bound
on the decoding threshold, using a single-letter recurrence

relation. We also provide two new approximation models for
the density evolution equations of the QPEC, which provide
in turn approximations of the decoding threshold.

This paper is structured as follows. We review the channel
model for the QPEC and the density evolution equations for
decoding LDPC codes over this channel in Section II. An
upper bound on the decoding threshold for M > q/2 is derived
in Section III. Complexity issues and approximation models
for the density evolution equations are discussed in Section
IV. Finally, conclusions are given in Section V.

II. PRELIMINARIES

A. Channel model

A partial erasure in the q-ary Partial Erasure Channel
(QPEC) model represents an event where a symbol is received
with uncertainty. In contrary to the q-ary erasure channel
(QEC), where an erasure event means that the output symbol
can be any of q possible symbols, in the QPEC it is limited
to be one of M (2 ≤M ≤ q) symbols.

The channel is defined as follows. Let X be the transmitted
symbol taken from the alphabet X = {0, 1, ..., q − 1}. We
will assume that q is a prime or a prime power, such that
the symbols in X can be considered as the elements of the

finite field GF(q). For each x ∈ X , define the set
{
?
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x
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(i)
x (?(i)

x 6=

?
(j)
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. The transition probabilities gov-

erning the QPEC are as follows:

Pr (Y = y|X = x) =

{
1− ε, y = x

ε/imax, y =?
(i)
x

(1)

for i = 1, 2, ..., imax, where 0 ≤ ε ≤ 1 is the (partial) erasure
probability.

As an example, assume that q = 4,M = 2, and the symbol
0 was transmitted. Then we have ?

(1)
0 = {0, 1} , ?(2)

0 = {0, 2}
and ?

(3)
0 = {0, 3}, where each is received with probability ε/3

and 0 is received with probability 1− ε.



Fig. 1: Example for a Tanner graph (over GF(5)). Circles
denote variable nodes, and squares denote check nodes.

B. Decoding GF(q) LDPC codes over the QPEC

A GF(q) [n, k] LDPC code is defined in a similar way
to its binary counterpart, by a sparse parity-check matrix, or
equivalently by a Tanner graph [10]. This graph is bipartite,
with n variable (left) nodes, which correspond to symbols of
the codeword, and n−k check (right) nodes, which correspond
to parity-check equations. The codeword symbols and the
labels on the graph edges are taken from GF(q).

In the graph, each check node cj is connected, by edges,
to variable nodes vi, i ∈ N(j), where N(j) denotes the set of
nodes adjacent to node j. The parity-check equation induced
by cj is

∑
i∈N(j)

hijvi = 0, where hij is the label on the edge

connecting variable node i to check node j. Note that the
calculations are carried over GF(q). An example of a Tanner
graph is given in Figure 1.

A message-passing decoder for q-ary LDPC codes over
the QPEC was proposed in [1]. The beliefs exchanged in
the decoding process are sets of symbols, rather than prob-
abilities. There are two types of messages: check to variable
(CTV) messages and variable to check (VTC) messages. Each
outgoing message from a variable (check) node to a check
(variable) node depends on all its incoming message, except
for the incoming message originated from the target node.

At iteration l = 0, the channel information is sent from
variable to check nodes: partially-erased nodes send sets
of size M , while non-erased ones send sets of size 1 (in
both cases, the messages contain the correct symbol). In the
subsequent iterations, a CTV message from a check node
contains all possible assignments of the target variable node
given the contents of the incoming VTC messages, such that
the check-node associated parity-check equation is satisfied. A
VTC message from a variable node is simply the intersection
of the channel information and the incoming CTV messages
to the variable node.

C. Density evolution equations

For density evolution analysis of the QPEC, we introduce
the notion of sumset. Assume that we have i − 1 subsets of

GF(q), {Sj}i−1
j=1. The sumset of these subsets, denoted

i−1∑
j=1

Sj ,

is defined in the following way:

i−1∑
j=1

Sj
∆
=


i−1∑
j=1

sj : sj ∈ Sj

 . (2)

That is, the sumset of the subsets {Sj}i−1
j=1 is the set of all sums

(using GF(q) arithmetic) of elements taken from these subsets.

There are
i−1∏
j=1

|Sj | sums within the sumset, each leading to an

element of GF(q). Clearly, these elements are not necessarily
distinct.

Define the probability vector w(l), where w
(l)
m (m =

1, 2, ..., q) denotes the probability that a CTV message at
iteration l is of size m. The probability vector z(l) is defined
for VTC messages in a similar manner. In addition, define
the polynomials (degree distributions) λ (x) =

∑
i

λix
i−1 and

ρ (x) =
∑
i

ρix
i−1, where λi (ρi) denotes the fraction of edges

connected to a variable node (check node) of degree i [4]. The
density evolution equations for the QPEC are [1]:

w(l)
m =

∑
i

ρi
∑

{|Sj |}i−1
j=1 :

|Sj | ≤M

i−1∏
j=1

z
(l−1)
|Sj |

 · Pm ({|Sj |}i−1
j=1

)

(3)
z

(l)
m = δ [m− 1] · (1− ε)

+ε
∑
i

λi
∑

{|Sj |}i−1
j=1 :

|Sj | ≤ q

(
i−1∏
j=1

w
(l)
|Sj |

)
·Qm

({
{|Sj |}i−1

j=1 ,M
})

(4)
where Pm

(
{|Sj |}i−1

j=1

)
denotes the probability that the sumset

size of random i − 1 sets (taken from GF(q)) with sizes
{|Sj |}i−1

j=1 equals m, and Qm
({
{|Sj |}i−1

j=1 ,M
})

denotes the
probability that the intersection of i random sets (taken from
GF(q)) with sizes

{
{|Sj |}i−1

j=1 ,M
}

is of size m. The addi-
tional set of size M corresponds to the channel information
in case of partial erasure. δ [m] denotes the discrete Dirac
delta function. Note that for m > M , z(l)

m = 0 (for all
l), since the size of the intersection between sets with sizes{
{|Sj |}i−1

j=1 ,M
}

is at most M .
An exact expression for Qm was derived in [1]. However,

an exact expression for Pm is unknown and is likely difficult
to find [11]. Several approximation models and bounds for
Pm were suggested in [1], which led to approximations and
bounds for the decoding threshold of GF(q) LDPC codes used
over the QPEC. In the following, we derive an additional upper
bound on the decoding threshold when M > q/2. In addition,
we provide two new approximations of Equation (3).

III. UPPER BOUND ON THE DECODING THRESHOLD

The decoding threshold for LDPC codes over the QPEC is
defined as the maximal allowed erasure probability such that

lim
l→∞

M∑
i=2

z
(l)
i = 0. This threshold will be denoted by εth. In [1],

both lower and upper bounds on εth were obtained. However,
they require the evaluation of the density evolution equations
(3) and (4), which involve M + q variables (M for z(l) and q
for w(l)). In this part, we obtain an upper bound for the case



M > q/2, using a single-letter recurrence relation, which is
independent of both Pm and Qm that appear in Equations (3)
and (4).

A sufficient condition for an outgoing CTV message to
be of size q is the q-condition [1], meaning that there is at
least one pair of incoming VTC messages whose sum of sizes
exceeds q (this can occur only when M > q/2). Therefore,
w

(l)
q is bounded from below by the probability that at least

two incoming messages are of size M :

w(l)
q ≥

∑
i

ρi

i−1∑
j=2

(
i− 1
j

)(
z

(l−1)
M

)j(
1− z(l−1)

M

)i−1−j

(5)

= 1− ρ
(
1− z(l−1)

M

)
− z(l−1)

M ρ′
(
1− z(l−1)

M

)
.

Recall that z(l−1)
M is the probability that the size of a VTC

message at iteration l− 1 is of size M . A sufficient condition
for this to happen is that a variable node is a partial erasure,
and all its incoming CTV messages are of size q. Therefore,

z
(l)
M ≥ ε

∑
i

λi

(
w(l)
q

)i−1

= ελ
(
w(l)
q

)
. (6)

Combining (5) and (6), we get:

z
(l)
M ≥ ελ

(
1− ρ

(
1− z(l−1)

M

)
− z(l−1)

M ρ′
(
1− z(l−1)

M

))
,

(7)
with the initial condition z(0)

M = ε. Note that we have used the
fact that λ (x) is an increasing function of x. The inequality in
(7) applies to any M > q/2, for all q (which is prime or prime
power), and it depends solely on the degree distributions λ(x)
and ρ(x).

In the rest of this section, we will see how this inequality
can be used for deriving an upper bound on the decoding
threshold for the QPEC when M > q/2. Define f (ε, x) =
ελ (1− ρ (1− x)− xρ′ (1− x)) (which is the right-hand side
of the inequality (7), with z(l−1)

M replaced by x).

Lemma 1. f (ε, x) is an increasing function of both ε and x,
for ε, x ∈ [0, 1].

Proof: Taking the partial derivatives of f (ε, x) with
respect to ε and x, we get:

∂f

∂ε
= λ (1− ρ (1− x)− xρ′ (1− x)) (8)

∂f

∂x
= εxλ′ (1− ρ (1− x)− xρ′ (1− x)) ρ′′ (1− x) . (9)

ρ (x) , λ (x) and their derivatives are power series of x with
non-negative coefficients, and they are non-negative for non-
negative arguments. In particular, ρ′′ (1− x) ≥ 0 since
0 ≤ 1 − x ≤ 1. Therefore, it is sufficient to prove that
g(x) = ρ (1− x) + xρ′ (1− x) ≤ 1 for establishing the non-
negativity of the partial derivatives (8) and (9).

This is proved in the following manner. The derivative of
g(x) in the interval (0, 1) satisfies g′ (x) = −xρ′′ (1− x) < 0,
meaning that g(x) is a decreasing function of x. In particular,
g (x) ≤ g (0) = ρ (1) = 1, as needed.

Lemma 2. For a fixed ε, define hε(x) = f(ε, x), and consider
the ith composition of hε(x) with itself, denoted hiε (x). Then:

z
(l)
M ≥ h

l
ε

(
z

(0)
M

)
, l ≥ 1. (10)

Proof: hε(x) is an increasing function of x (Lemma 1).
In addition, z(l)

M ≥ hε
(
z

(l−1)
M

)
according to (7). Thus,

hε

(
z

(l−1)
M

)
≥ hε

(
hε

(
z

(l−2)
M

))
, l ≥ 2. (11)

Repeated application of the monotonicity property to the right-
hand side of (11) leads to the inequality hε

(
z

(l−1)
M

)
≥

hlε

(
z

(0)
M

)
, proving the lemma.

Lemma 3. The following threshold is well-defined:

ε∗ = sup

{
ε ∈ [0, 1] : lim

l→∞
hlε

(
z

(0)
M

)
= 0

}
. (12)

Proof: hlε
(
z

(0)
M

)
converges in the interval [0, 1] and is an

increasing function of ε. This can be proved using Lemma 1
and similar arguments to those used in Section 3.10 of [4]. In
addition, hlε=0

(
z

(0)
M

)
= 0. Therefore, the threshold in (12) is

well-defined.

Theorem 4. For a QPEC with M > q/2, εth ≤ ε∗.

Proof: z(l)
M is bounded from below by a strictly positive

value for all l when ε > ε∗, as a result of Lemma 2 and
Lemma 3. This implies that the probability of decoding error
is non-zero, meaning that the decoding threshold εth cannot
exceed ε∗.

An additional upper bound on ε that depends on the average
variable node degree and the average check node degree is
given in the following theorem.

Theorem 5. Define aL (aR) as the average variable (check)
node degree. Then, for a QPEC with M > q/2:

εth ≤ 2
aL
aR

(
1−

(
1− 2

aL
aR

)aR)
. (13)

Proof: This bound is obtained by integrating both sides
of (7) from 0 to ε. The details are similar to those appearing in
the proof of Theorem 1 in [12] (where the BEC is considered)
and are omitted. Note that this bound is non-trivial only when
aL
aR

< 1
2 .

The decoding threshold is a monotone non-increasing func-
tion of M (for a given q) [1]. Therefore, the upper bounds of
the last two theorems become tighter as M approaches

⌊
q
2

⌋
+1.

IV. EVALUATION OF Pm

A. Complexity considerations

Pm = Pm

(
{|Sj |}i−1

j=1

)
in Equation (3) can be calculated

exactly in a direct manner by averaging over the sumset sizes
of all possible assignments of elements from GF(q) to the
sets {Sj}i−1

j=1, given their sizes {|Sj |}i−1
j=1. Note that it can be

assumed that 0 ∈ Sj for j = 1, 2, ..., i− 1 due to the all-zero
codeword assumption [1].



As an example, assume that q = 4 (that is, we work
with GF(4)), and that we have K = 2 sets with sizes
|S1| = |S2| = 2. In this case, S1 and S2 can each be
one of the sets {0, 1} , {0, 2} , {0, 3}. Consider the realization
S1 = {0, 1} , S2 = {0, 2}. The resulting sumset is S1 + S2 =
{0 + 0, 0 + 2, 1 + 0, 1 + 2} = {0, 2, 1, 3}, leading to a sumset
of size 4. On the other hand, the realization S1 = S2 = {0, 1}
results in the sumset S1+S2 = {0 + 0, 0 + 1, 1 + 0, 1 + 1} =

{0, 1}, which is of size 2. Running over all
(

3
1

)2

= 9 pos-

sible realizations of the sumset S1 +S2, we get 3 realizations
that result in a sumset of size 2 and 6 realizations that result
in a sumset of size 4. Therefore, P1 = 0, P2 = 1/3, P3 = 0
and P4 = 2/3.

Extending this to the general case, for given q,M and

check-node degree i, an averaging over

(
M∑
j=1

(
q − 1
j − 1

))i−1

realizations of the sets {Sj}i−1
j=1 is required, making it infea-

sible as q,M or i increase. The following lemma shows how
the number of required realization can be reduced, and it is
a simple result of the commutativity of the ’+’ operation in a
finite field.

Lemma 6. Assume a fixed set of sizes {|Sj |}i−1
j=1. Then, for

any permutation π : {1, 2, .., i− 1} → {1, 2, .., i− 1}, Pm is
invariant to π, that is:

Pm

(
{|Sj |}i−1

j=1

)
= Pm

({∣∣Sπ(j)

∣∣}i−1

j=1

)
. (14)

The meaning of Lemma 6 is that instead of averaging over
the realizations of M i−1 possible sets of sizes for each check-
node degree i in Equation (3), it is sufficient to consider only

the realizations of
(
i+M − 2
i− 1

)
sets (which is the number

of multisets of cardinality i−1 taken from a set of cardinality
M ). For further reducing the number of needed realizations,
the q-condition (see Section III), which is effective only
when M > q/2, can be taken into account as well. For
sets of sizes that satisfy this condition, we simply have that
Pm = δ [m− q], with no need for averaging over the possible
realizations.

B. Approximate density evolution equations

According to the definition of the QPEC, the initial proba-
bility vector z(0) is non-zero only for m = 1 and m =M . In
the computation of the density evolution equations, it can be
seen experimentally that z(l) remains approximately concen-
trated in m = 1 and m = M for l > 0 as well. An example
is given in Figure 2. The calculation of w(l) from Equation

(3) requires the evaluation of
i−1∏
j=1

z
(l−1)
|Sj | , which we name the

z-factor, for all possible sets of sizes {|Sj |}i−1
j=1 , |Sj | ≤ M .

Given that the main contribution to this factor is due to
z

(l−1)
1 and z(l−1)

M , we suggest the following two approximation
models.

Fig. 2: Density evolution for q = 4,M = 3, ε = 0.45.

1) Model A: In this approximation model, the z-factor is
approximated as zero if there exists at least one |Sj | such that
|Sj | 6= 1,M . Therefore, Pm needs to be calculated only for
sets of sizes that contain 1,M or both, leading to a significant
reduction in complexity.

Note that for M > q/2, Pm is easy to calculate for sets of
sizes that result in a non-zero z-factor according to Model A.
In this case, we get:

Pm =

 δ [m− 1] , |Sj | = 1 for all j
δ [m− q] , if the q-condition holds
δ [m−M ] , otherwise

(15)

where Pm = δ [m−M ] corresponds to sets of sizes in which
one set is of size M and the remaining ones are of size 1.
According to Equation (15), no realizations of {Sj}i−1

j=1 are
needed when M > q/2.

2) Model B: In this more accurate model, the z-factor is
approximated as zero if there exist at least two |Sj | such
that |Sj | 6= 1,M . This model requires a higher complexity
compared to Model A, since Pm needs to be calculated for
additional realizations of sets for which the z-factor is non-
zero.

C. Calculation of the decoding threshold

The decoding threshold for the case M = q can be
calculated exactly using the density evolution equation of the
BEC [1]. This threshold equals 0.429 for a (3, 6)-regular
LDPC code [4], [1], and it serves as a lower bound on the
decoding threshold for 2 ≤ M < q. The upper bound on the
threshold for M > q/2 according to Theorem 4 is 0.719, and
it is tighter than the upper bound of (13) which equals 1.

The decoding threshold was calculated exactly using the
density evolution equations (3) and (4) for q = 4 and q =
5, for a (3, 6)-regular LDPC code, where Pm was calculated
efficiently according to the results of Section IV-A. In Figure
3, the exact threshold is compared to the threshold obtained
using the approximate density evolution equations according
to Models A and B. As expected, Model B provides a better
approximation of the threshold compared to Model A.



(a) q = 4

(b) q = 5

Fig. 3: The decoding threshold for a (3,6)-regular LDPC code
and its approximations.

The reduction in complexity when using the models is
significant especially when M > q/2, since many of the sets
of sizes for which the z-factor is not approximated as zero
are likely to satisfy the q-condition. In Figure 4, the number
of required realizations for the evaluation of Pm using the
exact density evolution equations is compared to the number of
realizations required when the models are used. This number
is given for several values of q, summed over all M > q/2.

As shown in Figure 4, the use of the approximation models
leads to a very significant reduction in the number of required
realizations. Even for small values of q, a reduction of several
orders of magnitude is clearly seen. Note that according to
Figures 3 and 4, Model B provides approximate thresholds
that are within 10% of the correct ones, making this model
especially attractive.

V. CONCLUSIONS

In this paper, we provided upper bounds on the decoding
threshold of GF(q) LDPC codes over the QPEC, for the
case M > q/2. These bounds were derived using a single-
letter recurrence relation, which can be a design tool used
toward finding degree distributions that approach the Shannon
capacity of the QPEC. This is a part of our ongoing research.

Fig. 4: The number of realizations required for evaluating Pm
for M > q/2. This number is zero for all q in the case of
Model A.

In addition, we provided approximation models for the
calculation of the density evolution equations of the QPEC,
leading to approximate decoding thresholds. These models
provide reasonable estimates of the thresholds, for a fraction
of the complexity required for the exact calculation of the
density evolution equations.
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