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Abstract—Data compression is a well-studied (and well-solved)
problem in the setup of long coding blocks. But important
emerging applications need to compress data to memory words
of small fixed widths. This new setup is the subject of this
paper. In the problem we consider we have two sources with
known discrete distributions, and we wish to find codes that
maximize the success probability that the two source outputs are
represented in L bits or less. A good practical use for this problem
is a table with two-field entries that is stored in a memory of
a fixed width L. Such tables of very large sizes are common in
network switches/routers and in data-intensive machine-learning
applications. After defining the problem formally, we solve it
optimally with an efficient code-design algorithm. We also solve
the problem in the more constrained case where a single code is
used in both fields (to save space for storing code dictionaries).
For both code-design problems we find decompositions that yield
efficient dynamic-programming algorithms. With the help of
an empirical study we show the success probabilities of the
optimal codes for different distributions and memory widths.
In particular, the study demonstrates the superiority of the new
codes over existing compression algorithms.

Keywords—Data compression, fixed-width memories, table com-
pression, Huffman coding, network switches and routers.

I. INTRODUCTION

In the best-known data-compression problem, a discrete
distribution on source elements is given, and one wishes to
find a representation for the source elements with minimum
expected length. This problem was solved by the well-known
Huffman coding scheme [3]. The Huffman coding scheme
tackles the problem through an efficient recursive algorithm
that relies on a tree structure and achieves optimality. Indeed,
the Huffman code has found use in numerous communication
and storage applications. Minimizing the expected length
of the coded sequence emitted by the source translates to
optimally low transmission or storage costs in those systems.
However, there is an important setup in which minimizing the
expected length does not translate to optimal improvement
in system performance. This setup is fixed-width memory.

This paper solves a problem first formulated in the paper “Compression
for Fixed-Width Memories” presented at the IEEE International Symposium
on Information Theory (ISIT) 2013, Istanbul, Turkey [1]. O. Rottenstreich is
with the Viterbi Department of Electrical Engineering and the Department
of Computer Science, Technion – Israel Institute of Technology, Haifa Israel
(e-mail: ori.rot@gmail.com). Y. Cassuto is with the Viterbi Department of
Electrical Engineering, Technion – Israel Institute of Technology, Haifa Israel
(e-mail: ycassuto@ee.technion.ac.il). This work was supported in part by
the Israel Science Foundation (ISF), by the US-Israel Binational Science
Foundation (BSF), and by the Intel Center for Computing Intelligence (ICRI-
CI).

Information is stored in a fixed-width memory in words of L
bits each. A word is designated to store an entry of d fields1,
such that each field is drawn independently, following a known
distribution for that field source. We distinguish the word as a
physical memory unit storing actual bits, from the entry and
its fields that are the logical information to be stored in it. In
this case, the prime objective is to maximize the probability
of representing the d outputs of the field sources within the
memory word boundaries of L bits, rather than minimizing
the expected length for each source.

The fixed-width memory setup is extremely useful in real
applications. The most immediate use of it is in networking
applications, wherein switches and routers rely on fast access
to entries of very large tables [4]. The fast access requires
simple word addressing, and the large table size requires good
compression. In addition to this principal application, data-
centric computing applications can similarly benefit from effi-
cient compression of large data sets in fixed-width memories.
In this paper we consider the compression of data entries
with d = 2 fields into memory words of L bits, where L
is a parameter. This special case of two fields is motivated
by switch and router tables in which two-field tables are
most common. Throughout the paper we assume that the
element chosen for an entry field is drawn i.i.d. from a known
distribution for that field, and that elements of distinct fields
are independent of each other.

Our operational model for the compression assumes that
success to fit an entry to L bits translates to fast data access,
while failure results in a much slower access because a sec-
ondary slower memory is accessed to fit the entry. Therefore,
we want to maximize the number of entries we succeed to fit,
but do allow some (small) fraction of failures. Correspond-
ingly, the performance measure we consider throughout the
paper is Psuccess: the probability that the encoding of the
two-field entry fits in L bits. That is, we seek a uniquely
decodable encoding function that on some entries is allowed to
declare encoding failure, but does so with the lowest possible
probability for the source distributions. We emphasize that
we do not allow decoding errors, and all entries that succeed
encoding are recovered perfectly at read time.

Maximizing Psuccess is trivial when we encode the two
fields jointly by a single code: we simply take the 2L highest
probabilities in the product distribution of the two fields, and
represent each of these pairs with a codeword of length L.
However, this solution has prohibitive cost because it requires
a dictionary with size quadratic in the support of the individual

1In a field we refer to a part of the information of an entry rather than to
an algebraic field.
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distributions. For example, if each field takes one of 1000
values, we will need a dictionary of order 106 in the trivial
solution. To avoid the space blow-up, we restrict the code to
use dictionaries of sizes linear in the distribution supports.
The way to guarantee linear dictionary sizes is by composing
the entry code from two codes for the individual fields. Our
task is to find two codes for the two fields, such that when
the two codewords are placed together in the width-L word,
the entry fields can be decoded unambiguously. The design
objective for the codes is to maximize Psuccess: the probability
that the above encoding of the entry has length of at most
L bits. We first show by example that Huffman coding is
not optimal for this design objective. Consider a data entry
with two fields, where the value of the first field is one
of 5 possible source elements {a, b, c, d, e}, and where the
value of the second field is one of 3 elements {x, y, z}.
The distributions on these elements are given in the two
left columns of Table I.(A)–(B); the values of the two fields
are drawn independently. We encode the two fields using
two codes σ1, σ2, whose encoders are specified in the right
columns of Table I.(A)–(B), respectively. The codewords of
σ1, σ2 are concatenated, and this encoding needs to be stored
in the memory word. Table I.(C) enumerates the 5 · 3 = 15
possible entries (combinations of values for the two fields), and
for each gives its probability, its encoding, and the encoding
length. The rightmost column of Table I.(C) indicates whether
the encoding succeeds to fit in L = 4 bits (

√
), or not (−). The

success probability of the pair of codes (σ1, σ2) is the sum of
all probabilities in rows marked with

√
. This amounts to

Psuccess = 0.20 + 0.12 + 0.08 + 0.15 + 0.09 + 0.06

+ 0.08 + 0.048 + 0.032 + 0.04 + 0.03 = 0.93.

It can be checked that the codes (σ1, σ2) with their above-
specified encoders give better Psuccess than the success prob-
ability of the respective Huffman codes, which equals 0.78.

In the sequel we design code pairs (σ1, σ2), which together
with an encoder and decoder we call entry coding schemes.
We refer to an entry coding scheme as optimal if its encoder
maximizes Psuccess among all entry coding schemes in its
class. In the paper we find optimal coding schemes for two
classes with different restrictions on their implementation cost:
one is given in Section III and one in Section IV.

Finding codes that give optimal Psuccess cannot be done
by known compression algorithms. Also, brute-force search
for an optimal code has complexity that grows exponentially
with the number of source elements. Even if we consider only
monotone encoders – those which assign codewords of lengths
non-increasing with the element probabilities – we can show
that the number of codeword-length combinations for a prefix
code grows asymptotically as at least ρn, for ρ , 3

√
2 and

n elements. The infeasibility of code search motivates the
study in this paper toward devising efficient polynomial-time
algorithms for finding optimal fixed-width codes.

For the case of entries with d = 2 fields, this paper
solves the problem of optimal fixed-width compression. We
present an efficient algorithm that takes any pair of element
distributions and an integer L, and outputs an entry encoder

TABLE I. EXAMPLE OF ENCODING FOR TWO FIELDS. I(A) AND I(B)
LIST ENTRY DISTRIBUTIONS OF THE TWO FIELDS, AND THE TWO CODES
σ1 AND σ2 CHOSEN FOR THEM. I(C) LISTS ALL COMBINATIONS OF

VALUES FROM THE TWO FIELDS, THEIR ENCODING USING THE
CONCATENATION (σ1, σ2), AND THE ENCODING LENGTHS. SPACES ARE

PRESENTED FOR CONVENIENCE, IN REAL MEMORY THE CODEWORDS ARE
CONCATENATED WITHOUT SPACES AND WITH TRAILING ZEROS IF

NEEDED.

(A) First field with code σ1
Element Prob. codeword
a 0.4 00
b 0.3 01
c 0.16 10
d 0.08 110
e 0.06 111

(B) Second field with code σ2
Element Prob. codeword
x 0.5 0
y 0.3 10
z 0.2 11

(C) Possible entries encoded by the encoding function Σ = (σ1, σ2)

Entry Prob. Encoding Width Width ≤ (L = 4)
(a, x) 0.20 00 0 3

√

(a, y) 0.12 00 10 4
√

(a, z) 0.08 00 11 4
√

(b, x) 0.15 01 0 3
√

(b, y) 0.09 01 10 4
√

(b, z) 0.06 01 11 4
√

(c, x) 0.08 10 0 3
√

(c, y) 0.048 10 10 4
√

(c, z) 0.032 10 11 4
√

(d, x) 0.04 110 0 4
√

(d, y) 0.024 110 10 5 -
(d, z) 0.016 110 11 5 -
(e, x) 0.03 111 0 4

√

(e, y) 0.018 111 10 5 -
(e, z) 0.012 111 11 5 -

with optimal Psuccess. The encoder has the unique-decodability
property, and requires a dictionary whose size equals the sum
of the element counts for the two fields. We also solve the
problem for the more restrictive setup in which the same code
needs to be used for both fields. This setup is motivated by
systems with a more restricted memory budget, which cannot
afford implementing two different encoding/decoding maps
(and dictionaries) for the two fields. For both setups finding
optimal codes is formulated as efficient dynamic-programming
algorithms building on decompositions of the problems to
smaller problems. As a building block, our solutions make
use of properly designed prefix codes (codes in which no
codeword is a prefix of another codeword), as well as other
(non-prefix) types of codes.

Fig. I shows an illustration of a plausible realization of
fixed-width compression in a networking application. First,
Fig. I(a) illustrates the write operation where the entry is
encoded and is written to a word in the fast SRAM memory if
the encoded entry has a length of at most L bits. Otherwise, it
is stored in the slow DRAM memory. Fig. I(b) shows the read
operation where the encoded data is first searched in the fast
SRAM memory. If it is not found, the slow DRAM memory
is also accessed after the word index is translated.

Paper organization: In Section II, we present the for-
mal model for the problem of compression for fixed-width
memories. Setting up the problem requires some definitions
extending classical single-source compression to 2 sources
modeling the d = 2 fields in the entry. Another important
feature in Section II is the notion of an encoder that is
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Fig. 1. A plausible realization of a memory system with fixed-width compression. It includes a fast fixed-width (e.g., SRAM) memory with words of L bits,
and an additional slower (e.g. DRAM) memory. Entries that can be encoded within L bits are stored in the fast memory while other entries are stored in the
slow memory without the width limit. The encoding and decoding are performed based on the designed code pair (σ1, σ2).

allowed to fail on some of the input pairs. In Section III we
derive an algorithm for finding an optimal coding scheme for
fixed-width compression with d = 2 fields. The algorithm
is composed of two main pieces: 1) an algorithm finding an
optimal prefix code for the first field given the code for the
second field, and 2) a code for the second field that is optimal
for any code used in the first field. For the second field, it turns
out that the code needs not be a prefix code, but it does need
to satisfy a property which we call padding invariance. Next,
in Section IV we study the special case where the two fields of
an entry need to use the same code. The restriction to use one
code renders the algorithm of Section III useless for this case.
Hence we develop a completely different decomposition of
the problem that can efficiently optimize a single code jointly
for both fields. In Section V we present empirical results
showing the success probabilities of the optimal codes for
different values of the memory width L. The results show
some significant advantage of the new codes over Huffman
coding. In addition, they compare the performance of the
schemes using two codes (Section III) to those that use a single
code (Section IV). Finally, Section VI summarizes our results
and discusses directions for future work.

Relevant prior work: There have been several extensions
of the problem solved by Huffman coding that received atten-
tion in the literature [5]–[10]. These are not directly related
to fixed-width memories, but they use clever algorithmic
techniques that may be found useful for this problem too.
The notion of fixed-width representations is captured by the
work of Tunstall on variable-to-fixed coding [11], but without
the feature of multi-field entries. The problem of fixed-width
coding is also related to the problem of compression with
low probability of buffer overflow [12], [13]. However, to the
best of our knowledge the prior work only covers a single
distribution and an asymptotic number of encoding instances
(in our problem the number of encoding instances is a fixed d).
The most directly related to the results of this paper is our prior
work [14] considering a combinatorial version of this problem,
where instead of source distributions we are given an instance
with element pairs. This combinatorial version is less realistic
for applications, because a new code needs to be designed
for any particular instance of element pairs stored in the
memory. More broadly, there is a great recent interest in size
reduction of tables in Software-Defined Networking (SDN)
applications. For example, memory-efficient representations of
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routing tables is a topic of particular interest [17]–[20].

II. TERMINOLOGY

In this section, we present the model definitions upon
which we cast the formal problem formulation. Throughout
the paper we assume that data placed in the memory come
from known distributions, as defined in the following. Together
with the allowed memory width, these distributions serve
as the input to the code design. We also define the entry
encoding and decoding functions as the components of two-
field entry coding schemes. Lastly, we define the encoding
success probability which is the design objective we consider
along the paper, under various requirements on the encoding
function.

Definition 1 (Element Distribution). An element distribution
(S, P ),((s1, . . . , sn), (p1, . . . , pn)) is characterized by an
(ordered) set of elements with their corresponding positive
appearance probabilities. An element of S is drawn randomly
(and independently between drawings) according to the distri-
bution P , i.e., Pr (a = si) = pi, with pi > 0 and Σni=1pi = 1.

Throughout the paper we assume that the elements si
are ordered in non-increasing order of their corresponding
probabilities pi. Given an element distribution, a variable-
length code σ, which we call code for short, is a set of
binary codewords of different lengths in general. The number
of codewords in σ is denoted |σ|, and for b ∈ σ the codeword
length as a binary string is denoted `(b). For a code σ we
define the monotone encoder function ~σ(·) mapping si to the
i-th shortest codeword in σ, where ties between codewords
are broken lexicographically. The monotone decoder function
~σ−1(·) is simply the inverse mapping of ~σ(·) from codewords
of σ to the si elements.

In this paper we are interested in coding data entries
composed of element pairs, so we extend Definition 1 to
distributions of two-element data entries. For short, we refer
to a data entry simply as an entry.

Definition 2 (Entry Distribution). An entry
distribution D,[(S1, P1), (S2, P2)],

[
((s1,1, . . . , s1,n1),

(p1,1, . . . , p1,n1)), ((s2,1, . . . , s2,n2), (p2,1, . . . , p2,n2))
]

is a
juxtaposition of two element distributions. Each field in an
entry is drawn randomly and independently according to
its corresponding distribution in D, i.e., P (a1 = s1,i, a2 =
s2,i) = P (a1 = s1,i) · P (a2 = s2,i) = p1,i · p2,i, with
p1,i, p2,i > 0. The numbers of possible elements in the first
and second field of an entry are n1,|S1| and n2,|S2|,
respectively.

Example 1. The entry distribution of the two fields illustrated
in Table I can be specified as D = [(S1, P1), (S2, P2)] =[
((a, b, c, d, e), (0.4, 0.3, 0.16, 0.08, 0.06)), ((x, y, z),

(0.5, 0.3, 0.2))
]
.

Once we have defined the distributions governing the cre-
ation of entries, we can proceed to definitions addressing the
encoding of such entries. In all our coding schemes, entries are

encoded to bit strings of fixed length L (possibly with some
padding), where L is a parameter equal to the width of the
memory in use. An entry coding scheme is defined through
its encoding function.

Definition 3 (Entry Encoding Function). An entry encoding
function Σ is a mapping Σ : (S1, S2)→ {0, 1}L∪{⊥}, where
{0, 1}L is the set of binary vectors of length L, and ⊥ is a
special symbol denoting encoding failure.

The input to the encoding function are two elements, one
for field 1 taken from S1, and one for field 2 taken from S2.
In successful encoding, the encoder outputs a binary vector of
length L to be stored in memory, and this vector is obtained
uniquely for this input entry. The encoding function is allowed
to fail, in which case the output is the special symbol ⊥. When
the encoding function fails, we assume that an alternative
representation is found for the entry, and stored in a different
memory not bound to the width-L constraint. This alternative
representation is outside the scope of this work, but because
we know it results in higher cost (in space and/or in time),
our objective here is to minimize the failure probability of
the encoding function. Before we formally define the failure
probability, we give a definition of the decoding function
matching the encoding function of Definition 3.

Definition 4 (Entry Decoding Function). An entry decoding
function Π is a mapping Π : {0, 1}L → (S1, S2), such that if
Σ(a1, a2) = b 6=⊥, then Π(b) = (a1, a2).

The definition of the decoding function is straightforward: it
is the inverse mapping of the encoding function when encoding
succeeds. With encoding and decoding in place, we turn to
define the important measure of encoding success probability.

Definition 5 (Encoding Success Probability). Given an entry
distribution D = [(S1, P1), (S2, P2)] and an entry encoding
function Σ, define the encoding success probability as

Psuccess(D,Σ),Pr(Σ(a1, a2) 6=⊥), (1)

where the probability is calculated over all pairs of (a1, a2)
from (S1, S2) according to their corresponding probabilities
(P1, P2).

Concluding this section, we define an entry coding scheme
as a pair of an entry encoding function Σ and a matching entry
decoding function Π, meeting the respective definitions above.
Our principal objective in this paper is to find entry coding
schemes that maximize the encoding success probability given
the entry distribution and the output length L.

III. OPTIMAL EFFICIENT ENTRY CODING

In this section we develop a general entry coding scheme
that yields optimal encoding success probability among a class
of entry coding schemes with efficient encoding and decoding.
The efficiency of the coding schemes we seek in the paper is
defined next.

Definition 6 (Efficient Entry Coding Scheme). An entry
coding scheme is called efficient if its encoding function Σ
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and decoding function Π are limited to use O(n1 +n2) space
to store the mappings.

Limiting the encoding and decoding function to use O(n1+
n2) space mappings avoids “blowing up” the space require-
ment as a result of joining two fields in an entry. In particular,
it excludes a practically infeasible solution of joining the
two fields into one product code with an O(n1 · n2)-space
dictionary (when n1, n2 are ∼ 100 each, n1 · n2 becomes
a significant amount of costly fast memory to deploy). To
guarantee O(n1+n2) space, we define an entry coding scheme
in the sequel using a pair of codes: σ1 for S1, σ2 for S2,
each using its own O(n1), O(n2) dictionary. Our objective
is that σ1 and σ2 are chosen such that jointly they maximize
the encoding success probability of the entry coding scheme.
We further restrict ourselves to entry coding schemes we call
monotone, as defined next. We subsequently show that this
restriction is without loss of optimality.

Definition 7 (Monotone Entry Coding Scheme). An entry
coding scheme with |S1| = n1, |S2| = n2 employing a pair
of codes (σ1, σ2) with sizes n′1 ≤ n1, n′2 ≤ n2 is called
monotone if its entry encoding function is

Σ(a1, a2)


� (~σ1(a1), ~σ2(a2)), if a1 ∈ {s1,1, . . . , s1,n′1}

and a2 ∈ {s2,1, . . . , s2,n′2}
=⊥, otherwise

(2)

where x � (y1, y2) means that each of y1, y2 appears in x
as a sub-string. Recall that ~σ1(a1), ~σ2(a2) are the monotone
encoders defined in Section II and ⊥ is a special symbol
denoting encoding failure.

In words, a monotone entry coding scheme employing the
codes (σ1, σ2) uses their monotone encoders (~σ1, ~σ2), and
their codewords are mapped to the first n′1, n′2 elements in
S1, S2, respectively. We next prove the intuitive fact that using
monotone encoders (~σ1, ~σ2) in the entry encoding function is
without loss of optimality.

Proposition 1. For any entry encoding function Σ employing a
pair of codes (σ1, σ2) with their encoders σ̃1(·), σ̃2(·), Psuccess

is maximized when (i) for t ∈ {1, 2}, the codewords of σt are
assigned to the first n′t elements of St. (ii) for t ∈ {1, 2}, the
inequality i < i′ implies that `(σ̃t(st,i)) ≤ `(σ̃t(st,i′)) for two
elements st,i, st,i′ ∈ St.

Proof: We show how to convert any Σ employing (σ1, σ2)
to one using monotone encoders on the first elements of
S1, S2, without reducing Psuccess. For t ∈ {1, 2} consider
two arbitrary indices i, i′ that satisfy i < i′; then necessarily
pt,i ≥ pt,i′ . If codewords are assigned to the two elements and
`(σ̃t(st,i)) > `(σ̃t(st,i′)), we can exchange the codewords of
st,i, st,i′ in the mapping. With this change, an entry (a1, a2)
with at = st,i is encoded successfully after the change if the
corresponding entry with at = st,i′ was encoded successfully
before the change. Then, we deduce that such a change cannot
decrease Psuccess, showing that monotone encoders maximize
Psuccess. In addition, if the domain of σ̃t(·) is not taken as the

first n′t elements of St, then we can replace st,i′ by st,i, i < i′

without reducing Psuccess.
Not emphasized in Definition 7, but crucial for the optimal

entry coding schemes coming next, is the use of codes
σ1, σ2 with potentially fewer codewords than the respective
element-set sizes |S1|, |S2|. This is necessary for optimality,
as not assigning codewords to the lowest-probability elements
may be beneficial to Psuccess by allowing higher-probability
elements to be assigned shorter codewords.

A. Uniquely decodable entry encoding
The requirement from the decoding function to invert the

encoding function for all successful encodings implies that
the encoding function must be uniquely decodable, that is,
that any encoder-output bit-vector b represents a unique entry
(a1, a2). In efficient entry coding schemes our way to achieve
unique decodability is by requiring the code σ1 to be a prefix
code, thereby allowing the entry decoding function to “parse”
the vector b to its two parts. We next recall the definition of
prefix codes.

Definition 8 (Prefix Code). A code σ is called a prefix code
if in its codeword set no codeword is a prefix (start) of any
other codeword.

Thanks to using a prefix code for S1, the decoder can read
the length-L vector b from left to right and unequivocally find
the last bit representing a1, and in turn the remaining bits
representing a2 (plus some potential padding). Hence in the
remainder of the section we restrict the entry coding schemes
to have a constituent prefix code for their first field. This
restriction of the encoder to be prefix is reminiscent of the
classical result in information theory by Kraft-McMillan [15]
that prefix codes are sufficient for optimal fixed-to-variable
uniquely decodable compression. In our case we cannot prove
that entry coding schemes with prefix σ1 are always sufficient
for optimality, but we also could not find better coding
schemes without prefix σ1 that still attain the O(n1+n2)-space
efficiency. To be formally correct, we call an entry coding
scheme optimal in this section if it has the maximum success
probability among coding schemes whose first code is prefix.

Unique decodability requires the second-field code σ2 to
have a weaker property than prefix, which we call padding
invariance.

Definition 9 (Padding-Invariant Code). A code σ is called a
padding-invariant code if after eliminating the trailing (last)
zero bits from its codewords (possibly including the empty
codeword ∅ of length 0), |σ| distinct binary vectors are
obtained.

Example 2. Consider the following codes:
σ = {0, 11, 100, 101}, σ′ = {∅, 1, 110} and σ′′ = {1, 10, 00}.
The code σ is a prefix code since none of its codewords is
a prefix of another codeword. It is also a padding-invariant
code since after eliminating the trailing zeros, the four
distinct codewords ∅ (the empty codeword), 11, 1 and 101
are obtained. While σ′ is also a padding-invariant code (the
codewords ∅, 1, 11 are distinct), it is not a prefix code since
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1 is a prefix of 110 and ∅ is a prefix of 1 and 110. The
code σ′′ is neither a prefix code (1 is a prefix of 10) nor
a padding-invariant code (the codeword 1 is obtained after
eliminating the trailing zero bits of 1 and 10).

It is easy to see that in any padding-invariant code we can
remove the trailing zeros from all codewords and remain with
a padding-invariant code of the same size (and codewords
not longer than in the original code). Hence without loss
of generality we can assume that there are no trailing zeros
in a padding-invariant code. We now show how a prefix
code σ1 and a padding-invariant code σ2 are combined to
obtain a uniquely-decodable entry encoding function. The
following is not yet an explicit construction, but rather a
general construction method we later specialize to obtain an
optimal construction.

Construction 0. Let σ1 be a prefix code and σ2 be a padding-
invariant code. The vector b,Σ(a1, a2) output by the entry
encoding function Σ = (σ1, σ2) is defined as follows. The
vector b is formed by concatenating ~σ2(a2) to the right of
~σ1(a1), and if needed, padding the resulting binary vector with
zeros on the right to get L bits total. If the concatenated two
codewords exceed L bits before padding, the entry encoding
function returns ⊥.

We show that because σ1 is a prefix code while σ2 is
a padding-invariant code (not necessarily prefix), the entry
encoding function of Construction 0 is uniquely decodable.
It is easy to see also that padding invariance of the second
code is necessary to guarantee that. We use the symbol of ·
to represent the concatenation operator of two strings.

Property 1. Let Σ = (σ1, σ2) be an entry encoding function
specified by Construction 0. Let x,(x1, x2), y,(y1, y2) be two
entries composed of elements x1, y1 ∈ S1, x2, y2 ∈ S2. Let
Σ(x),~σ1(x1) · ~σ2(x2) · 0 · . . . · 0 and Σ(y),~σ1(y1) · ~σ2(y2) ·
0 · . . . · 0 be the two length-L vectors output by the entry
encoding function Σ. If Σ(x) = Σ(y), then necessarily x = y,
i.e., x1 = y1, x2 = y2.

To show the correctness of this property, we prove that the
decoding of an encoded entry is unique.

Proof: We first observe that there is a single element
u1 ∈ S1 whose encoding ~σ1(u1) is a prefix of Σ(x) = Σ(y).
Assume the contrary, and let u, u′ ∈ S1 be two (distinct)
elements such that ~σ1(u) and ~σ1(u′) are both prefixes of
Σ(x) = Σ(y). It then follows that either ~σ1(u) is a prefix
of ~σ1(u′) or ~σ1(u′) is a prefix of ~σ1(u). Since u 6= u′ and
σ1 is a prefix code, both options are impossible, and we
must have that there is indeed a single element u1 ∈ S1

whose encoding ~σ1(u1) is a prefix of Σ(x) = Σ(y). Thus
necessarily ~σ1(x1) = ~σ1(y1) and x1 = y1. By eliminating
the first identical bits that represent ~σ1(x1) = ~σ1(y1) from
Σ(x) = Σ(y), we are left with the encoding of the second
field, possibly including trailing zero bits. By the properties
of the padding-invariant code σ2, it has a single element that
maps to the bits remaining after eliminating some trailing
zero bits. We identify this codeword as ~σ2(x2) = ~σ2(y2), and
deduce the only possible element x2 = y2 of this field that

has this codeword.
To decode an encoded entry composed of the encodings

~σ1(x1), ~σ2(x2), possibly with some padded zero bits, a de-
coder can simply identify the single element (u1 = x1) ∈ S1

whose encoding ~σ1(u1 = x1) is a prefix of the encoded entry.
As σ1 is a prefix code, there cannot be more than one such
element. The decoder can then identify the beginning of the
second part of the encoded entry, remove all trailing zeros,
and get x2 by invoking ~σ−12 (·).

Toward finding an entry coding scheme with maximal
encoding-success probability, we would now like to find codes
σ1 and σ2 for Construction 0 that are optimal given an entry
distribution D and the output length L. Since the direct joint
computation of optimal σ1 and σ2 codes is difficult (and
requires exponential complexity for brute-force search), we
take a more indirect approach to achieve optimality. 1) we
first derive an efficient algorithm to find an optimal prefix code
for S1 given a code for S2, and then 2) we find a (padding-
invariant) code for S2 that is universally optimal for any code
used for S1. This way we reduce the joint optimization of
σ1, σ2 (hard) to a conditional optimization of σ1 given σ2
(easier). We prove that this conditionally optimal σ1 is also
unconditionally optimal. To do so, we show that the code σ2
assumed in the conditioning is optimal for any choice of σ1.
These two steps are detailed in the next two sub-sections, and
later used together to establish an optimal coding scheme.

B. An optimal prefix code for S1 conditioned on a code for
S2

Our objective in this sub-section is to find a prefix code σ1
that maximizes the encoding success probability given a code
σ2 for the second field. We show constructively that this task
can be achieved with an efficient algorithm.

We denote Wt, dlog2(nt)e for t ∈ {1, 2} and W,W1 +
W2. Finding an optimal coding scheme when L ≥W is easy.
In that case we could allocate W1 bits to σ1 and W2 bits to
σ2 and apply two independent fixed-length codes with a total
of W bits and obtain a success probability 1. Thus we focus
on the interesting case where L ≤W − 1.

Given a code σ2 = σ for S2, we show a polynomial-time
algorithm2 that finds an optimal conditional prefix code σ1
for S1. This code σ1 will give an entry encoding function
maximizing the probability Psuccess(D,Σ = (σ1, σ2 = σ))
given σ2 = σ, when σ1 is restricted to be prefix. Then, we
also say that Σ = (σ1, σ2) with its corresponding decoding
function Π is an optimal conditional coding scheme.

To build the code σ1 we assign codewords to n′1 elements of
S1, where n′1 ≤ n1. Clearly, all such codewords have lengths
of at most L bits. Recall that the length of a binary string
x is denoted `(x). Since for every element a ∈ S1 which is
assigned a codeword, the code σ1 satisfies `(~σ1(a)) ≤ L, it
holds that 2−`(~σ1(a)) must be an integer multiple of 2−L. We
define the weight of a codeword of length `0 as the number of
units of 2−L in 2−`0 , denoted by N`0,2−`0/2−L = 2L−`0 .
The n1 − n′1 elements of S1 not represented by σ1 are said

2An analysis of the algorithm complexity is provided later.
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to have length `0,L+ 1. This symbolic value means that
entries with such elements cannot be encoded successfully,
and accordingly they have a codeword weight of zero. A prefix
code exists with prescribed codeword lengths if they satisfy
Kraft’s inequality [16]. In our terminology, this means that the
sum of weights of the codewords of σ1 need to be at most 2L.

Definition 10. For k ∈ [0, n1], consider entries composed
of an element from the first k elements of S1 (i.e., highest
probability elements of S1), and an arbitrary element of S2.
For N ∈ [0, 2L] and k ∈ [0, n1], we denote by F (k,N)
the maximal sum of probabilities of such entries that can be
encoded successfully by a prefix code σ1 whose sum of weights
for the first k codewords is at most N . Formally,

F (k,N), max
σ1:
(∑k

j=1N`(~σ1(s1,j))
≤N

)
(

k∑
i=1

n2∑
j=1

p1,i·p2,j · I
[
`(~σ1(s1,i)) + `(~σ2(s2,j)) ≤ L

])
, (3)

where I[·] is the indicator function. Note that F (k,N) depends
on the conditioned σ2, but we keep this dependence implicit
to simplify notation.

The following theorem relates the maximal success prob-

Algorithm 1: Optimal Conditional Prefix Code
input : Entry distribution D, memory width L, code σ2
output: Conditionally optimal prefix code σ1
initialization:
foreach N ∈ [0, 2L] do
F (k = 0, N) := 0, Q(k = 0, N) :=

()
;

foreach N ∈ [−2L,−1], k ∈ [0, n1] do F (k,N) := −1 ;
intermediate solutions:
for k = 1 : n1 do
for N = 0 : 2L do

F (k,N):= max

(
max`0∈[1,L]

(
F (k − 1, N −N`0) +

p1,k ·
∑n2

i=1 p2,i · I
[
`0 + `(~σ2(s2,i)) ≤

L
])

, F (k − 1, N)

)
if outer max attained by first argument then
Q(k,N):=(Q(k − 1, N −N`∗0 ), `∗0), where `∗0 is the
`0 that attains the inner max

else
Q(k,N):=(Q(k − 1, N), L+ 1)

end
end

end
Calculate prefix code σ1 based on codeword lengths
given by Q(k = n1, N = 2L)
output results:
Encoding success probability
Psuccess:=F (k = n1, N = 2L)
Optimal conditional prefix code σ1

ability of a conditional coding scheme and the function
F (k,N).

Theorem 2. The maximal encoding success probability of a
conditional entry coding scheme is given by

max
σ1

Psuccess(D,Σ = (σ1, σ2 = σ2)) = F (k = n1, N = 2L).

Proof: To satisfy Kraft’s inequality we should limit the
sum of weights N to 2L. In addition, the success probability of
the coding scheme with an encoding function Σ is calculated
based on entries with any of the n1 elements of S1.

We next show how to compute F (k,N) efficiently for all
k,N , in particular for k = n1, N = 2L that yield the optimal
conditional σ1. To do that, we use the following recursive
formula for F (k,N). First note the boundary cases F (k =
0, N) = 0 for N ≥ 0 and F (k,N) = −1 for N < 0 (this
means an invalid code). We can now present the formula of
F (k,N) that calculates its values for k based on the values
of the function for k − 1 and N ′ ≤ N .

Lemma 3. The function F (k,N) satisfies for N ≥ 0, k ≥ 1

F (k,N) = max

(
max
`0∈[1,L]

(
F (k − 1, N −N`0)+

p1,k ·
n2∑
i=1

p2,i·I
[
`0 + `(~σ2(s2,i)) ≤ L

])
, F (k − 1, N)

)
.

(4)

Proof: The optimal code that attains F (k,N) either
assigns a codeword to s1,k or does not. The two arguments
of the outer max function in (4) are the respective success
probabilities for these two choices. In the former case we
consider all possible lengths of the codeword of s1,k. A
codeword length of `0 reduces the available sum of weights for
the first k−1 elements by N`0 = 2L−`0 . In addition, an entry
(s1,k, s2,i) contributes to the success probability the value
p1,k · p2,i if its encoding width (given `0) is at most L. In the
latter case the kth element does not contribute to the success
probability and has no weight, hence F (k,N) = F (k− 1, N)
in this case.

Finally, the pseudocode of the dynamic-programming al-
gorithm that finds the optimal conditional code based on the
above recursive formula is given in Algorithm 1. It iteratively
calculates the values of F (k,N). It also uses a vector Q(k,N)
to represent the codeword lengths for the first at most k
elements of S1 in a solution achieving F (k,N).

Time Complexity: By the above description, there are n1
iterations and in every iteration O(2L) values are calculated,
each by considering O(L) sums of n2 elements. It follows that
the time complexity of the algorithm is O(n1 · 2L · L · n2) =
O(n21 · n22 · L), which is polynomial in the size of the input.
The last equality follows from the fact that L < dlog2(n1)e+
dlog2(n2)e in a non-trivial instance where some entries fail
encoding.

C. A universally optimal code for S2

We now develop the second component required to com-
plete an unconditionally optimal entry coding scheme: a code
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for the S2 elements that is optimal for any code σ1 used for
the S1 elements.

The optimality of the code to be specified for S2 will be
established by showing that it attains the following upper
bound on the success probability.

Proposition 4. Given any code σ1, the encoding success
probability of any entry encoding function is bounded from
above as follows.

Psuccess ≤
n′1∑
i=1

p1,i

2L−`(~σ1(s1,i))∑
j=1

p2,j , (5)

where n′1 is the highest index of an element s1,i that is assigned
a codeword by σ1.

Proof: First by the monotonicity property proved in
Proposition 1, the codewords of σ1 are assigned to elements
s1,i with indices i ∈ {1, . . . , n′1}, for some n′1 ≤ n1. Hence
for indices greater than n′1 the success probability is identically
zero. Given an element s1,i with a σ1 codeword of length `i, at
most 2L−`i elements of S2 can be successfully encoded with
it in an entry. So the inner sum in (5) is the maximal success
probability given s1,i. Summing over all i and multiplying by
p1,i gives the upper bound.

It turns out that there exists a padding-invariant code σ̂2 that
attains the upper bound of Proposition 4 with equality for any
code σ1. Let σ̂2 be the code with n2 codewords where the
j-th codeword is the shortest binary representation of j − 1
for j ≥ 2, and ∅ for j = 1. The binary representation is put
in the codeword from left to right, least-significant bit (LSB)
first. Then we have the following.

Proposition 5. Given any code σ1, the encoding success
probability of σ̂2 is

Psuccess =

n′1∑
i=1

p1,i

2L−`(~σ1(s1,i))∑
j=1

p2,j , (6)

where n′1 is the highest index of an element s1,i that is assigned
a codeword by σ1.

Proof: If the codeword of σ1 uses ` bits, there are L− `
bits left vacant for σ2. The mapping specified for σ̂2 allows
encoding successfully the first 2L−` elements of S2, which
gives the stated success probability.

In particular, when the encoding of σ1 has length L, the
single element s2,1 is encoded successfully by the empty
codeword ∅. Other examples are the two codewords (∅, 1)
when ` = L − 1, and the four codewords (∅, 1, 01, 11)
when ` = L − 2. It is clear that the code σ̂2 is padding
invariant, because its codewords are minimal-length binary
representations of integers. Now we are ready to specify the
optimal entry coding scheme in the following.

Construction 1. Given L and D, let σ̂1 be the prefix code
obtained by applying Algorithm 1 on the code σ̂2. Then the
entry encoding function Σ̂ = (σ̂1, σ̂2) is defined by applying
Construction 0 on σ̂1, σ̂2.

Algorithm 2:
input : Entry distribution D, memory width L
output: Optimal entry coding scheme
calculation:
Calculate padding invariant code σ2:=σ̂2 by assigning the
n2 elements the codewords that correspond to [0, n2 − 1]
Calculate prefix code σ1 by Algorithm 1 given the code
σ2
output results:
An optimal entry coding scheme with an encoding
function Σ = (σ1, σ2)

Theorem 6. For any entry distribution D and a memory width
L, Construction 1 gives an optimal entry coding scheme, that
is, a coding scheme that maximizes the success probability
among all uniquely-decodable coding schemes with a prefix
code in the first field.

From Theorem 6 we can readily obtain an efficient algo-
rithm finding an optimal two-field entry encoding, which is
given in Algorithm 2.

For the special case when σ2 is σ̂2, the recursive formula
for the calculation of the function F (k,N) can be simplified
as follows.

Lemma 7. When σ2 is σ̂2, the function F (k,N) satisfies for
N ≥ 0, k ≥ 1

F (k,N) = max

(
max
`0∈[1,L]

(
F (k − 1, N −N`0)

+p1,k·
min(n2,2

L−`0 )∑
i=1

p2,i

)
, F (k − 1, N)

)
. (7)

It is easily seen that (7) is obtained from (4) by replacing
the indicator function with the partial sum that accommodates
all the S2 elements that have a short enough representation to
fit alongside the S1 element.

The following example illustrates Construction 1 on the
entry distribution from the Introduction.

Example 3. Consider the entry distribution
D,

[
((a, b, c, d, e), (0.4, 0.3, 0.16, 0.08, 0.06)), ((x, y, z),

(0.5, 0.3, 0.2))
]

from Table I with n1 = 5, n2 = 3. The width
parameter is L = 4. For the ordered set S2 = (x, y, z),
we select the code σ̂2 by mapping s2,1 to ∅ and s2,j
(for j = 2, 3) to the shortest binary representation of
j − 1. Then, ~̂σ2(x) = ∅, ~̂σ2(y) = 1, ~̂σ2(z) = 01 and
`(~̂σ2(x)) = 0, `(~̂σ2(y)) = 1, `(~̂σ2(z)) = 2. The code σ̂2
is a padding-invariant code. To get the prefix code σ̂1, we
apply Algorithm 1 on the code σ̂2. We recursively calculate
the values of F (k,N) and Q(k,N) for k ∈ [1, n1 = 5],
N ∈ [0, 2L = 16]. In particular, for each value of k the values
are calculated based on the previous value of k. The values
are listed in Table II. Each column describes a different value
of k. (Whenever values of F and Q are not shown, a specific



9

value of N does not improve the probability achieved for a
smaller value of N in the same column.) The value of N
implies a restriction on the values of the codeword lengths. If
the lengths of the codewords are described by a set Q, they
must satisfy Σ`∈Q2−`/2−L ≤ N , i.e., Σ`∈Q2−` ≤ N/16.

We first explain the values for k = 1, considering the
contribution to the success probability of data entries with
a ∈ S1 as the first element. This happens w.p. p1,1 = 0.4.
For N = 1 we must have Q(1, 1) = (4), i.e., the element a is
assigned a codeword of length 4. Then, there is a single pair
(a, x) that can be encoded successfully and Psuccess given
by F (1, 1) is 0.4 · 0.5 = 0.2. Likewise, for N = 2, we
can have a codeword of length 3 for a and the two pairs
(a, x), (a, y) can be encoded within L = 4 bits, such that
F (1, 2) = 0.4 · (0.5 + 0.3) = 0.32. If N = 3 we cannot
further decrease the codeword length and improve the success
probability. For N = 4 we can have a codeword length of
2 bits, as described by Q(1, 4) = (2). This enables encoding
successfully the three pairs (a, x), (a, y), (a, z) with a success
probability of 0.4 as given by F (1, 4). The values for larger
values of k are calculated in a similar manner based on the
recursive formulas. The optimal codeword lengths for σ̂1 are
given by Q(k = n1 = 5, N = 2L = 16) = (2, 2, 2, 3, 3). This
enables to encode successfully all pairs except (d, z), (e, z),
achieving Psuccess = 0.972 as given by F (k = 5, N = 16).

Finally, by applying Construction 0 on σ̂1, σ̂2 we obtain the
entry encoding function Σ̂ = (σ̂1, σ̂2).

Non-binary alphabet: While the scheme was presented for
the binary case, it can be easily generalized to any (finite) α-
ary alphabet A. Clearly the assumption on the monotonicity
of the codes applies also here. The construction of the scheme
is similar. Consider for instance an alphabet with the symbols
0, 1, 2. First we can design a padding-invariant code for the
second field. The code has the codewords ∅, 1, 2, 01, 11,
21, 02, 12, 22, 001, etc, which are simply given by the
representation with the alphabet of the integer numbers as
for the binary case. Then, we can derive a conditionally
optimal code for the first field. This can simply rely on
a generalization of the Kraft’s inequality for a non-binary
alphabet, saying that there exists a set of prefix-free codewords
of lengths `1, `2, . . . , `n in the alphabet A if the inequality∑n
i=1 α

−`i ≤ 1 holds. By defining the weight of a codeword
of length `0 as NA

`0
, αL−`0 , we can apply the dynamic-

programming algorithm in Algorithm 1 for finding the optimal
conditional code for the first field, allowing a maximal total
weight of N = αL.

IV. OPTIMAL ENTRY CODING WITH THE SAME CODE
FOR BOTH FIELDS

In this section we move on to study the problem of entry
coding schemes for the special case where we require that
both fields use the same code. The coding scheme from
Section III used two codes, one for each of the fields.
Moving to use the same code for both fields has several
motivations. First, it reduces the implementation complexity
by approximately halving the space required to store the
encoding and decoding maps (dictionaries). For example, in

TABLE II. THE VALUES OF F (k,N) (TOP OF EACH PAIR IN THE
TABLE) AND Q(k,N) (BOTTOM) FOR k ∈ [1, n1 = 5], N ∈ [0, 2L = 16]
FOR EXAMPLE 3 WITH L = 4, n1 = 5, n2 = 3. THE OPTIMAL VALUE OF
Psuccess IS GIVEN BY F (5, 16) AND THE CODEWORD LENGTHS FOR σ1 BY

Q(5, 16).

k = 1 k = 2 k = 3 k = 4 k = 5
N = 0 0 0 0 0 0

(-) (-,-) (-,-,-) (-,-,-,-) (-,-,-,-,-)
N = 1 0.2 0.2 0.2 0.2 0.2

(4) (4,-) (4,-,-) (4,-,-,-) (4,-,-,-,-)
N = 2 0.32 0.35 0.35 0.35 0.35

(3) (4,4) (4,4,-) (4,4,-,-) (4,4,-,-,-)
N = 3 0.47 0.47 0.47 0.47

(3,4) (3,4,-) (3,4,-,-) (3,4,-,-,-)
N = 4 0.4 0.56 0.56 0.56 0.56

(2) (3,3) (3,3,-) (3,3,-,-) (3,3,-,-,-)
N = 5 0.64 0.64 0.64

(3,3,4) (3,3,4,-) (3,3,4,-,-)
N = 6 0.64 0.688 0.688 0.688

(2,3) (3,3,3) (3,3,3,-) (3,3,3,-,-)
N = 7 0.72 0.728 0.728

(2,3,4) (3,3,3,4) (3,3,3,4,-)
N = 8 0.7 0.768 0.768 0.768

(2,2) (2,3,3) (2,3,3,-) (2,3,3,-,-)
N = 9 0.78 0.808 0.808

(2,2,4) (2,3,3,4) (2,3,3,4,-)
N = 10 0.828 0.832 0.838

(2,2,3) (2,3,3,3) (2,3,3,4,4)
N = 11 0.868 0.868

(2,2,3,4) (2,2,3,4,-)
N = 12 0.86 0.892 0.898

(2,2,2) (2,2,3,3) (2,2,3,4,4)
N = 13 0.9 0.922

(2,2,2,4) (2,2,3,3,4)
N = 14 0.924 0.94

(2,2,2,3) (2,2,3,3,3)
N = 15 0.954

(2,2,2,3,4)
N = 16 0.94 0.972

(2,2,2,2) (2,2,2,3,3)

the optimal coding scheme from Section III the encoder needs
two different mappings from source elements to codewords,
and the decoder needs two different mappings (and efficient
lookups) to convert an encoded entry to a pair of elements.
Second, using the same code allows moving and copying
coded elements between memory words and fields without re-
coding. And third, working with one (prefix) code is natural
toward extending the scheme to more than two fields in future
work, because then the prefix property is needed in all fields
except the last one.

Throughout this section we assume that both fields have
the same distribution, but the results can be extended to the
case where a single code is sought for distinct distributions
(we comment about this extension at the closing of the
section). Formally, in this section our problem is to efficiently
design a single code σ that offers optimal encoding success
probability in a width-L memory. In the special case of a
single distribution we have an element distribution (S, P )
= ((s1, . . . , sn), (p1, . . . , pn)), and the entry distribution is
D = [(S, P ), (S, P )]. Given (S, P ), an optimal code σ will
be found for use in both fields, and σ will be a prefix code so
we can parse the two fields of the entry.

A. Observations on the problem
Before moving on to solve the problem, it will be instructive

to first understand the root difficulty in restricting both fields
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to use the same code. If we try to extend the dynamic-
programming solution of Section III to the single-distribution,
single-code case, we get the following maximization problem

F (k,N) = max
σ:
(∑k

j=1N`(~σ(sj))≤N
)
(

k∑
i=1

n∑
j=1

pi · pj · I
[
`(~σ(si)) + `(~σ(sj)) ≤ L

])
, (8)

where we adapted the expression from (3) to the case of a
single distribution and a single code. But now trying to extend
the recursive expression for F (k,N) in (4) gives

F (k,N) = max

(
max
`0∈[1,L]

(
F (k − 1, N −N`0)

+pk·
n∑
i=1

pi · I
[
`0 + `(~σ(si)) ≤ L

])
, F (k − 1, N)

)
,

(9)

which cannot be used by the algorithm because the indicator
function now depends on lengths of codewords that were not
assigned yet, namely for the elements i ∈ [k + 1, n]. So even
though we now only have a single code to design, this task is
considerably more challenging than the conditional optimiza-
tion of Section III-B. At this point the only apparent route to
solve (8) is by trying exhaustively all length assignments to S
satisfying Kraft’s inequality, and enumerating the arguments of
the max function in (8) directly. But this would be intractable.

B. Efficient algorithm for optimal entry encoding
In the remainder of the section we show an algorithm that

offers an efficient way around the above-mentioned difficulty
to assign codeword lengths to elements. We present this
efficient algorithm formally, but first we describe its main idea.
The main idea: we showed in Section IV-A that it is not
possible to maximize the single-code success probability for
k elements given the optimal codeword lengths for k − 1
elements. So it does not work to successively add elements to
the solution while maintaining optimality as an invariant. But
fortunately, it turns out that it does work to successively add
codeword lengths to the solution while maintaining optimality
as an invariant. The subtle part is that the lengths need to be
added in a carefully thought-of sequence, which in particular,
is not the linear sequence (1, 2, . . . , L − 1) or its reverse-
ordered counterpart. We show that if the codeword lengths
are added in the order of the sequence

(L/2, L/2+1, L/2−1, L/2+2, L/2−2, . . . , L−1, 1) (10)

(for even3 L), then for any sub-sequence we can maximize the
success probability given the optimal codeword lengths taken
from the sub-sequence that is one shorter. For example, when
L = 8 our algorithm will first find an optimal code only using

3For convenience we assume that L is even, but all the results extend to
odd L.

codeword length L/2 = 4; based on this optimum it will find
an optimal code with lengths 4 and 5, and then continue to
add the codeword lengths 3, 6, 2, 7, 1 in that order.

We now turn to a more formal treatment of the algorithm.
We first define the function holding the optimal success
probabilities for sub-problems of the problem instance. The
following Definition 11 is the adaptation of Definition 10 to
the sequence of codeword lengths applicable in the single-code
case.

Definition 11. Consider assignments of finite codeword
lengths to the consecutive elements {sk1 , . . . , sk2} from S,
where the lengths are assigned from the values {L/2, L/2 +
1, L/2 − 1, . . . , l} taken from the sub-sequence of (10) that
ends with l. For N ∈ [0, 2L] we denote by G(l, [k1, k2], N)
the maximal success probability for such an assignment whose
sum of weights for these k2−k1 + 1 codewords is at most N .
Formally,

G(l, [k1, k2], N) ,

max
σ:
(
∀i∈[k1,k2]:`(~σ(si))∈{L/2,...,l} ,

∑k2
i=k1

N`(~σ(si))≤N
)
(

k2∑
i=k1

k2∑
i′=k1

pi · pi′ · I
[
`(~σ(si)) + `(~σ(si′)) ≤ L

])
. (11)

The following two theorems are the key drivers of the
efficient dynamic-programming algorithm finding the optimal
code. We first explain the intuition behind them. For the above
sequence from (10), the theorems describe a step where an
additional length among the first lengths in the sequence is
allowed. Theorem 8 describes a step allowing using some
even number of the first lengths in the sequence, where in
Theorem 9 following the step an odd number of lengths
can be used. Based on the sequence definition, there is an
inherent difference between the two cases. In the first case, the
additional allowed length is larger than all previously allowed
lengths, and the sum of this length and each of the previous
lengths in the sequence is above L. On the other hand, in
the second case, the additional allowed length is smaller than
all previously allowed lengths and the sum of this length and
each of the previous lengths in the sequence is not larger than
L. In both cases these properties mean that the success of
encoding an element with the new length does not depend on
the exact lengths assigned to the other elements among the
previous lengths in the sequence. This independence allows
the development of the algorithm below. We start with the
first theorem.

Theorem 8. Let l = L/2 − r + 1 for some integer 1 ≤ r ≤
L/2 − 1. We denote by l′ the length that follows l in the
sequence from (10). For this length, satisfying l′ = L/2 + r,
we have

G(l′, [k1, k2], N) = max
j∈[0,k2−k1+1]

G(l, [k1, k2 − j], N − j ·Nl′),

(12)

where we define

G(l, [k1, k1 − 1], N) , 0, for N ≥ 0. (13)



11

Proof: We calculate the values of the function G with
parameter l′ based on the values of G with parameter l. Since
l′ follows l in the sequence, the function G with the parameter
l′ covers solutions potentially using the codeword length l′ in
addition to the lengths up to l. For a range of elements [k1, k2],
this additional allowed length l′ can be assigned to between 0
and k2−k1 +1 elements. By the monotonicity of pi, l′ which
is larger than all previous lengths in the sequence, must be
assigned to the highest j indices in the range [k1, k2]. Thus
for each j the success probability is the value of G for the
corresponding range of elements [k1, k2− j] with the residual
weight N − j ·Nl′ . In particular, the elements assigned length
l′ do not add to the success probability, because l′ plus any
length in the sub-sequence up to l exceeds L. In the extreme
case when j = k2−k1+1 (all elements assigned length l′), the
definition (13) when appearing in the right-hand side of (12)
gives a valid assignment with success probability 0 if N in
the left-hand side is sufficiently large.

As mentioned, Theorem 8 relies on the fact that the
calculated success probability is not influenced by the ex-
act assignment of the previously allowed lengths from the
sequence in (10) to the other elements. With this property
Theorem 8 allows to efficiently extend the optimality from l
of type l = L/2 − r + 1 (with r ≥ 1) to the next length in
the sequence. To complete what is required for an efficient
algorithm, we need the same extension of optimality from l
of type l = L/2 + r to the next length in the sequence. We
do this in the next theorem.

Theorem 9. Let l = L/2 + r for some integer 1 ≤ r ≤
L/2 − 1. We denote by l′ the length that follows l in the
sequence from (10). For this length, satisfying l′ = L/2 − r,
we have

G(l′, [k1, k2], N) = (14)

max
j∈[0,k2−k1+1]

(
G(l, [k1 + j, k2], N − j ·Nl′)

+

(
k1+j−1∑
i=k1

pi

)(
k2∑
i=k1

pi

)
+

 k2∑
i=k1+j

pi

(k1+j−1∑
i=k1

pi

))
.

Proof: Given maximal values G for all values of N and
with lengths up to l in the sequence, the maximal value G
when l′ is also allowed is obtained by assigning length l′ to
between 0 and k2 − k1 + 1 elements in the range [k1, k2]. By
the monotonicity of pi, l′ which is smaller than all previous
lengths must be assigned to the lowest j indices in the range
[k1, k2]. Now the success probability has two components: first
is the success between pairs of elements assigned lengths up to
l in the sequence, and second is the success between element
pairs that involve the new length l′ (recall that in Theorem 8
the second component did not exist, but here it does because
l′ is lower than all lengths up to l.) The first of the three terms
in the summation of (14) gives the first component, and the
latter two terms give the second component. Maximization is
done as before by considering all possible j with the residual
weight N − j ·Nl′ .

As in Theorem 8, the length sequence provides the property
that maximization in Theorem 9 only depends on the success
probabilities of the previous length sub-sequence, without care
to the assignment of lengths among the lengths in that sub-
sequence. In Algorithm 3 we formally present the algorithm
for finding an optimal single prefix code, building on Theo-
rems 8 and 9. For terseness we only track the optimal success
probabilities G, omitting the more technical task of tracking
the optimal assigned lengths, which is required to find the
optimal code in a real implementation. The noteworthy parts

Algorithm 3: Optimal Single Prefix Code
input : Element distribution (S, P ), memory width L
output: Prefix code σ with optimal entry-encoding

success probability
initialization:
foreach N ∈ [−n · 2L,−1] do G(l, [k1, k2], N) := −1
for all indices l ∈ [1, L− 1], k1 ≤ k2 (satisfying
k1, k2 ∈ [1, n]) ;
foreach N ∈ [0, 2L] do G(l, [k, k − 1], N) := 0 for all
indices l ∈ [1, L− 1] and k ∈ [1, n] ;
codewords of length L/2:
foreach [k1, k2] ⊆ [1, n], k1 ≤ k2 do
for N = (k2 − k1 + 1) ·NL/2 : 2L do

G(L/2, [k1, k2], N):=
(∑k2

i=k1
pi

)2
end

end
main iteration:
for r = 1 : L/2− 1 do
go right to length L/2 + r:
for N = 0 : 2L do
foreach [k1, k2] ⊆ [1, n], k1 ≤ k2 do
G(L/2 + r, [k1, k2], N):= maxj∈[0,k2−k1+1] G(L/2−
r + 1, [k1, k2 − j], N − j ·NL/2+r)

end
end
go left to length L/2− r:
for N = 0 : 2L do
foreach [k1, k2] ⊆ [1, n], k1 ≤ k2 do

G(L/2− r, [k1, k2], N):= maxj∈[0,k2−k1+1]

(

G(L/2 + r, [k1 + j, k2], N − j ·NL/2−r)+(
k1+j−1∑
i=k1

pi

)(
k2∑
i=k1

pi

)
+

 k2∑
i=k1+j

pi

(k1+j−1∑
i=k1

pi

))

end
end

end
output results:
Encoding success probability
Psuccess:= maxk∈[1,n] G(1, [1, k], 2L)
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of Algorithm 3 are:
• The initialization of G to −1 for negative N , and to

0 for non-negative N and empty ranges of elements
(according to (13)).

• Starting the length sequence at l = L/2 and calculating
the success probability when all elements in the range
are assigned that length.

• The main iteration following the progressions in the
length sequence using Theorems 8 and 9.

• Outputing the optimal success probability for the code
parameters as a maximization over all n possible num-
bers of elements assigned codewords, starting from the
first element.

Time Complexity: There are L − 1 iterations and in every
iteration O(2L) values are calculated for each of O(n2) ranges
of elements, each by considering O(n) possibilities for the
number of elements with the new codeword length. It follows
that the time complexity of the algorithm is O(n3 · 2L · L),
which is polynomial in the size of the input, or O(n5 · L)
(recall that 2L is at most quadratic in n). It is interesting to
compare this complexity as one order of n higher than that of
Algorithm 2 (O(n4 · L)) for the two-code case. We note that
the n5 complexity term is a loose bound, because many of the
counted iterations are not exercised in a given run.

Example 4. Consider the entry distribu-
tion D = [(S, P ), (S, P )] with (S, P ) =
((s1, . . . , sn), (p1, . . . , pn)) satisfying (p1, . . . , pn) =
(0.4, 0.4, 0.08, 0.01, 0.01,0.01, 0.01, 0.01, 0.01, 0.01,0.01,0.01,
0.01,0.01,0.01) with n = 15. The width parameter is L = 6
and assume that a single code is allowed. A simple possible
coding scheme can assign codewords of length L/2 = 3 to
the 23 = 8 most probable elements s1, . . . , s8, and codewords
are not assigned for the remaining elements s9, . . . , s15.
This scheme successfully encodes all pairs of elements
composed of two elements from s1, . . . , s8, achieving success

probability of P ′success =
(∑8

i=1 pi

)2
= 0.932 = 0.8649.

Alternatively, the above optimal algorithm finds a code
that achieves a higher success probability. In this code
elements s1, s2 are assigned codewords of length 2 while
elements s3, . . . , s10 are assigned codewords of length 4.
Later elements are not assigned codewords. This optimal
scheme achieves an improved success probability of

Psuccess =
(∑2

i=1 pi

)2
+
∑2
i=1 pi ·

∑10
i=3 pi +

∑10
i=3 pi ·∑2

i=1 pi = 0.82 + 0.8 · 0.15 + 0.15 · 0.8 = 0.88. We also
compare the above results to the performance of the optimal
encoding scheme from Section III that does not restrict
the two fields to share a code. For this entry distribution
D = [(S, P ), (S, P )], this scheme achieves a success
probability of 0.9704. We can observe that the restriction of
a shared code can sometimes have a large negative impact
on the obtained performance.

As in the previous section, the coding scheme of this section
can be generalized to a non-binary alphabet using the same
sequence of codeword lengths. With a codeword weight of
NA
`0

, αL−`0 and an allowed total weight of N = αL,

Algorithm 3 solves this case too. As mentioned at the
beginning of the section, Algorithm 3 can be extended to the
case where the two fields have different distributions with the
same n, and a single code with optimal success probability is
found. We do not explore this generalization in the paper, but it
is as simple as replacing some instances of pi in the algorithm
by qi, corresponding to the distribution of the second field. If
we want to use the same encoder/decoder in both fields (in
addition to the same code), then we need the property that
both fields have the same elements (s1, . . . , sn) with the same
order of their probabilities.

V. EMPIRICAL RESULTS

We examine the performance of the suggested coding
schemes. In the experiments, the probabilities in the ele-
ment distributions follow the Zipf distribution with different
parameters. A low positive Zipf parameter µ results in a
distribution that is close to the uniform distribution, while
for a larger parameter the distribution is more biased. An
element distribution (S, P ) = ((s1, . . . , sn), (p1, . . . , pn)) with
a Zipf distribution of parameter µ satisfies pi = 1

η · i
−µ, where

η =
∑n
j=1 j

−µ.
As a first step, we compare the suggested optimal coding

schemes to schemes using the Huffman code [3]. The results
are shown in Fig. 2. First, in Fig. 2(a), we pick two different
distributions on 128 elements for the two fields, and set the
assumption that the codes of the two fields may be different.
The distributions of the first and second field are Zipf with
parameters µ1 = 0.8 and µ2 = 2, respectively. We compute
the optimal codes σ1 and σ2 using Algorithm 2 from Sec-
tion III, and plot their success probability. In comparison, we
also plot the success probability of a Huffman-based coding
scheme composed of a Huffman code for each field according
to its distribution. It can be seen that while a Huffman
coding scheme minimizes the expected codeword length, in
a fixed-width memory the encoding success probability of
the Huffman-based coding scheme is inferior to the optimal
scheme for all values of L. For L = 2 for instance, the
Huffman-based scheme does not encode successfully any pair
of elements, while the optimal coding scheme achieves a
probability of 0.162. A maximal difference in the success
probability of 0.289 is obtained for L = 6 (0.5354 vs. 0.2468).
In addition, we also plot the performance of a combined
scheme of the two above, where σ1 is the Huffman code and
σ2 is the padding invariant code σ̂2 (as the code for this field
in the coding scheme from Section III). We can see that the
optimal scheme is superior to both Huffman-based alternatives
for every L.

In Fig. 2(b) we examine the scenario of the two fields
having the same element distribution, with the requirement
that a single code is shared by the two fields. An optimal
coding scheme for this case was given in Section IV. The
two fields have the same 128 elements with a Zipf µ = 1.6
distribution. We compute the optimal code σ using Algo-
rithm 3, and plot its success probability. In comparison, we
also plot the success probability of the Huffman-based coding
scheme with two identical Huffman codes computed from the
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common element distribution. Here too the Huffman-based
coding scheme gives inferior success to the optimal code,
with a maximal probability difference of 0.194 at L = 4.
From a practical perspective the most significant advantage
occurs in L = 10, where the complement (1 − Psuccess) of
single-code optimal encoding is factor 1.92 lower than single-
code Huffman encoding, implying factor 1.92 fewer accesses
to slower memory due to encoding failures, and average access
perfromance roughly twice better. We also plot for comparison
the success probability of the optimal coding scheme when
allowing two different codes for the two fields. The results
underscore the fact that allowing two different codes can
improve success probability even when the two fields follow
the same distribution.

Next, we examine the impact of the number of possible
elements in the fields for different Zipf distributions. We
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(a) two distributions, µ1 = 0.8, µ2 = 2

(b) single distribution, µ = 1.6

Fig. 2. Comparison of the optimal coding schemes for two codes and a
single shared code vs. Huffman-based schemes. In (a), with two codes for
fields with two distributions. The optimal coding scheme (from Section III)
is compared with a scheme composed of the two Huffman codes for the
two fields, and a third scheme with a Huffman code for the first field and
a padding-invariant code for the second field. In (b), with a single shared
code for field with the same distribution. The optimal coding scheme (from
Section IV) is compared with a scheme composed of the same Huffman code
for the two fields. Probabilities follow Zipf distribution with parameters µ1 =
0.8, µ2 = 2 (in (a)) and µ = 1.6 (in (b)).
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Fig. 3. The success probability of the optimal coding scheme for a shared
single code vs. the number of elements in the distribution for different
values of the memory width L. Probabilities follow the Zipf distribution with
parameters µ = 0.5 (in (a)) and µ = 2 (in (b)).

assume a single shared code and that the two fields follow the
same distribution. In Fig. 3, we consider two such distributions
and present the optimal success probability. In Fig. 3(a), the
distribution has a parameter µ = 0.5. We assume that there
are n elements in each field. The minimal width required to
obtain a success probability of 1 for n elements is given by
L = 2·log2 n, i.e., L ≥ 6 for n = 8 and L ≥ 8 for n = 16. For
a given L, the optimal success probability decreases when the
number of elements in each field increases. For L = 8 it equals
0.449, 0.208 and 0.099 for n = 32, 64 and 128, respectively.
Likewise, in Fig. 3(b), the distribution has a parameter µ = 2,
which results in a more biased element distribution. While
again for n = 8, a success probability of 1 is observed only
for L ≥ 6 = 2 · log2 n, the more biased distribution allows
achieving high success probabilities even for larger values
of n. For instance, while for n = 128 a memory width of
L = 2 · log2 n = 14 is required to guarantee a success
probability of 1, already for L = 8 we obtain probability of
0.939 when µ = 2.
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VI. CONCLUSION

In this paper we developed compression algorithms for
fixed-width memories. We presented a new optimization prob-
lem of maximizing the probability to encode entries within the
memory width, and described constraints on the codes for the
different input fields that guarantee uniquely-decodable data
entries. We derived algorithms that find an optimal coding
scheme with maximum success probability for the scenario of
two codes for two fields, as well as for a single shared code.
We also presented experimental results to evaluate the success-
probability performance. The central open problem left by this
paper is extending optimal coding to d > 2 fields.
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