
Practical Re-Write Codes with Access
Considerations

Yuval Cassuto
Technion – Israel Institute of Technology

Department of Electrical Engineering
ycassuto@ee.technion.ac.il

Eitan Yaakobi
University of California, San Diego California Institute of Technology

Electrical and Computer Engineering Electrical Engineering
eyaakobi@ucsd.edu

Abstract— We present new codes that allow data rewriting
without physical erase on multi-level cell technologies. The codes
are practical as they use a small number (e.g. 2) of cells, and
allow data bits with different update characteristics (hot vs. cold).

I. Introduction
Flash storage media offer remarkable densities that enable

their ubiquitous use in numerous consumer and enterprise stor-
age products. Densities of such scale introduce restrictions on
the way data can be accessed on the device. The most appar-
ent and well-studied feature of flash access is the inabilityto
perform erase operations at the cell or page level, but only
in much larger units called flash blocks. The coarse granular-
ity of erase operations together with their significant timeand
wear costs require careful control of the write access to the
physical cells by upper layers of the storage device. To miti-
gate this access limitation, a flash translation layer (FTL)was
introduced to solid-state drives, with the objective to dynami-
cally optimize the physical placement of data. As an alternative
to placement optimization, lower level frameworks have been
proposed for data representations that improve the access ca-
pabilities of the device [5]. One model that was found particu-
larly relevant to the properties of flash storage is the write-once
memory (WOM), first proposed by Rivest and Shamir for a
different application [7]. The applicability of the WOM model
to emerging solid-state storage technologies have sparkeda re-
newed interest, and has led to significant research progressin
recent years, e.g. [3], [6], [8].

The main idea in the WOM and related frameworks is to
encode the user data in a way that unrestricted updates will
be possible without need to physically erase the storage cells.
This capability allows rewriting data in place without incurring
the wear and time-overhead of block erases after every write.
In particular, the original binary WOM model [7] treats codes
that allow writingk bits t times usingn physical bits that are
only allowed to move from 0 to 1. The great promise of the
WOM model is thatt writes of k bits do not actually require
n = kt physical bits, but potentially as little asn = kt/ log2 t
(for large t). This promise, however, does not come without
challenges. Some of these challenges are now listed.

1) Efficient WOM constructions often have a differentk for
each of thet writes. This property is hard to accommodate
in practice.

2) Long representations with little structure mean exponen-
tially growing decoding complexities.

3) The generalization of binary WOM codes for multi-level
cell technologies is not well established yet.

4) The known models assume that all user bits have the same
access characteristics, and therefore may be wasteful in
redundancy.

These challenges are the main motivators to the current work,
which addresses the challenges above as follows:

1) Fixedk number of bits in each of thet writes is sought
by all constructions.

2) Small numbers (i.e. 1 or 2) of cells are used to encode
data.

3) The proposed WOM codes are tailored to multi-level
cell technologies by using theq-ary generalization of the
model.

4) The codes distinguish between “hot” and “cold” bits in
the number of updates they allow (hot bits are updated
frequently, cold bits are updated rarely). Jointly storing
hot and cold data provides automatic wear leveling with-
out need to waste erase cycles on moving cold data across
physical locations.

We now open the presentation with concrete details on the
model. Then in the following sections sample constructions
will be presented. Givenn physical cells withq discrete lev-
els, we wish to storek information bits in a way that the
information can be writtent times without moving a physi-
cal cell to a lower level. Each of thet writes is called awrite
generation. Any of the 2k possible values can be assigned to
thek information bits at any given write generation. A scheme
that supports the above properties will be called a (q, n, k, t)
re-write code. This model was studied in [1] and later in [2] as
a generalization of Rivest and Shamir’s binary WOM [7]. As
opposed to previous works, here we are mostly interested in
the case where the number of cellsn is small. A related prob-
lem, where in each write onlyone bit out of thek information
bits is updated, was proposed in [4], and solved optimally for
the special casek = 2. To support the large data units used in
NAND flash storage we note that if a (q, n, k, t) re-write code
exists, then there also exists a (q, nM, kM, t) code by trivially
using M independent copies of the code in parallel. In Sec-
tion II we present (q, n, k, t) constructions for fixed smallk and
n, andt that depends onq. Then in Section III we give sample
codes that breakk into k1 hot bits andk2 cold bits, allowing
up to a single write to each cold bit out of the totalt writes.

II. Re-write Codes with n = 2 Physical Cells
In an n = 2 code, the physical content of the memory

is described by a pair (c1, c2) ∈ {0, . . . , q − 1}2 of cell levels.
The information content is represented by an integer num-
ber v ∈ {0, 1, . . . , 2k − 1} = {0, 1, . . . , 7} (for k = 3), and a
mapping between integers andk-bit vectors is implicitly as-
sumed. Reading information is then performed by a function
ψ(c1, c2), where ψ : {0, . . . , q − 1}2 → {0, 1, . . . , 7}. Writ-
ing k bits to the physical cells is specified as a function
µ : {0, . . . , q−1}2×{0, 1, . . . , 7} → {0, . . . , q−1}2 of the current
cell contents and the new information integer. Thus,



µ(c1, c2, v
′) = (c′1, c

′
2),

where c′1 > c1, c′2 > c2. Such read and write functions for
k = 3 are specified in Figure 1. The numbers inside the matrix
stand for information integers in{0, 1, . . . , 7}. The coordinates
marked at the exterior of the matrix represent cell levels. The
horizontal coordinate isc1 and the vertical one isc2. The
reading functionψ(c1, c2) is simply the content of the (c1, c2)
position of the matrix. A write functionµ(c1, c2, v′) can be
obtained from Figure 1 by defining (c′1, c

′
2) to be the nearest

(different) position that contains the numberv′, such thatc′1 >
c1 and c′2 > c2. For example, suppose the current cell levels
are (c1, c2) = (0, 2), storing the integer 4. Then a valuev′ = 7
is written by moving the cells to levels (c′1, c

′
2) = (4, 3). Each

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

write#1 write#2 write#3

Figure 1. A code to store 3 bits in 2 cells witht = (q − 1)/2 writes.

polygon of area 8 in Figure 1 specifies the range of possible
cell levels (c′1, c

′
2) after a given write generation. Note that if

the write generation is known at the time of writingv′, there is
no need to read the current cell levels (c1, c2) prior to writing,
since the target levels (c′1, c

′
2) can be extracted directly from

the corresponding polygon in Figure 1.
It turns out that it is possible to improve thet = ⌊(q− 1)/2⌋

result to t = ⌊4(q − 1)/7⌋ by a more clever update rule than
was used in Figure 1.

III. Rewrite Codes for Hot/Cold Data
The codes in this section treat hot data (for example file-

system logs) and cold data (such as archived documents or
photos) differently. Hot and cold bits share the same physi-
cal cells and therefore provide wear leveling at the physical
layer. To see the general idea, we start with a simple example.
Suppose we want to store one hot bit and one cold bit. Hot
bits, as before, can be written multiple times without erase,
while cold bits are written only once between physical era-
sures. Both hot and cold bits can be read at any desired time.
A level diagram for these requirements is found in Figure 2.
The two stored information bits appear at the bottom of the
figure, the right of which (underlined) is the hot bit. Solid ar-
row lines represent changes in the hot bit, and dashed arrow
lines represent re-writing the same value for the hot bit.

0 1

2

2

3

3

4

4

5

5

6 7

00 01 10 11

write #1

write #2

write #3

Figure 2. Code to store 1 hot bit and 1 cold bit in 1 cell with⌊q/2⌋
total writes.

Restricting the cold bit to up to one write allows a total
number of writes that equalst = ⌊q/2⌋ (including the one cold

write). This is an improvement from ann = 1, k = 2 re-write
code that gives onlyt = ⌊(q− 1)/3⌋ writes. Note that thet − 1
writes of the hot bit and the single write of the cold bit can be
performed in any order. For example, if the hot bit is written
multiple times before the cold bit’s write, we initially usethe
left part of the diagram (even levels) to update the hot bit, and
in case of a′1′ write to the cold bit, we can always move to
the corresponding state at the right part of the diagram (odd
levels), which only moves the cell level upwards. The code of
Figure 2 turns out to be optimal.
A. Two-cell hot+cold bit storage

We now detail a two-cell code to jointly store one hot and
one cold bit. We start with specifying the decoding rule pic-
torially in Figure 3. As in the two-cell codes of the previous
section, the coordinates at the exterior of the matrix repre-
sent physical-cell levels, and the integers within the matrix
are the information content of the stored bits: 0 stands for 00,
1 stands for 01, 2 stands for 10and 3 stands for 11. The un-
derlined bits are the hot bits that can change multiple times
in the write sequence. The non-underlined bits are cold bits
that can be written once, at any point of the write sequence.
To support unrestricted re-writing of the hot bit, the following
transitions must be possible without decrease in physical-cell
levels:

0→ {0, 1}, , 1→ {0, 1}, , 2→ {2, 3}, , 3→ {2, 3},

In addition, a single transition of the form 0→ 2 or 1→ 3
must be supported. The code described above turns out to be

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

0

0

1

1

2

2

3

3

4

4

Figure 3. Decoding rule for a scheme to store 1 hot bit and 1 cold
bit in 2 cells with t = 2q − 3 writes, at most 1 of which is a cold-bit
write.
strictly optimal. Other codes we found support multiple hot
and/or multiple cold bits. Due to lack of space we cannot
describe them in this written summary.

References
[1] A. Fiat and A. Shamir, “Generalized write-once memories,” IEEE Trans-

actions on Information Theory, vol. 30, pp. 470–480, 1984.
[2] F. Fu and A.J. Han Vinck, “On the capacity of generalized write-once

memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 308–313, Septem-
ber 1999.

[3] R. Gabrys and L. Dolecek, “Characterizing capacity achieving write once
memory codes for multilevel flash memories,”Proc. IEEE Int. Symp.
Inform. Theory, pp. 2484–2488, St. Petersburg, Russia, August 2011.

[4] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint infor-
mation storage in flash memories,”IEEE Transactions on Information
Theory, vol. 56, no. 10, pp. 5300–5313, 2010.

[5] A. Jiang and J. Bruck, “Data representation for flash memories,” in Data
Storage, In-Tech Publisher, 2010.

[6] S. Kayser, E. Yaakobi, P.H. Siegel, A. Vardy, and J.K. Wolf, “Multiple-
write WOM-codes,”Proc. 48-th Annual Allerton Conference on Com-
munication, Control and Computing, Monticello, IL, September 2010.

[7] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,” Infor-
mation and Control, vol. 55, no. 1, pp. 1–19, 1982.

[8] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once
memories,”IEEE Transactions on Information Theory, vol. 57, no. 6, pp.
3692–3697, June 2011.


