
Adaptive Threshold Read Algorithms in Multi-level
Non-Volatile Memories

Evyatar Hemo and Yuval Cassuto
Department of Electrical Engineering, Technion – Israel Institute of Technology

evyatarhemo@gmail.com, ycassuto@ee.technion.ac.il

Abstract— For an array of memory cells that are read by
threshold measurements, we ask the question of how to choose
the measurements in the read sequence to minimize the number
of measurements before the array is fully read. We propose
and study analytically various adaptive read algorithms, and
provide a corresponding lower bound on the average number
of measurements. We show that new two-dimensional read
algorithms improve over the best one-dimensional ones.

I. Introduction

Solid-state storage technologies, most prominently flash
memories, constantly grow in their storage densities and
become the most attractive media for many applications. One
way in which improved density is achieved is by increasing
the number of levels to which a cell can be programmed.
Commercial products exist with 16 levels, and this number
is likely to grow further in future technologies. Unfortunately,
using more levels per cell is not a “magic formula” to squeeze
more bits into the same hardware, but rather an action with
significant ramifications on the read/write performance and
reliability of the device.

There is a significant body of known work on how to
represent data in multi-level flash memories, so as to endow
the storage device with different goodness features. These
features include error correction, rewrite capability, and write
optimization. The works in that area are so numerous and
diverse, that we avoid the daunting task of listing a fair set
of references. One direction that is less explored theoretically
is the optimization of reading information from multi-level
memory arrays – in particular, memory arrays that are read by
threshold measurements applied to a group of cells in parallel.
We choose this read problem as the topic of study reported
in this paper. The motivation to consider the read problem
comes from a concern that with threshold reads, continued
growth in the number of levels will introduce a significant toll
on the read performance. The driving idea of this work is that
read algorithms that only optimize for the worst-case (across
information contents) read time are suboptimal, since they fail
to benefit from information contents that are “easier” to read.

To understand the problem at hand, suppose we have n
memory cells with q discrete levels {0, . . . , q−1}. The cells are
read by applying a sequence of threshold measurements, each
applied to the n cells in parallel and returns n binary values
of whether the cell levels are above or below the threshold.
For small n relative to q, it may be possible to read the array
content with fewer measurements than trying all q−1 threshold
levels. For example, when n = 4 and q = 8 we intuitively feel
that reading cell levels (0, 1, 2, 1) is easier than reading the
more spread levels (0, 2, 4, 6). This intuitive feel is pursued
in the paper, both algorithmically: minimizing the number
of measurements, and analytically: calculating and bounding

the average number of required measurements. The primary
regime of operation to benefit from this work is when n is not
much larger than q. This setup is the most interesting for the
adaptive read problem, since the savings potential (over trivial
read algorithms) is significant. This fact limits the applicability
of the framework to current NAND flash technology, which
uses an especially high level of parallelism. Nevertheless, it
is plausible that future non-volatile memory technologies will
work in a lower parallelism regime, due to technology limita-
tions or cost issues. We also believe that threshold reading is a
fundamental and interesting problem in general, worthy of the
detailed study that follows. In Section II the scope is on one-
dimensional (1D) read algorithms, where the set of measured
cells is fixed. In Section III we move to two-dimensional (2D)
algorithms, where the measured cell can be chosen with certain
degrees of freedom. The results show that adaptive choice of
threshold measurements can improve read performance over
fixed predetermined read sequences. 2D algorithms are further
shown to be superior over 1D algorithms, including over the
1D lower bound that any 1D algorithm must satisfy. In terms
of prior work, the studied problem is related to the problem of
adaptive sorting algorithms, but we have not found a simple
way to directly apply existing knowledge to the threshold-read
problem. Unless stated otherwise, all log functions are base 2.

A. Parallel threshold read model

We first give some formal definitions for the threshold-read
model. Let the state of the storage cell be represented as a
discrete cell level c, taken from the integer set {0, . . . , q − 1}.

Definition 1. A threshold τ is an integer from the set {1, . . . , q−
1}. Given a threshold τ, a cell is said to be active with respect
to τ if its cell level satisfies c > τ. In the complementary case
of c < τ, the cell is said to be inactive with respect to τ.

Note that this definition of threshold is equivalent to applying
a (non-integer) threshold in the real interval (i, i + 1).

Definition 2. A measurement is an operator acting on a set of
cells S by applying a threshold of τ, and obtaining s = |S|
binary values reflecting the activity of each cell in S with
respect to τ. We denote the measurement as a vector Mτ(S) =
(m1, . . . ,ms), where mi ∈ {0, 1}. mi = 1 represents an active cell
with respect to τ, and mi = 0 represents an inactive cell.

The accumulated information on the cell levels after some
sequence of iterations is represented by uncertainty windows:

Definition 3. The uncertainty window of a cell level c is given
as a pair of integers [L,U], if it is known that L 6 c 6 U.

It is straightforward to observe that for any threshold-
measurement sequence, the level of every cell is known up to
a set of consecutive integer values given by L 6 c 6 U. When
L = U, the cell level c is completely known (no uncertainty).

II. Read Algorithms

In a standard storage setup involving non-volatile memories,
we want to determine the cell levels of a block N of n
memory cells by applying measurements to the cell block
until all levels become known. The sequence of measurements
applied to the cell block is allowed to be adaptive, i.e., the
parameters of the next measurement are chosen based on the
accumulated state of the cells measured thus far. In particular,
the measurement sequence will stop once all cell levels have
been determined, which may happen well before reaching
the number of measurements needed for the worst-case cell-
level combination. We assume throughout the section that all
measurements act on the full block of cells, hence S = N and
s = n. This assumption will be lifted in subsequent sections.

A. Sequential scan

The simplest way to determine the cell levels of all cells is
by a sequential scan – applying measurements starting from
τ = 1 upward, and stopping when all cell levels are fully
determined. In the worst case, all q − 1 possible τ values will
be used, but an earlier stop is possible if none of the n cells
in the block currently store the upper levels.

Proposition 1. The expected number of measurements needed
for sequential-scan read, assuming uniform level distribution, is
given by

T (n, q) = (q − 1) −

q−2
∑

k=1

(

k

q

)n

. (1)

Proof: If all the cells in the block have levels in {0, ..., k−1},
for some k 6 q−1, then k measurements are clearly sufficient.
This is because the k-th measurement, having τ = k, gives
Mk(N) = (0, . . . , 0) (all cells inactive), making all higher-
threshold measurements redundant. Therefore, for every k 6
q − 2, Pr[#meas. 6 k] = (k/q)n and for k = q − 1, we trivially
get Pr

[

#meas. 6 q − 1
]

= 1. For k 6 q − 2, if all levels fall
in {0, ..., k − 1} but not in {0, ..., k − 2}, then k measurements
are both sufficient and necessary, and the number of saved
measurements is q − 1 − k. The expected number of saved
measurements is thus given by

E[q − 1 − #meas.] =

q−2
∑

k=1

(q − 1 − k)

[(

k

q

)n

−

(

k − 1

q

)n]

. (2)

Splitting the sum and shifting the summation indices of the
second sum, (2) becomes

q−2
∑

k=1

(q − 1 − k)

(

k

q

)n

−

q−3
∑

k=1

(q − 2 − k)

(

k

q

)n

=

q−2
∑

k=1

(

k

q

)

. (3)

Subtracting the right-hand side of (3) from q − 1 we get the
expected number of measurements in the claim (1).
From the expression for T (n, q) in (1), it is observed that as
n grows, the expected number of measurements tends to the
worst case of q − 1.

B. Binary search

A potentially better read-algorithm than sequential scan is
the binary search. For reading a single cell level (n = 1), it
is clear that the binary search, requiring log q measurements,
is optimal. The binary search is the basis of a widely used
analog to digital converter (ADC) family called successive

approximation register (SAR) [1]-[3]. To use the binary search
for multiple cells (n > 1), the following simple extension of
the algorithm is needed. Recall the cell uncertainty window
from Definition 3 denoted by [L,U]. Initially, each cell has
an uncertainty window of [0, q − 1]. After the first binary-
search measurement Mq/2(N) (we assume for simplicity that
q is a power of two), the cells that are active will have an
uncertainty window of [q/2, q−1]; those that are inactive will
have [0, q/2− 1]. The n-cell binary-search algorithm proceeds
by finding the largest uncertainty window in N and applying
a measurement to cut it by half. It stops when all uncertainty
windows are of size 1. We give a formal specification of the
algorithm in recursive presentation. In the sequel we denote
by Li and Ui the upper and lower limits, respectively, of the
i-th cell in N . Complete measurement of all the cells in N is
achieved by calling BinarySearch(N , 0, q − 1).

Algorithm 1. BinarySearch(N , L,U)
if L = U return
τ = (L + U + 1) /2
m = Mτ(N)
// update uncertainty windows
For all i with mi = 0, set Ui = min(Ui, τ − 1)
For all i with mi = 1, set Li = max(Li, τ)
// recursive calls
if ∃i : mi = 0,Ui > L then BinarySearch(N , L, τ − 1)
if ∃i : mi = 1, Li 6 U then BinarySearch(N , τ,U)

A recursive BinarySearch call in Algorithm 1 is invoked (if
and) only if there is a cell in the corresponding sub-interval.
If there is no cell i whose uncertainty window overlaps with
[L, τ − 1], then the call BinarySearch(N , L, τ − 1) is skipped.
Similarly, if there is no cell i whose uncertainty window
overlaps with [τ,U], then the call BinarySearch(N , τ,U) is
skipped. These skipped intervals result in saved measurements.
In the extreme case of n = 1, all measurements return
(degenerate, size 1) all-0 or all-1 vectors, and it is always
the case that only one sub-interval is chosen in the recursion.
We now turn to analyze the expected number of measurements
applied by the BinarySearch algorithm.

Proposition 2. Let F
(

n, log2 q
)

be the expected number of mea-
surements needed for binary-search read, assuming uniform
level distribution. Then F

(

n, log2 q
)

can be calculated by the
recursive formula

F (n, l) =

n
∑

i=0

(

n

i

)

2n
(1 + F (i, l − 1) + F (n − i, l − 1)) , (4)

where F (n, l) = 0 if either n = 0 or l = 0.

An explicit analytic expression for F (n, l) is given by

F (n, l) =

l−1
∑

k=0

2k

[

1 −

(

1 −
1

2k

)n]

. (5)

Proof: Proving the recursive formula in (4) is straightfor-
ward. Each entry to BinarySearch in Algorithm 1 applies one
measurements, and calls BinarySearch again recursively to
measure the i inactive cells at the lower sub-interval, and the
n − i active cells at the upper sub-interval. Note that when
either i or n − i are zero, one recursive call is skipped, which
is captured by setting F(0, l) = 0. The probability of an i, n− i

split between active and inactive cells is determined to be
(

n

i

)

/2n by the uniform distribution.

The closed-form expression in (5) is now proved by in-
duction on l. For the induction base we verify that (5) gives
F (n, 0) = 0, as required by the initial conditions. We now
assume that (5) is correct for l− 1, and prove it for l. First we
simplify (4) using symmetry to get

F (n, l) = 1 +

n
∑

i=0

(

n

i

)

2n−1
F (i, l − 1) . (6)

Substituting (5) in the right-hand side of (6) and reorganizing
gives

F (n, l) = 1 +
1

2n−1

l−2
∑

k=0

2k

n
∑

i=0

(

n

i

) 











1 −

(

1 −
1

2k

)i










. (7)

The inner sum can now be written as
n

∑

i=0

(

n

i

) 











1 −

(

1 −
1

2k

)i










= 2n −

(

2 −
1

2k

)n

= 2n ·

[

1 −

(

1 −
1

2k+1

)n]

.

(8)

Substituting (8) back in (7) now gives

F (n, l) = 1+

l−2
∑

k=0

2k+1

[

1 −

(

1 −
1

2k+1

)n]

=

l−1
∑

k=0

2k

[

1 −

(

1 −
1

2k

)n]

,

where the last equality is obtained by shifting the summation
index and inserting the 1 into the sum.

C. Lower bound on the average number of measurements

For the purpose of evaluating the efficiency of the simple
read algorithms of Sections II-A and II-B, we now derive a
lower bound on the average number of measurements. Given
a size-n block N of q-ary cells, we wish to find a lower bound
LB(n, q) defined in the following.

Definition 4. LB(n, q) is called a lower bound if any read
algorithm for n q-ary cells requires on average at least LB(n, q)
measurements.

To obtain such a bound, the key observation we make is that
given an assignment of levels to the n cells (c1, . . . , cn), any
read algorithm must apply a measurement in every threshold
level that appears as one of the ci, and also in every threshold
level that is immediately above one of the ci. If at least one
of these two measurements is missing, then the corresponding
cell remains with an uncertainty window of size at least two.
More formally, we have the following definitions.

Definition 5. Given a vector of cell levels c = (c1, . . . , cn),
with ci ∈ {0, . . . , q − 1}, define the incidence set as the set
I(c) = {s ∈ {1, . . . , q − 1}|∃i, ci = s}. The shifted incidence
set is defined as I∗(c) = {s ∈ {1, . . . , q − 1}|∃i, ci + 1 = s}.

Therefore, we have the following.

Proposition 3. For a given cell-level vector c, a lower bound on
the number of measurements is given by |I(c) ∪ I∗(c)|.

Observe that |I(c) ∪ I∗(c)| 6 min(2n, q).

Example 1. For the following q = 8, n = 4 cell-level vector
c = (2, 2, 4, 5), we have I(c) = {2, 4, 5} and I∗(c) = {3, 5, 6}.
Since I(c) ∪ I∗(c) = {2, 3, 4, 5, 6}, the lower bound is 5.

In order to obtain an analytic lower bound for the average
number of measurements, we need to find the expectation of
|I(c)∪I∗(c)| over uniformly distributed vectors c ∈ {0, . . . , q−
1}n. As seen in Proposition 3, the lower bound for a particular
c depends on both the size of I(c) (how many levels appear),
and the overlap between I(c) and I∗(c) (how many levels in
the union serve as both incident and shifted). It can be seen
that

|I(c) ∪ I∗(c)| = |I(c)| + L(c),

where L(c) is the number of runs of consecutive levels in
I(c). In Example 1, for c = (2, 2, 4, 5) we have L(c) = 2,
since the set I(c) = {2, 4, 5} can be split into two runs:
{2} and {4, 5}. The number of runs captures the number of
necessary measurements, because in each run only the last
level contributes an element to I∗ not already appearing in I.

To calculate the distribution of L(c), we first regard the set
I(c) as a length-q binary indicator vector whose i-th entry is 1
if i ∈I(c). We then define the combinatorial object D (q, l, L)
to be the number of length-q binary vectors that have l ones
falling into exactly L runs of consecutive coordinates. To
handle the special extreme cases of levels 0 and q−1, we fur-
ther refine D (q, l, L) to D0 (q, l, L), D1 (q, l, L) and D2 (q, l, L),
where D j(q, l, L) is the number of (q, l, L) vectors that have
a one on j of the locations 0 and q − 1. This refinement is
needed because the elements 0 and q − 1 are special in that
a run that contains them necessitates one fewer measurement
than a run that does not touch the edges. Based on [4], we
now write the closed-form expressions for D j (q, l, L).

D0 (q, l, L) =

(

l − 1

L − 1

)(

q − l − 1

L

)

,D1 (q, l, L) = 2

(

l − 1

L − 1

)(

q − l − 1

L − 1

)

,

D2 (q, l, L) =

(

l − 1

L − 1

)(

q − l − 1

L − 2

)

.

We are now ready to present a lower bound on the average
number of measurements.

Theorem 4. A lower bound on the average number of measure-
ments given uniformly distributed cell levels is given by

LB (n, q) =
1

qn

n
∑

k=1

k! · S (n, k) ·

k
∑

L=1

2
∑

j=0

D j (q, k, L) · (k + L − j) ,

where S (n, k) is the Stirling number of the second kind [6].

Proof: Every vector c ∈ {0, . . . , q − 1}n can be uniquely
obtained by choosing a size-k set I(c), and then applying
a surjection from the n-set of coordinates to the k-set I(c).
It is well known [6] that the number of surjections from an
n-set to a k-set equals k!S (n, k). The number of necessary
measurements depends only on k and the number of runs in
the set I(c). The two inner sums count all choices of size-
k sets I(c), and weight each choice with its corresponding
number of necessary measurements k + L − j. The number
of necessary measurements does not depend on the particular
surjection applied to c, and hence the numbers of surjections
appear at the outer sum. The overall sum, normalized by the
number of vectors qn, gives the expected number of necessary
measurements given the uniform distribution on c. It is clear
that any read algorithm will have at least the number k+ L− j
of necessary measurements on every input c, and therefore on
average must apply no less than LB(n, q) measurements.

To better understand the proof of Theorem 4, we give an
example of a mapping between vectors c ∈ {0, . . . , q − 1}n and
incidence sets I.

Example 2. Suppose n = 3, q = 8, and we have the incidence
set I = {2, 5} (with size k = 2). The vectors c that map to
I are the 6 vectors (2, 2, 5), (2, 5, 2), (5, 2, 2), (5, 5, 2), (5, 2, 5),
(2, 5, 5). Substituting n = 3, k = 2 in k!S (n, k) indeed gives
6. All these c vectors will have the same number of necessary
measurements, which depends solely on I.

D. Performance comparison

To summarize the section, we take the analytic expressions
for the average measurement counts of two read algorithms:
sequential scan (T (n, q) in Section II-A) and binary search
(F(n, log q) in Section II-B), and plot their values in compari-
son with the lower bound (LB(n, q) in Section II-C). The case
of fixed n = 4 is shown in Fig. 1. The average numbers of
measurements are plotted as a function of log(q).

3 4 5 6 7
0

20

40

60

80

100

120

 b − number of bits [q=2
b
 levels]

N
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

Different scan methods for n=4

lower bound

binary search

sequential scan

Figure 1. Analytic average measurement counts for n = 4: sequential scan
(squares), binary search (circles), and the lower bound (crosses).

It is observed in Fig. 1 that the read complexity of sequential
search grows exponentially in log(q). In contrast, binary search
grows more gracefully. The lower bound grows even slower
than binary search, converging to 2n = 8.

Another interesting case to examine is when n and q grow
together, while maintaining a fixed ratio. Fig. 2 shows the
results for n = q/2. Here the three curves follow a similar

3 4 5 6
0

10

20

30

40

50

60

70

 b − number of bits [q=2
b
 levels]

N
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

Different scan methods for n=q/2

lower bound

binary search

sequential scan

Figure 2. Analytic average measurement counts for n = q/2.

shape, but with widening gaps as q grows. The fixed-ratio
case is important because it makes n small enough to have
“easy” read instances that improve the average counts (when
n is very large, with high probability all q levels will be used,
and sequential scan is optimal), but n is also large enough
to motivate advanced read algorithms (when n is very small,
e.g. n = 1, the binary search is likely close to optimal). Our
objective in the remainder of the paper is to improve over
binary search using more advanced algorithms.

III. Two-Dimensional Read Algorithms

In order to improve on the average number of measure-
ments, we will move to a more realistic storage setup where
the cells are organized as a two-dimensional (2D) array, and
each measurement is applied to a subset of the memory cells.
In the 2D problem, the memory block N is an array of q-ary
cells with dimensions n × n. The set of cells S to which a
measurement Mτ(S) is applied is no longer the full set N ,
but a set of size n. Setting the measurement set size to n
allows comparisons between the proposed 2D algorithms and
using the 1D algorithms of Section II row-by-row. We start the
discussion of 2D read algorithms with a motivating example.

Example 3. Suppose we read the following 2 × 2, q = 8 array
row-by-row.

1 2

0 3

Then from Proposition 3 we know that we need for the top row
at least 3 measurements: I((1, 2)) ∪ I∗((1, 2)) = {1, 2, 3}, and
for the bottom row at least 3 measurements as well: I((0, 3)) ∪
I∗((0, 3)) = {1, 3, 4}. In total we need 6 measurements.

Alternatively, if we can choose whether to measure a row or

a column, it is possible to reduce the number of measurements
to 4. We first measure the top row with τ = 2, then we measure
the left column with τ = 1. At this point the 1 and 0 in the left
column are fully known, and the 2 on the top right is known
to be > 2. Now we measure the right column with τ = 3 and
τ = 4, after which the 2 and 3 on the right are also known.

By showing a gap in the lower bound on the number of
measurements, Example 3 shows that a 2D algorithm can
in principle improve over a 1D algorithm. However, it is
still not clear how to reduce the number of measurements
algorithmically using 2D flexibility. In the remainder of the
section we address the algorithmic 2D read problem. We first
define the general optimization problem formally.

Problem 5. Given a 2D memory arrayN , find a minimal-length
sequence of measurements Mτ1

(S1),Mτ2
(S2), . . . that reads all

the cells inN . The sets S j are of size n, and are chosen accord-
ing to some prescribed specifications. The choice of S j and τ j

may depend on the outcomes of preceding measurements.

A. CRDF algorithm

In an n × n array N , suppose the prescribed specifications
are that S j is either a row or column of N . For this model we
now present the columns and rows degrees of freedom (CRDF)
algorithm. The core of the CRDF algorithm is a criterion that
chooses a row or a column and a threshold τ j, based on the
current uncertainty state of the array cells. The objective of
the implemented criterion is to read N at full with a short
measurement sequence.

The criterion that we choose for the CRDF algorithm is
minimization of the expected uncertainty after the measure-
ment. The idea behind this criterion (defined shortly), is to
greedily choose the measurement that makes the largest step
toward eliminating the uncertainty in the array.

Definition 6. The uncertainty Ω of a cell with uncertainty
window [L,U] is defined as Ω = log(U − L + 1).

The uncertainty of a cell ranges from log q initially (before any
measurement) to 0 when L = U (level fully determined). Let
[Li,Ui] be the uncertainty window of cell i, with its uncertainty
value denoted Ωi. It is easy to see that if Li < τ 6 Ui, then
after the measurement the uncertainty window of cell i will
be [Li, τ− 1] if ci < τ and [τ,Ui] if ci > τ. Hence we can find
the expected uncertainty of cell i after a measurement with
threshold τ to be

Hi(τ) = Pr(ci < τ) log(τ − Li) + Pr(ci > τ) log(Ui − τ + 1) =

τ − Li

Ui − Li + 1
log(τ − Li) +

Ui − τ + 1

Ui − Li + 1
log(Ui − τ + 1), (9)

where (9) follows by a simple substitution of the uniform
distribution into the probabilities above. Another way to write
Hi(τ) is now given using the binary entropy function.

Hi(τ) = Ωi − h

(

τ − Li

Ui − Li + 1

)

, (10)

where h(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy function. Hence the criterion for choosing a legal S
(row/column in CRDF) and a corresponding τ is set to be

argmax
S,τ

∑

i ∈S

h

(

τ − Li

Ui − Li + 1

)

.

Note that this is a generalization of the 1D binary search
algorithm, for which S is fixed and τ is chosen as the mid
point between Li and Ui to reduce the uncertainty by 1 bit.

B. Results

A more flexible version of the CRDF algorithm is the any
n degrees of freedom (ANDF) algorithm, in which S j can be
any n arbitrary cells out of N (and not just a row or a column
as in CRDF). The performance of the 2D algorithms is now
evaluated by simulation. A 4×4 memory array with uniformly
distributed level assignment was read by both the CRDF and
ANDF algorithms 1000 times, providing the results presented
in Fig. 3. The average number of measurements, normalized
by n = 4, of CRDF and ANDF are marked as a function of q.
The normalization by n allows to compare the results with the
1D binary search and lower bound, also marked on the same
plot. We first observe that CRDF improves over the 1D binary
search for all q, with a growing gap. ANDF is clearly superior
to CRDF, given its increased flexibility. Note that the 1D lower
bound (solid line) does not apply to the 2D algorithms, since
the necessary measurements within a row can be shared by
multiple rows, e.g. in a column measurement. Indeed ANDF
outperforms the 1D lower bound for low q.

The results for a fixed ratio n = q/2 are shown in Fig. 4.

As we can see, for n = q/2 the ANDF significantly outper-
forms both CRDF and the lower bound, which is a motivation
to implement more flexible measurement-set selection.

3 4 5 6 7
2

4

6

8

10

12

14

16

18

20

22

 b − number of bits [q=2
b
 levels]

N
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

Different scan methods for n=4

1D lower bound

binary search

CRDF

ANDF

Figure 3. Simulated average measurement counts (normalized by n) for 4×4:
lower bound (solid), binary search (dashed), CRDF (circle markers), and the
ANDF (square markers).

3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

 b − number of bits [q=2
b
 levels]

N
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

Different scan methods for n=q/2

1D lower bound

binary search

CRDF

ANDF

Figure 4. Average measurement counts (normalized by n) for n = q/2.

IV. Conclusion

Adaptive threshold read algorithms can reduce the number
of measurements required to read a memory array. In particu-
lar, 2D reading algorithms were shown to improve over pure
1D measurements.

V. Acknowledgment

This work was supported in part by the Marie Curie CIG
grant and by the Technion Funds for Security Research.

References

[1] R.J. Baker, CMOS Circuit Design, Layout, and Simulation, Third Edition,
Wiley-IEEE, 2010. ISBN 978-0-470-88132-3.

[2] Ogawa, Tomohiko, et al. “SAR ADC algorithm with redundancy and dig-
ital error correction. ”, IEICE transactions on fundamentals of electronics,
communications and computer sciences 93.2 (2010): 415-423.

[3] Lin, Ying-Zu, et al. “An asynchronous binary-search ADC architecture
with a reduced comparator count.”, Circuits and Systems I: Regular
Papers, IEEE Transactions on 57.8 (2010): 1829-1837.

[4] Y. Cassuto and M. Blaum, “Codes for symbol-pair read channels”, IEEE
Transactions on Information Theory, Vol 57, No. 12, December 2011.

[5] A. Mohr and T.D. Porter, ”Applications of Chromatic Polynomials In-
volving Stirling Numbers”, Department of Mathematics Southern Illinois
University, 2008.

[6] J. van Lint and R. Wilson, A Course in Combinatorics, second edition.
Cambridge UK: Cambridge University Press, 2001.

