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Abstract
HTTP compression is an essential tool for web speed up
and network cost reduction. Not surprisingly, it is used
by over 95% of top websites, saving about 75% of web-
page traffic.

The currently used compression format and tools were
designed over 15 years ago, with static content in mind.
Although the web has significantly evolved since and be-
came highly dynamic, the compression solutions have
not evolved accordingly. In the current most popular
web-servers, compression effort is set as a global and
static compression-level parameter. This parameter says
little about the actual impact of compression on the re-
sulting performance. Furthermore, the parameter does
not take into account important dynamic factors at the
server. As a result, web operators often have to blindly
choose a compression level and hope for the best.

In this paper we present a novel elastic compression
framework that automatically sets the compression level
to reach a desired working point considering the instanta-
neous load on the web server and the content properties.
We deploy a fully-working implementation of dynamic
compression in a web server, and demonstrate its ben-
efits with experiments showing improved performance
and service capacity in a variety of scenarios. Additional
insights on web compression are provided by a study of
the top 500 websites with respect to their compression
properties and current practices.

1 Introduction

Controlling the performance of a web service is a chal-
lenging feat. Site load changes frequently, influenced
by variations of both access volumes and user behav-
iors. Specifically for compression, the load on the server
also depends on the properties of the user-generated con-
tent (network utilization and compression effort strongly
∗Also with Technion - Israel Institute of Technology.

depends on how compressible the data is). To maintain
good quality-of-experience, system administrators must
monitor their services and adapt their configuration to
changing conditions on a regular basis. As web-related
technologies get complex, ensuring a healthy and robust
web service requires significant expertise and constant
attention.

The increasing complexity raises the popularity of au-
tomated solutions for web configuration management [7,
25]. Ideally, an automatic configuration management
should let system administrators specify high-level de-
sired behaviors, which will then be fulfilled by the sys-
tem [32]. In this paper we add such automation function-
ality for an important server module: HTTP compres-
sion.

HTTP compression is a tool for a web-server to com-
press content before sending it to the client, thereby re-
ducing the amount of data sent over the network. In ad-
dition to typical savings of 60%-85% in bandwidth cost,
HTTP compression also improves the end-user experi-
ence by reducing the page-load latency [29]. For these
reasons, HTTP compression is considered an essential
tool in today’s web [34, 5], supported by all web-servers
and browsers, and used by over 95% of the leading web-
sites.

HTTP compression was standardized over 15 years
ago [9], and with static web pages in mind, i.e., suitable
for “compress-once, distribute-many” situations. But the
dynamic nature of Web 2.0 requires web-servers to com-
press various pages on-the-fly for each client request.
Therefore, today’s bandwidth benefits of HTTP com-
pression come with a significant processing burden.

The current most popular web-servers [28] (Apache,
nginx, IIS) have an easily-deployable support for com-
pression. Due to the significant CPU consumption of
compression, these servers provide a configurable com-
pression effort parameter, which is set as a global and
static value. The problem with this configurable param-
eter, besides its inflexibility, is that it says little about



the actual amount of CPU cycles required to compress
the outstanding content requests. Furthermore, the pa-
rameter does not take into account important factors like
the current load on the server, response size, and content
compressibility. As a result, web operators often have
to blindly choose a compression level and hope for the
best, tending to choose a low-effort compression-level to
avoid overloading or long latencies.

Given its importance, HTTP compression has moti-
vated a number of prior studies, such as [30, 6, 15]. How-
ever, our work is unique in considering simultaneously
all aspects of compressed-web delivery: CPU, network
bandwidth, content properties and server architectures.
This combined study, and the concrete software modules
provided along with it, are crucial to address the com-
plexity of today’s web services [18].

In this paper we present a deployable elastic compres-
sion framework. This framework solves the site oper-
ator’s compression dilemma by providing the following
features: 1) setting the compression effort automatically,
2) adjusting the compression effort to meet the desired
goals, such as compression latency and CPU consump-
tion, and 3) responding to changing conditions and avail-
ability of resources in seconds. We emphasize that the
thrust of this framework is not improved compression al-
gorithms, but rather a new algorithmic wrapping layer
for optimizing the utilization of existing compression al-
gorithms.

For better understanding of the problem at hand, Sec-
tion 2 briefly surveys the key challenges of dynamic
HTTP compression in cloud platforms. Since com-
pression performance strongly depends on the content
data itself, in Section 3 we analyze HTTP content from
the top global websites, illuminating their properties
with respect to their compression size savings and re-
quired computational effort. Then we turn to describe
our solution. First we present in Section 4 a fully-
functional implementation along with its constituent al-
gorithms. Then, using a real-life workload, in Section 5
we demonstrate how the implementation operates. Sec-
tion 6 reviews background of HTTP compression and re-
lated work, and Section 7 concludes and discusses future
work.

2 Challenges

This section sketches some of the challenges of data
compression in the dynamic content era. These chal-
lenges set the ground for the study that follows in sub-
sequent sections.

2.1 Static vs. Dynamic Compression

Static content relates to files that can be served directly
from disk (images/videos/CSS/scripts etc.). Static com-
pression pre-compresses such static files and saves the
compressed forms on disk. When the static content is
requested by a decompression-enabled client (almost ev-
ery browser), the web server delivers the pre-compressed
content without needing to compress the content upon
the client’s request [27]. This mechanism enables fast
and cheap serving of content that changes infrequently.

Dynamic content, in the context of this paper, relates
to web pages that are a product of application frame-
works, such as ASP.NET, PHP, JSP, etc. Dynamic web
pages are the heart of the modern web [31]. Since dy-
namic pages can be different for each request, servers
compress them in real time. As each response must be
compressed on the fly, the dynamic compression is far
more CPU intensive than static compression. Therefore,
when a server is CPU bound it may be better not to com-
press dynamically and/or to lower the compression ef-
fort. On the other hand, at times when the application is
bound by network or database capabilities, it may be a
good idea to compress as much as possible.

2.2 CPU vs. Bandwidth Tradeoff

The focus in this paper is on compression of dynamic
content, namely unique HTML objects generated upon
client request. The uniqueness of these objects may be
the result of one or more of several causes, such as per-
sonalization, localization, randomization and others. On
the one hand, HTML compression is very rewarding in
terms of bandwidth saving, typically reducing traffic by
60-85%. On the other hand, each response needs to be
compressed on-the-fly before it is sent, consuming sig-
nificant CPU time and memory resources on the server
side.

Most server-side solutions allow choosing between
several compression algorithms and/or effort levels.
Generally speaking, algorithms and levels that compress
better also run slower and consume more resources. For
example, the popular Apache web-server offers 9 com-
pression setups with generally increasing effort levels
and decreasing output sizes.

Figure 1a presents a typical bandwidth reduction
achieved with all the 9 compression levels in an Apache
site. We intentionally postpone the full setup details to
Section 5, and just mention at this point that the average
page size in this example is 120 KB. The complemen-
tary Figure 1b shows the CPU vs. bandwidth trade-off;
the higher compression efforts of the upper levels imme-
diately translate to lower capacities of client requests.
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(a) Gain - bandwidth saving improves in upper levels

(b) Pain - service capacity shrinks in upper levels

(c) Pain - compression latency grows in upper levels

Figure 1: Compression gain and pain per level, of dynamic
pages with average size of 120 KB

2.3 Latency: First-Byte vs. Download-
Time Tradeoff

Web testing tools often use the Time To First Byte
(TTFB) measurement as an indication of the web server’s
efficiency and current load. The TTFB is the time from
when a browser sends an HTTP request until it gets the
first byte of the HTTP response. Some tools [12] prac-
tically grade the web-server “quality” according to the
TTFB value.

Figure 2: Compression location alternatives in the web server
side.

When compression is in use by the server, the TTFB
tends to get higher. This is because today’s dynamic
servers usually perform the following steps in a pure se-
quential manner: 1) page generation, 2) compression,
and 3) transfer. Therefore, the larger the page and the
higher the compression level, the larger the TTFB.

On the other hand, compression obviously reduces
dramatically the complete download time of a page. Al-
together, although the compression increases the TTFB,
there is no doubt that this extra delay pays itself when
considering the complete download time [14]. The open
question is how high the compression level should be to
reap download-time benefits without sacrificing latency
performance. For example, Figure 1c shows the com-
pression time of a 120 KB page, where the slowest level
takes x3 more time than the fastest level, which is a typ-
ical scenario as we show in the sequel.

2.4 Where to Compress

Optimizing data compression in the web server is very
promising, but simultaneously challenging due to the
great richness and flexibility of web architectures. Even
the basic question of where in the system compression
should be performed does not have a universal answer
fitting all scenarios. Compression can be performed
in one of several different layers in the web server
side. Figure 2 illustrates a typical architecture of a web-
application server, where each layer may be a candi-
date to perform compression: 1) the application-server
itself, 2) offloaded to a reverse-proxy, or 3) offloaded
to a central load-balancer. On first glance all these op-
tions seem equivalent in performance and cost implica-
tions. However, additional considerations must be taken
into account, such as a potential difficulty to replicate
application-servers due to software licensing costs, and
the risk of running CPU-intensive tasks on central enti-
ties like the load-balancer.
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3 Web-Compression Study

In this work our focus is on compression of dynamic
HTTP content in web-server environments. A study of
compression has little value without examining and rea-
soning about the data incident upon the system. There-
fore, in this section we detail a study we conducted on
real-world HTTP content delivered by servers of popu-
lar web-sites. The results and conclusions of this study
have shaped the design of our implementation and algo-
rithms, and more importantly, they motivate and guide
future work on algorithmic enhancements that can fur-
ther improve performance. Another contribution of this
study is the good view it provides on current compression
practices, which reveals significant inefficiencies that can
be solved by smarter compression.

The study examines HTML pages downloaded from
top 500 global sites. The content of the pages is analyzed
in many aspects related to their compression effort and
size savings.

3.1 Setup
We fetched the list of the top 500 global sites from
Alexa [2] in October 2012. For each site, we down-
loaded its main page at least once every hour with a
gzip-enabled browser and saved it for further process-
ing. Then, we emulated possible compression operations
performed by the origin servers, by compressing the de-
compressed form of the pages using various tools and
parameters. The analysis presented here is based on 190
consecutive downloads from each site in a span of one
week.

3.2 Content Analysis
The first layer of the study is understanding the proper-
ties of popular content. Here we are interested in their
compression ratios, their dynamism, and statistics on
how website operators choose to compress them. We ran
a basic analysis of 465 sites out of the top 500 sites. The
rest are sites that return content that is too small to com-
press. A summary is presented in Table 1, where the
numbers aggregate the entire set of one week snapshots
from all the sites.

We start with examining what the supported compres-
sion formats are, by trying each of the formats main-
tained by IANA[21]. We find that the vast majority of
the sites (85%) support “gzip” only, while 9% of that
group support “gzip” and “deflate” only. (In the current
context “gzip” and “deflate” in quotation marks refer to
standard format names. The same terms are also used in
other contexts to describe compression implementations,
as explained in Section 6.) This means that our choice

Table 1: Websites analysis - basic properties

Sites supporting “gzip” format 92%
Sites supporting “deflate” format 9%
Average download size (compressed only) 22,526
Average uncompressed file 101,786
Compression ratio (best-median-worst) 11%-25%-

53%
Fully dynamic sites 66%

Table 2: Websites analysis - web-server survey.

Developer Share
Apache 40.3%
nginx 23.9%
gws 15.3%
Microsoft 6.5%
lighttpd 1.7%
YTS 0.9%
PWS 1.1%
Others 10.2%

of gzip and deflate for our implementation and exper-
iments is applicable to the vast majority of real-world
HTTP content. As far as compression-ratio statistics go,
the median compression ratio (across sites) is 25% (4:1
compression). The best compression ratio we measured
is 11% (9:1) and the worst is 53% (∼2:1).

The next measurement of interest is the dynamism of
web content, which is the variations of supplied data in
time and across requesting clients. We found that 66%
of the sites generated a unique page every time we have
downloaded a snapshot. This is not surprising consider-
ing that dynamic pages are at the heart of Web 2.0. While
this sample does not give an accurate prediction, it does
attest to the general need for on-the-fly compression pur-
sued in this paper.

An important statistic, especially for the choice of an
implementation environment for our algorithms, relates
to the server types used by popular sites. The most pop-
ular web-server turns out to be Apache, as illustrated in
Table 2. These findings match an elaborate survey con-
ducted in November 2012 [28]. This finding was the mo-
tivator to choose Apache as the platform for implemen-
tation and evaluation of our algorithms.

3.3 Performance Analysis
Beyond the analysis of the compression ratios and exist-
ing compression practices, it is useful for our framework
to study how compression performance depends on the
actual content. The results of this study hold the potential
to guide server operators toward adopting compression
practices with good balancing of effort and size savings.
For that study we used our utilities to run performance
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Table 3: Websites performance analysis.

Sites that probably use zlib 51%
Average zlib compression level 5.02
Average added traffic if used fastest level +9.93%
Average reduced traffic if used best level -4.51%
Sites using gzip’s default (average 5.9-6.1) 200 (47%)

tests on the pages we had downloaded. These tools are
available too for download from the project’s site [36].

A summary is presented in Table 3, and later expanded
in subsequent sub-sections. From the table it is learned
that the zlib library emerges as a popular compression
library in use today. We reached this conclusion by gen-
erating many different compressed forms of each down-
loaded page using different applications, and comparing
the locally generated forms to the one we had down-
loaded. When a match is found, we project that the server
is using the matching compression code and the parame-
ters we use locally. Indeed, these tests show that at least
51% of the sites use zlib somewhere in their system: in
the server, reverse-proxy, load-balancer, or at an external
offload box. That is another reason, in addition to the
popularity of Apache, for using Apache and zlib for the
web-compression analysis below.

3.3.1 Compression level

In this sub-section we estimate which compression level
is used by each site. The results are presented in Fig-
ure 3a as a CDF curve. We found that the average esti-
mated compression level in use is 5.02 and the median is
6, which is also zlib’s default level.

3.3.2 Compression effort

We compressed the contents from all the sites using all
9 levels, and examined the CPU effort induced by the
compression levels. The results in Figure 3b show sig-
nificant effort variation across sites per level. For ex-
ample, in level 1, the slowest site (the one that required
the maximal effort) required x3.5 more CPU power than
the fastest site at the same level. In addition, there is at
least one case in which level 1 in one site runs slower
than level 9 for another site. Hence we conclude that
the algorithmic effort, exposed to the user in the form of
compression levels, cannot be used as a prediction for the
CPU effort.

3.3.3 Fastest vs. slowest levels

Levels 1 and 9 are the extreme end points of the compres-
sion capabilities offered by zlib. As such, it is interesting
to study the full tradeoff window they span between the

(a) Compression levels used in practice, assuming that the sites
use zlib-based compression code

(b) CPU effort induced by each compression level (min, aver-
age, and max)

Figure 3: Top sites analysis - levels and CPU effort.

fastest compression and the best-ratio one. Specifically,
how much more effort is needed to move from level 1 to
level 9, and what the gain is. The answer to this ques-
tion is presented for all the sites in Figure 4a. The results
show, again, that effort cannot be predicted based upon
content size and compression level alone: effort can grow
by x2 to x6.5 (y locations of the points), while the gain
in traffic reduction is anything between 9% to 27% (x
locations of the points).

3.3.4 Compression speed vs. ratio

Another important finding for our framework is that the
amount of redundancy in the page is highly correlated
with low-effort compression, even at the upper levels.
When the redundancy is high, zlib is able to find and
eliminate it with little effort, thus reducing file sizes at
low processing costs. These relations are depicted in
Figure 4b, which presents the compression speed (high
speed = low effort) versus the compression ratio (low ra-
tio = strong compression) of all the sites we examined,
when compressed locally with the default level 6.
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(a) Comparing the costs and gains in moving from level 1 to
level 9

(b) Time/save ratio vs. page compressibility, if all sites were
using zlib level 6 (default)

Figure 4: Top sites analysis - costs, gains, and compressibility.

3.4 Considering the Cloud Pricing Plan

Continuing the study in the direction of web service over
the cloud, we are now interested to find for each com-
pression level the totality of the operational costs when
deployed over a cloud service, i.e., the combined cost of
computing and network bandwidth. For this part of the
study we assumed an Amazon EC2 deployment, with the
prices that were available at the time of the experiment.
Clearly the results depend on the instantaneous pricing,
and as such may vary considerably. Thus the results and
conclusions of this study should be taken as an illustra-
tive example. We further assume that the offered cloud
services are fully scalable, stretching to unlimited de-
mand with a linear increase in operational costs. Figure 5
shows the optimal level on a per-site basis, revealing that
level 7 is the optimal level for most sites, but also show-
ing that some sites gain more from level 6 or 8.

Figure 5: Top sites analysis - considering a momentary pricing
plan of Amazon EC2. Cost reduction is relative to
level 1 compression. The optimal level, presented as
percentage of sites where each level is the optimal

4 Implementation

Our main contribution to compression automation is
software/infrastructure implementations that endow ex-
isting web servers with the capability to monitor and con-
trol the compression effort and utility. The main idea of
the implemented compression-optimization framework
is to adapt the compression effort to quality-parameters
and the instantaneous load at the server. This adaptation
is carried out fast enough to accommodate rapid changes
in demand, occurring in short time scales of seconds.

In this section we provide the details of two alternative
implementations and discuss their properties: Both alter-
natives are found in the project’s site [36] and are offered
for free use and modification:

System-A - A modification of the deflate module of
Apache (mod deflate) that adapts the compression
level to the instantaneous CPU load at the server.

System-B - Two separate modules work in parallel to of-
fer a flexible but more complex solution: a monitor-
and-set stand-alone process and an enhancement plu-
gin for the compression entity.

4.1 System-A
System-A is a transparent solution designed for seamless
deployment and use in any working Linux-Apache envi-
ronment. It does not require any changes in the working
code and site structure, but requires a build of Apache
with a modified mod deflate.c. The modified module
contains 100+ new lines of code in C language.

Figure 6a illustrates the system’s architecture, which
is very similar to a standard Apache. The only differ-
ence between a standard Apache and System-A, is that
the mod deflate module does not use the static compres-
sion level from the configuration file. Instead, the mod-
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(a) System-A: Apache with a
modified mod deflate mod-
ule

(b) System-B: monitor-and-set
and a plugin

Figure 6: Implementation architectures

ule performs the following: 1) continuously checks the
system’s load, 2) remembers what was the last compres-
sion level in use, and 3) updates periodically the com-
pression level, if needed.

The effort adaptation is performed in one-step incre-
ments and decrements. Proc. 1 gives a short pseudo-code
that presents the basic idea in a straight-forward manner.

Proc. 1 Simplified pseudo-code of the level modification
phase in mod deflate.c

1. if next update > cur time then
2. if cpu > high threshold and cur level > 1 then
3. cur level← cur level−1
4. else if cpu < low threshold and cur level < 9

then
5. cur level← cur level +1
6. end if
7. next update← cur time+update interval
8. end if

4.2 System-B

System-B takes a different approach – it is agnostic to
the OS and web-server type, but it requires a change in
the original site’s code. Two separate modules in our im-
plementation work in parallel to offer fast-adapting com-
pression configuration. These are:

Monitor and set – Stand-alone process that monitors
the instantaneous load incident on the machine, and
chooses a compression setup to match the current ma-
chine conditions.

Compression plugin – Enhancement plugin for the
compression entity that uses the chosen setup to com-
press the content. It operates in a fine granularity al-
lowing to mix different setups among the outstanding
requests.

Figure 6b illustrates the implementation structure.
This solution compresses the HTML before it is being
handed back from scripting to Apache. This allows the
adaptive solution to bypass the static built-in compres-
sion mechanism and add the desired flexibility.

4.2.1 Module I – Monitor and Set

The monitor-and-set module runs as a background pro-
cess on the same machine where compression is per-
formed. Its function is essentially a control loop of the
CPU load consisting of measuring the load and control-
ling it by setting the compression level. Its implementa-
tion as a separate process from the compression module
is designed to ensure its operation even at high loads by
proper prioritization.

4.2.2 Module II – Compression Plugin

The compression plugin is designed as an enhancement,
rather than replacement, of an existing compression tool.
This design allows our scheme to work with any com-
pression tool chosen by the web-server operator or target
platform. The sole assumption made about the compres-
sion tool in use is that it has multiple compression setups,
ordered in non-descending effort levels. For example,
the widely used zlib [13] compression tool offers a se-
quence of 9 setups with generally increasing effort levels
and non-increasing compressed sizes.

This plugin code should be added at the end of an ex-
isting script code (like PHP), when the content is ready
for final processing by the web-server. The plugin uses
the setup provided by the monitor-and-set process and
invokes the platform’s compression tool with the desig-
nated setup. An important novelty of this algorithm is its
ability to implement a non-integer setup number by mix-
ing two setups in parallel. The fractional part of the setup
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number determines the proportion of requests to com-
press in each of the integer setups. For example, when
the input setup number is 6.2, then 80% of the requests
can be compressed with setup 6, while the rest are com-
pressed with setup 7.

4.3 Practical Considerations

We now turn to discuss the details pertaining to the spe-
cific implementations we use in the evaluation. Part of
the discussion will include special considerations when
operating in a cloud environment. Fully functional ver-
sions of this code, for different environments, can be ob-
tained from the project’s web page [36].

CPU monitoring uses platform-dependent system
tools, and further needs to take into account the under-
lying virtual environment, like the Amazon EC2 we use
in the paper. Specifically, we need to make sure that the
CPU load readout is an accurate estimate [19] of the pro-
cessing power available for better compression in the vir-
tual server. From experimentation within the Amazon
EC2 environment, we conclude that Linux utilities give
accurate CPU utilization readouts up to a cap of CPU
utilization budget determined by the purchased instance
size. For example, in an m1.small instance the maximal
available CPU is about 40%, while m1.medium provides
up to 80% CPU utilization. These CPU budgets are taken
into account in the CPU threshold parameters.

When deploying in a real system, the compression
level should not be adapted too frequently. To ensure a
graceful variation in CPU load, it is advisable to choose
a minimal interval of at least 0.5 second.

5 Proof of Concept Scenarios

After detailing our implementation of elastic web com-
pression, in this section we turn to report on usage sce-
narios and our experience with the code. For the study
we choose the Amazon EC2 environment, for both its
popularity and flexibility. In the study we compare, un-
der different scenarios of interest, the performance of our
implementation of elastic compression to the static com-
pression currently employed in popular commercial web-
servers.

Our implementation is next shown to offer the follow-
ing features:

1. Protecting against sudden demand peaks and denial-
of-service (DoS) attacks.

2. Trading server’s free CPU time for bandwidth savings
at low/medium loads.

Before dispatching to these individual scenarios, we
describe the general setup of our experiments.

(a) Workload

(b) System

Figure 7: Experiment setup - the workload is divided between
a collection of standard web-servers and servers that
run our elastic compression.

5.1 General Setup

The workload and the general setup are illustrated in Fig-
ure 7. We use EC2 instances of type m1.small, each pro-
viding 1.7 GB memory and 1 EC2 Compute Unit [3].
Each instance is a single front-end web-server, with
Ubuntu Server 12.04.2 LTS 64-bit, Apache 2.2.24 (Ama-
zon) and PHP 5.3.23. For a side-by-side comparison
with standard web-servers (“Standard”), we equipped
one or more of the servers with our elastic implementa-
tion (“Elastic”). Monitoring of the instances’ resources
and billing status is performed with Amazon Cloud-
Watch.

The workload is a 24-hour recording of 27,000 dis-
tinct users who visited a specific social network site. This
workload is typical to sites of its kind, demonstrating low
demand at 5:00 AM and high peaks around 8:00 PM, as
illustrated in Figure 7a. We replay this workload by run-
ning multiple clients from multiple machines in AWS.
Each front-end web-server receives a fraction of the re-
quests in any given time, through a load-balancer. The
fractions are depicted in Figure 7b as ws for each “Stan-
dard” server, and we for each “Elastic” server. More de-
tails are provided in each scenario separately.
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5.2 Case 1: Spike/DoS Protection

In this sub-section we use the elastic compression as a
protection utility against sudden traffic peaks and/or or-
ganized DoS attacks.

The “Elastic” maximal deflate level is set to 6, which
is the default and the most popular compression setup
of Apache (gzip level 6), as we show in Section 3. All
the web-servers share the overall traffic evenly, while one
web-server is equipped with the elastic compression. To
emulate a sudden peak or attack, we run the workload
almost normally, with one exception: on 19:40-19:45 the
service experiences a sudden 5 minutes attack, equiva-
lent to 69% additional requests comparing with a normal
high time-of-day. Figure 8a gives a zoom-in to the ac-
cess pattern of a 1 hour interval containing the 5-minutes
attack.

Figure 8b illustrates the projected latency at the clients
who managed to complete a request, showing that the
static server is saturated during the attack and also long
after it. In addition (not shown in graph), almost half
the client requests timed-out during the 5-minutes peak.
Practically, all the “Standard” servers were out of order
for at least 10 minutes. In reality, these attacks usu-
ally end up worse than that, due to client retransmission
and/or servers that fail to recover. Figure 8c shows how
the elastic compression handles the attack: it lowers the
compression effort to minimum during the attack, until it
feels that the server is no longer in distress.

5.3 Case 2: Compress More

We consider a standard web-server running low-effort
compression. More specifically, the baseline is “Stan-
dard” Apache servers running compression level 1 (a.k.a
fastest).

In this experiment, all the servers receive an equal
share of the traffic throughout the day – meaning ws =
we. While a “Standard” server uses the same compres-
sion setup all day long, an “Elastic” server selectively
changes the compression level: from 1 (fastest) to 9
(slowest). It changes the compression level according to
the sensed load at the server, in order to compress more
than the standard server when the end-users’ demand is
relatively low.

The standard machine’s CPU follows the end-users’
request pattern tightly, leaving large portion of the CPU
unused most of the day. The elastic solution uses the
free CPU for higher-effort compression most of the day,
saving additional bandwidth, whenever there are enough
unused resources for it. When demand is high, the elastic
solution returns to low-effort compression, staying below
the maximal allowed CPU consumption. In the given
scenario, the adaptive compression level managed to save

(a) Requests - additional 69% in 5 minutes interval

(b) High latency in the standard server during the peak

(c) Elastic compression level, as used in practice

Figure 8: Case 3: handling a sudden peak and/or DoS attack.

10.62% of the total traffic volume during the 24-hours
experiment.

5.4 Case 3: Reducing the 95th Percentile
Latency

We now evaluate elastic compression on the real-world
workload of another big web infrastructure1. While serv-

1The source has asked to remain anonymous, keeping its systems’
structure and performance hidden from hostiles
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Figure 9: Reducing p95 latency: normalized compression
times at different levels as a function of CPU uti-
lization.

ing millions requests a second, its web servers strive to
reduce response generation times for providing optimal
user experience. Therefore, a compression strategy in
such an environment should be as lightweight as possi-
ble while trying to minimize the needed bandwidth.

Measuring the latency of active real-world services is
tricky, because the service provider is mostly worried
about loosing customers that experience the worst laten-
cies. Hence, it is a common practice to consider per-
centiles and not just the average. As compression times
vary heavily among different responses we consider per-
centile p95 a representative of “heavy compressions”.

In the following experiment we compare compression
times and response sizes of levels 2, 4 and 8 as a func-
tion of CPU utilization at a web server. Figure 9 demon-
strates that the differences between compression times
at different levels grow super linearly as a function of
CPU utilization2. This presents an opportunity to sac-
rifice 10% of the egress bandwidth under heavy load in
order to drastically (x2) reduce the compression time.

6 Background and Related Work

Data compression and its effect on computer systems is
an important and well studied problem in the literature.
Here we survey some background on compression tools,
and related work on compression-related studies.

It is important to first note that the popular compres-
sion term gzip stands for several different things: a soft-
ware application [16], a file format [8, 9], and an HTTP
compression scheme. Gzip uses the deflate compres-
sion algorithm, which is a combination of the LZ77 al-
gorithm [35] and Huffman coding. Gzip was officially
adopted by the web community in the HTTP/1.1 speci-
fications [11]. The standard allows a browser to declare

2The Y-axis values were normalized/anonymized on purpose, per
the source’s request.

its gzip-decompression capability by sending the server
an HTTP request field in the form of ”Accept-Encoding:
gzip”. Gzip is the most broadly supported compression
method as of today, both by browsers and by servers.
The server, if supports gzip for the requested file, sends
a compressed version of the file, prefixed by an HTTP
response header that indicates that the returned file is
compressed. All popular servers have built-in support
or external modules for gzip compression. For exam-
ple, Apache offers mod deflate (in gzip format, despite
the misleading name) and Microsoft IIS and nginx have
built-in support.

It became a standard in the major compression tools to
offer an effort-adjustment parameter that allows the user
to trade CPU for bandwidth savings. In gzip the main pa-
rameter is called compression level, which is a number in
the range of 1 (”fastest”) to 9 (”slowest”). Lower com-
pression levels result in a faster operation, but compro-
mise for size. Higher levels result in a better compres-
sion, but slower operation. The default level provides
an accepted compromise between compression ratio and
speed, and is equivalent to compression level 6.

Industrial solutions for gzip include PCI-family
boards [22, 1], and web accelerator boxes [10] that of-
fload the CPU-intensive compression from the servers.
Although these solutions work in relatively high speeds,
they induce additional costs on the website owner. These
costs make the hardware solutions inadequate for web-
sites that choose compression for cost reduction in the
first place.

There is an extensive research on compression perfor-
mance in the context of energy-awareness in both wire-
less [4] and server [23] environments. Inline compres-
sion decision [6] presents an energy-aware algorithm for
Hadoop that answers the ”to compress or to not com-
press” question per MapReduce job. Similarly, fast filter-
ing for storage systems [17] quickly evaluates the com-
pressibility of real-time data, before writing it to stor-
age. Fine-grain adaptive compression [30] mixes com-
pressed and uncompressed packets in attempt to opti-
mize throughput when the CPU is optionally the bottle-
neck in the system. A more recent paper [15] extends
the mixing idea to scale down the degree of compression
of a single document, using a novel implementation of a
parallelized compression tool. A cloud related adaptive
compression for non-web traffic [20] focuses on how to
deal with system-metric inaccuracy in virtualized envi-
ronments. We found that this inaccuracy problem, re-
ported in July 2011 [19], no longer exists in Amazon
EC2 today. To the best of our knowledge, our paper
presents the first adaptive web compression that takes a
complex cost-aware decision with multiple documents.

In this paper we use the gzip format and zlib [13]
software library to demonstrate our algorithms, because
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both are considered the standard for HTTP compression.
Nevertheless, the presented algorithms are not limited
to any particular compression technology or algorithm;
they can encompass many different compression algo-
rithms and formats. In particular, they can also benefit
from inline compression techniques [24, 33, 26] when
support for these formats is added to web servers and
browsers.

7 Conclusions

In this paper we had laid out a working framework for
automatic web compression configuration. The benefits
of this framework were demonstrated in several impor-
tant scenarios over real-world environments. We believe
that this initial work opens a wide space for future re-
search on compression cost optimization in various plat-
forms, including cloud-based services. Building on the
main functionality of our proposed implementation, fu-
ture implementations and algorithms can improve cost
by tailoring compression to more system architecture and
content characteristics.
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