
1

On-Line Fountain Codes with Low Overhead
Yuval Cassuto, Senior Member, IEEE, and Amin Shokrollahi, Fellow, IEEE

Abstract— An on-line fountain code is defined as a fountain
code for which an optimal encoding strategy can be found
efficiently given any instantaneous decoding state. This property
is important for data distribution in practical networks. In this
paper we formalize the problem of on-line fountain code construc-
tion, and propose new on-line fountain codes that outperform
known ones in having factor 3-5 lower redundancy overhead.
The bounding of the code overhead is carried out using analysis
of the dynamics of random-graph processes.

Index Terms— Fountain codes, rateless codes, on-line codes,
codes with feedback, random graphs.

I. INTRODUCTION

Fountain coding was proposed [3] for efficient distribution

of data in lossy networks, with the goal to allow information

transmission that is oblivious to losses of individual packets.

Fountain codes that meet this goal with negligible overhead

were found [10], and later improved in complexity [11]. These

works, and others that followed, specify methods to encode

(and decode) data blocks at the sender (and receiver) nodes,

and prove upper bounds on the average overhead in the case

of random losses.

Low overhead is clearly an important code-design objective,

but some applications may find it insufficient on its own, with

system performance being dominated by other properties of

the code. The long code blocks and fixed pre-defined encoding

procedures of the aforementioned fountain codes result in high

decoding latency, and no way for the receivers to control or

even monitor the progress of the data reception. In addition,

packet losses in the network may not be all random, further

exacerbating the risks of a long batch transmission designed

for pure-random losses. A practical fountain code should thus

balance low redundancy overhead with an on-line ability to

adapt the code to instantaneous network conditions.

In the framework developed in this paper, a fountain code

is called on-line if given an arbitrary decoding state at the

receiver, the optimal coding strategy for the encoder can

be found efficiently. This is a much stronger property than

conventional fountain codes, which only guarantee optimality

for the initial state of decoding. The importance of the on-

line property is that it guarantees optimal performance even at

states that differ significantly from the expected under random

losses, e.g. due to an adversary or extremely unfortunate

circumstances. As it turns out, there are known fountain codes

Yuval Cassuto is with the Department of Electrical Engineering,
Technion – Israel Institute of Technology, Haifa Israel (email: ycas-
suto@ee.technion.ac.il). Part of the research was done while at the School
of Computer and Communication Sciences, École Polytechnique Fédérale de
Lausanne (EPFL).

Amin Shokrollahi is with the School of Computer and Communication
Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 14, CH-
1015 Lausanne, Switzerland (e-mail: amin.shokrollahi@epfl.ch).

Part of this work was presented at the 2011 Information Theory Workshop,
Paraty Brazil [4].

This work was supported in part by an EU CIG grant, by an Israel-India
ISF-UGC project, and by the Israel Ministry of Science and Technology.

with the on-line property such as growth codes [8] and real-

time oblivious codes [2], (see also [5]). However, these codes

suffer from very high redundancy overheads.

To make the on-line property usable in a communication

setup, one needs to feed decoding-state information from the

receiver back to the sender. That way the sender is able

to adapt the encoding strategy from the current one used

to the optimal one calculated from the decoding state. A

feedback transmission is needed only when the decoding state

changes so much that the optimal encoding strategy needs to

change at the sender. The frequency at which this happens

is presented as part of the code evaluation in Section VI. In

particular, our on-line fountain codes use less feedback than

the previously known on-line fountain schemes [8], [2]. We

note that in practical scenarios feedback can be limited even

further (with occasional slight deviations from optimality)

without significant loss of performance. This tradeoff between

feedback-use and performance has been a fertile ground for

prior research on schemes that successfully reduce overhead

using feedback [9], [7], [12]. Another important consideration

for the proposed codes is how to operate them in a point-

to-multipoint (multicast) setup, where the states of multiple

receivers need to be accommodated into the encoder strategy.

While we do not consider this extension in the present paper,

we believe that multicasts can similarly benefit from on-line

fountain codes under some mild assumptions on the loss rates.

This belief comes mainly from the fact that our codes only use

uniform symbol distributions at the encoder, thus making the

joint optimization for multiple receivers possible and tractable.

The main idea behind the new codes is a new representation

of the decoding state that is more amenable to algorithmic

reasoning on the current state than the standard representation

as a bi-partite graph. This pays in the ability to efficiently

compute the optimal strategy, but costs in increased overhead

due to discarding of code symbols that cannot be represented

at the time of their arrival. The resulting codes attain the

on-line property with significantly lower overhead, between

factor 3 and factor 5 lower compared to the previously known

codes [8],[2]. This significant improvement is achieved by

representing the decoding state as a uni-partite graph, and

using the graph structure to efficiently find the optimal coding

strategy at the current state. The simple graph representation

also allows to analyze the coding overhead, building on

fundamental results from random-graph theory [6]. The con-

tributions of the paper include the first formalization of the on-

line property for fountain codes (Section II), the development

of the uni-partite view of fountain codes (Section III), an on-

line fountain code construction using an efficient algorithm to

find the optimal coding strategy (Section IV), and bounding the

overhead of a simplified construction by analyzing the dynam-

ics of random graphs (Section V). Finally, the performance of

the new codes in communication setups is evaluated through

simulation (Section VI).

2

There are many potential applications for on-line fountain

codes. One is data distribution in the presence of intermittent

adversaries, which bring receivers to arbitrarily bad decoding

states and then leave them to recover. Another important

application is for distributed storage, where code symbols are

distributed among multiple nodes, and the on-line property

gives sufficient transparency to control the long-term recover-

ability of the data given an instantaneous node-failure state.

II. ON-LINE FOUNTAIN CODES

Block rateless fountain codes, such as LT [10] and Rap-

tor [11] codes, are designed for batch transmission of coded

symbols. These codes aim at minimizing the number of coded

symbols required to successfully decode the entire code block

with high probability. Given a current state of code symbols

already received at a receiver node, batch fountain codes do

not address the minimization of code-symbol transmissions

until complete decoding. It has been recognized in prior work

that not considering the current state of already received

symbols results in sub-optimal performance in many practical

scenarios. Several works have proposed adaptations to batch

fountain codes, mostly LT codes, that do consider the current

decoding state for the choice of subsequent code symbols to

transmit. A partial list of such coding schemes includes [9],

[7], [12]. The outcome of these schemes is that faster decoding

can be achieved by feeding decoding-state information from

the receiver back to the transmitter. In this paper we make

another step in this direction and look for coding schemes

for which the provably optimal coding strategy can be found

given an arbitrary decoding state. The ability to efficiently

find the optimal coding strategy given the current state is

very important in practical applications, since it guarantees

fast decoding at any point of time without any assumption

on the past behavior of the encoder and channel. Fountain

codes with known optimal coding strategies given the current

decoding state are called herein on-line fountain codes. No

matter how unusual or unfortunate previous encodings and

transmissions have been, from the current state onward on-line

fountain codes guarantee optimal performance. This property

is maintained even if the code-symbol losses till this point

are maliciously set by an adversary. Before giving a formal

definition of the on-line property, we make the terms fountain

code and coding strategy more precise.

Definition 1. A fountain code has a block of k input symbols,
an encoder and a decoder. The encoder generates code symbols

by taking eXclusive-OR (XOR) operations on subsets of input

symbols. The decoder processes the received code symbols and
outputs the k input symbols.

Definition 2. A coding strategy of a fountain code is a set of
specifications according to which the encoder chooses the sub-

sets of input symbols to XOR for generation of code symbols.

A coding strategy is selected from a pre-defined universe

of permissible strategies. For example, in fountain coding

schemes it is common to only consider uniform coding strate-

gies, which allow to vary the degree (number of operands) of

the XOR operations, but require to select the XOR operands

uniformly from the k input symbols. While in general non-

uniform fountain codes are useful and well studied – mainly

in the context of unequal error protection (UEP) codes – in

this paper we restrict ourselves to uniform codes only. The

reasoning behind only considering uniform fountain codes is

that non-uniform codes require encoders that are much more

complex in optimizing their outputs, and much more informed

about the decoding states of the receivers.

Definition 3. A fountain code is called on-line if given an

arbitrary decoding state at the receiver, the optimal coding
strategy for the encoder can be found efficiently.

It is important to clarify that optimal in Definition 3 refers

to optimality with respect to the decoder chosen for the

fountain code. That is, for a fountain code to be qualified

as an on-line fountain code, one has to first specify the

decoder, then there must exist an algorithm that uses the

current decoding state to efficiently determine the encoding

function that maximizes some measure of decoding progress.

We also note that Definition 3 does not specify the mechanism

by which the coding strategy is adapted in a communication

setup. In particular, both of the following options are possible

1) The receiver node feeds its decoding state back to the

sender. The sender node computes the optimal strategy

from the state input.

2) The receiver node itself computes the optimal strategy

from its decoding state. The optimal strategy is fed back

to the sender node.

The decision how to perform coding-strategy updates depends

upon practical circumstances, mainly considering the cost

of feedback communications vs. the receiver’s computation

capabilities.

A fountain code with the on-line property was proposed by

Kamra et. al in [8] (called growth code), and independently by

Beimel et. al in [2] (called real-time oblivious code). In this

code, with each received code symbol the decoder attempts

to decode an input symbol not previously known to it, and

discards the code symbol if this attempt fails. For this decoder,

the optimal degree for a code symbol drawn by the encoder is

the one that maximizes the probability that a new input symbol

will become known following the receipt of the code symbol.

This optimal degree was given in [8] and [2] as a function

of the current number of decoded symbols at the receiver.

Knowing the optimal degree immediately defines the optimal

coding strategy at the sender as using this optimal degree in

subsequent generations of code symbols. Since this optimal

strategy is known for any decoding state (number of decoded

symbols), this fountain code has the on-line property. However,

in this code the on-line property comes with a prohibitive cost

in redundancy. In [2] a redundancy of 100% is suggested, i.e.,

2k received code symbols are needed to decode the k input

symbols with high probability. It is possible to prove that the

redundancy of this code is lower bounded by ln 2 ≈ 0.69. This

is shown in Section V-C where we compare this known code

to an improved code that achieves the on-line property with a

much more reasonable cost of redundancy.

3

III. FOUNTAIN CODES ON UNI-PARTITE GRAPHS

To obtain on-line fountain codes with lower redundancy

than best known codes, we now define a simple graph structure

on which fountain codes can be made on-line with lower

redundancy. The canonical representation of fountain codes

throughout the literature is as bi-partite graphs. Nodes of one

type, input nodes, represent the k input information symbols;

nodes of another type, code nodes, represent the code symbols.

An edge between an input node xi and a code node yj marks

that input symbol xi is one of the summands1 of code symbol

yj . For example, Figure 1 depicts the following code symbols

y1=x1+x2, y2=x2+x3, y3=x1+x3, y4=x4+x5, y5=x6.

When all of the degrees of code nodes are 2 or less, the code

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5

Figure 1. A fountain code as a bi-partite graph. Code symbols (square
nodes) are XORs of input symbols (circle nodes).

can be equivalently represented by a uni-partite graph. For the

example above, the corresponding uni-partite graph is given

in Figure 2. In the uni-partite graph, two nodes are connected

x1

x2

x3

x4

x5

x6

x7

Figure 2. A fountain code as a uni-partite graph.

with an edge if there is a code symbol that is the sum of the

corresponding two input symbols. A node is colored black if

it is known to the decoder (and white otherwise). There are

no edges incident on black nodes. In the example, symbol x6

is black thanks to the code symbol y5 = x6.

Definition 4. A (uni-partite) decoding graph is a representa-

tion of a collection of code symbols comprising

1) A code symbol xi for every black node i.
2) A code symbol xi + xj for every edge (i, j).

The advantage of the uni-partite view of a fountain code is

that it can carry the full state of code symbols with degree up

to 2, over a simple structure that allows finding the optimal

coding strategy using graph-theoretic notions. Note that the

fact that the decoding graph at the receiver only represents

degree-2 code symbols does not mean that the the sender is

restricted to using exclusively degree-2 code symbols.

1For convenience we regard the XOR operations as additions modulo 2.

A. Implicit edges and the the connected-component enumera-

tor

In addition to edges representing explicit code symbols

received from the channel, edges can be added between every

pair of nodes that is connected in the graph. These edges can

be derived by summing all code symbols along a connecting

path, canceling out all intermediate input symbols on the path.

For example, the explicit edge between x1 and x3 in Figure 2

is redundant, since it could have been obtained by summing up

the symbols (x1 +x2)+ (x2 +x3). Thus from the perspective

of the receiver, the state of decoding is fully described by

the connected components in the decoding graph and the set

of black nodes. (A connected component in a graph is a set

of vertices, all of which are connected by paths of edges,

and none of which is connected to any vertex outside the

component. The number of vertices in this set is called the size

of the connected component.). The remainder of the section is

devoted to setting up notation for characterizing the decoding

state through the decoding graph’s connected components.

This notation will be used in the next sections to define and

analyze coding strategies for on-line fountain codes.

Suppose the decoding graph at a given instant has A
black nodes and Ai connected components of size i, where

i ranges from 1 to the maximal component size (6 k).

Then the decoding state can be represented by the component

enumerator polynomial, given by

A(x) = A+

k
∑

i=1

Aix
i.

The total number of components is

#components =

k
∑

i=1

Ai = A(1)−A. (1)

Since the connected components partition the graph nodes that

are not black,

A′(1) =

k
∑

i=1

iAi = k − A. (2)

The average component size in the graph can thus be calcu-

lated as

L =
k −A

#components
=

k −A

A(1)−A
=

A′(1)

A(1)−A(0)
.

There is a clear correspondence between the structure of

the decoding graph and the dimension of the linear subspace

spanned by the received code symbols.

Proposition 1. Let G ⊂ {0, 1}k be the linear subspace spanned

by the code symbols of a decoding graph G. The dimension of

G is given by

dim(G) = k −#components(G).

Proof: Each black node in G contributes one independent

vector to the span of the code symbols. In addition, each

connected component of size i contributes to the span i − 1
independent vectors. Any i−1 edges of a spanning tree for the

4

component can give the i − 1 independent degree-2 vectors.

Summing the contributions of black and white nodes, we get

dim(G) = A+

k
∑

i=1

(i− 1)Ai

= A+

k
∑

i=1

iAi −
k
∑

i=1

Ai = k −#components,

where the last equality follows from the second equality of (2)

and the first equality of (1).

Proposition 1 implies that increasing the dimension of the code

symbols’ span at the decoder is equivalent to eliminating a

connected component from the decoding graph. This feature

will be the key for finding the optimal coding strategy in the

on-line fountain code presented in the next section.

After defining the component-enumerator polynomial and

detailing some of its properties, we turn to endow it with an

operator that will become useful later.

Definition 5. Given a component-enumerator polynomial

A(x), let A↓t(x) be the polynomial with coefficients specified

as

A↓t
i =

{

max(At − 1, 0) i = t

Ai otherwise

thus A↓t(x) has all of its coefficients identical to A(x), except

for the coefficient At which is decreased by one, if not already

zero.

IV. AN ON-LINE FOUNTAIN CODE CONSTRUCTION

The on-line fountain code proposed in this section follows

from the simple observation that if a code symbol corresponds

to an edge added between a black node and a white node in

the decoding graph, then all the nodes in the white node’s

connected component will be colored in black. For example,

in Figure 2 a symbol x4+x6 would decode x4 and x5, both in

the component of x4. First x4 is recovered by subtracting the

known x6 from x4 + x6, and then x5 is found by subtracting

x4 from x4+x5. Another important simple observation is that

if a code symbol corresponds to an edge added between two

white nodes, then the connected components of the two nodes

(if not already in the same component) are merged to a single

component.

In our on-line fountain code, the coding strategy will seek

to maximize the probability of either coloring a component

in black, or merging two distinct components. Both options

eliminate a connected component in the graph, and by Propo-

sition 1 either will increase by one the dimension spanned by

the code symbols. We refer to such increase in dimension as

decoding progress. Hence given a current decoding state pre-

sented as a decoding graph G, decoding progress is achieved if

a newly received code symbol results in either of the following

two outcomes

1) An edge coloring a component in black.

2) An edge connecting two distinct components.

All other cases either provide redundant information (symbol

sums already known to the receiver), or cannot be handled

by the uni-partite scheme (sum relations involving more than

two components). We thus seek to maximize the probability

that one of the events 1 and 2 occurs, given the instantaneous

decoding state. A more concrete (but equivalent) definition of

events 1 and 2, respectively, is

Case 1 A received code symbol sums an odd number of input

symbols from a single component, with other components

contributing even numbers of input symbols, in addition to

any number (even or odd) of black symbols.

Case 2 A received code symbol sums odd numbers of input

symbols from two components, with other components con-

tributing even numbers of input symbols, in addition to any

number (even or odd) of black symbols.

Case 1 and Case 2 result in 1 and 2 above, respectively,

because the sum of an even number of summands from the

same component is known at the decoder, and can be canceled;

also known is the sum of any number (even or odd) of black

symbols.
Denote by P1(m,A) and P2(m,A) the probabilities that a

uniformly selected degree-m code symbol results in a Case

1 and Case 2 event, respectively. The argument A is the

component enumerator polynomial of the graph G at the

receiver. Then we can define our on-line fountain code as

follows.

Construction 1. The code is defined on a block of k input

symbols.
Decoder:

1) Initialize the decoding graph as a graph with k white

nodes and no edges.

2) If a received code symbol falls under Case 1 or Case 2,
update the decoding graph. Otherwise discard the code

symbol.

Encoder:

Given the current decoding state presented as a graph with
component enumerator polynomialA, the coding strategy is set

to drawing uniformly at random code symbols with degree m̂,

where

m̂ = argmaxm [P1(m,A) + P2(m,A)] . (3)

Note first the low complexity required to decode Construc-

tion 1. An incoming code symbol of any degree is decoded

by “peeling” from it black symbols and XORs of pairs from a

connected component. If the pair-XORs are stored minimally

as balanced spanning trees of connected components, then

each peeling of a pair requires log the component size XOR

operations. To show that Construction 1 defines an on-line

fountain code, we need to prove that the coding strategy given

in (3) is optimal.

Proposition 2. Let G ⊂ {0, 1}k be the linear subspace spanned
by the code symbols of the current decoding graph G with

component enumerator A. Let v ∈{0, 1}k be the next code
symbol drawn by the encoder, and G′ ⊂ {0, 1}k the linear

subspace spanned by the code symbols after v is processed by

the decoder. Then the expected dimension of G′ is maximized
if v is drawn according to the coding strategy of (3).

Proof: If v falls under Case 1 or Case 2, then exactly

one connected component is eliminated from the decoding

5

graph. In Case 1 a component turns black, and in Case 2 two

components are merged to one. According to Proposition 1,

eliminating a component amounts to increasing the dimension

by one. If neither of Case 1 or Case 2 applies to v, then there

is no change in the connected components, and the dimension

of G′ remains the same as the dimension of G. So overall, for

degree m code symbols we have

E [dim(G′)] = dim(G) + 1 · [P1(m,A) + P2(m,A)]

+ 0 · [1− P1(m,A)− P2(m,A)].

And clearly maximizing the expectation is achieved by maxi-

mizing P1(m,A) + P2(m,A) over all m.

To calculate the decoding-progress probabilities P1(m,A) and

P2(m,A), we need to count the number of degree-m code

symbols that result in Case 1 and Case 2 symbols, respectively.

Given a component enumerator polynomial A(x), let

N1(m,A) denote the number of degree-m code symbols

that color a component in black (Case 1), and let N2(m,A)
similarly denote the number of degree-m code symbols that

connect two distinct components (Case 2). Assuming the

degree-m code symbol is drawn uniformly at random, we have

the relations

Pl(m,A) =
Nl(m,A)
(

k
m

) , for l∈{1, 2}. (4)

A. Exact calculation of P1

We start off with counting Case 1 combinations. We estab-

lish a recursive formula for this count in a theorem following

a series of lemmas. The following definitions will turn out

useful.

Definition 6. Denote by OEs(j,A) the number of combinations
of j symbols that have an odd number of symbols in one

component, and even numbers (including zero) of symbols in
all other components, given a component enumerator A(x).

The symbol OEs chosen for Definition 6 stands for Odd-Evens.

Definition 7. Denote by Es(j,A) the number of combinations
of j symbols that have even numbers (including zero) of sym-

bols in all components, given a component enumerator A(x).

The symbol Es chosen for Definition 7 stands for Evens. The

first lemma ties the function OEs from Definition 6 with Es

from Definition 7.

Lemma 3. Let A(x) be a component enumerator polynomial,

and j an integer satisfying j 6 k. Then

OEs(j,A) =

j
∑

i=1

i odd

k
∑

t=i

At

(

t

i

)

Es(j − i,A↓t). (5)

Proof: i in the outer sum is the number of input symbols in

the component that contains an odd number of input symbols

in the degree-j code symbol; t in the inner sum is the size of

this component. The function Es is invoked on the remaining

j − i input symbols and on the polynomial A↓t, to exclude

the component chosen to have an odd number of symbols.

The multiplicative coefficient of Es is the number of size-t
components in the graph, times the number of i-subsets of the

size-t component.

The next lemma gives a recursive formula for Es. Count-

ing Es is established by successively choosing a connected

component with an even non-zero number of symbols, then

removing this component from the enumerator and continuing

recursively.

Lemma 4. Let A(x) be a component enumerator polynomial,
and j an integer satisfying j 6 k. Define a 3-argument function

Es(j,A, d) with the following relation to the original function

Es(j,A)
Es(j,A, 1) , Es(j,A).

Then Es(j,A) can be calculated by invoking the following

recursive formula with d = 1:

for j > 0

Es(j,A, d) =
1

d

j
∑

i=2

i even

k
∑

t=i

At

(

t

i

)

Es(j − i,A↓t, d+1). (6)

for j = 0

Es(0,A, d) = 1 .

Proof: Let us first naı̈vely apply a recursion similar to (5)

toward the count of Es(j,A). Since correction will be needed,

we use Ẽs(j,A) in the formula.

Ẽs(j,A) =

j
∑

i=2

i even

k
∑

t=i

At

(

t

i

)

Ẽs(j − i,A↓t). (7)

The result of the recursion in (7) is that each combination

of j symbols falling into r components, with non-zero even

numbers of symbols in each, is counted r! times. This is

because an r-component combination is multiply-counted in

every order of successive selection among the r components.

So to get a correct count, we need to divide by r! the number

of combinations with r components, for each possible r.

This correction is achieved by the 1/d factor adjoined to (6),

such that an r-component combination count is successively

normalized by 1
1 · 1

2 · . . . · 1
r
= 1

r! .

After showing exact recursive counts of OEs(j,A) and

Es(j,A) in Lemmas 3 and 4, respectively, we turn to show

how to use these counts to calculate the progress probability

P1(m,A).

Theorem 5. Let A(x) be a component enumerator polynomial,
and m an integer satisfying m 6 k. Then the number of Case 1

degree-m code symbols can be counted exactly, and is given by

N1(m,A) =

m−1
∑

s=0

(

A

s

)

OEs(m− s,A).

Proof: By definition of Case 1, any number s of black sym-

bols can be included in the code symbol, and the requirement

on the remaining symbols is exactly as stated in the definition

of OEs (Definition 6). Hence we sum over all s, take all

6

possible size-s subsets as black symbols, and apply OEs to

the remaining m− s symbols.

Now that we established the count of N1(m,A), we can obtain

P1(m,A) using (4).

B. Exact calculation of P2

Moving to count Case 2 combinations, we define another

useful combinatorial function.

Definition 8. Denote by OOEs(j,A) the number of combina-

tions of j symbols that have odd numbers of symbols in two
components, and even numbers (including zero) of symbols in

all other components, given a component enumerator A(x).

The symbol OOEs stands for Odd-Odd-Evens. A recursive

count for OOEs(j,A) is given in the next lemma.

Lemma 6. Let A(x) be a component enumerator polynomial,
and j an integer satisfying j 6 k. Then

OOEs(j,A) =
1

2

j
∑

i=1

i odd

k
∑

t=i

At

(

t

i

)

OEs(j − i,A↓t). (8)

Proof: i in the outer sum is the number of input symbols

in the first (out of the two) component that contains an odd

number of input symbols in the degree-j code symbol; t in

the inner sum is the size of this component. After choosing

one component with odd number of symbols, the remaining

symbols need to divide to an odd number in one component,

and even numbers in all the rest. Hence the function OEs(j,A)
from (5) can be used. The 1/2 factor cancels the double

count of each combination: there are two components with odd

numbers of symbols, and identical combinations are obtained

by reversing the selection order of these components.

Now we reach a theorem similar to Theorem 5, this time

for N2(m,A).

Theorem 7. Let A(x) be a component enumerator polynomial,
and m an integer satisfying m 6 k. Then the number of Case 2

degree-m code symbols can be counted exactly, and is given by

N2(m,A) =

m−1
∑

s=0

(

A

s

)

OOEs(m− s,A).

Proof: The proof is essentially the same as in Theorem 5. s,

as before, is the number of black symbols in the degree-m code

symbol. After choosing the s black symbols, the requirement

on the remaining symbols is exactly as stated in the definition

of OOEs (Definition 8).

Now that we established the count of N2(m,A), we can obtain

P2(m,A) using (4).

The outcome of the exact calculations of P1(m,A) and

P2(m,A) through Theorems 5 and 7 is that we can efficiently

implement the optimal on-line encoder specified in (3). Each

recursive call to a combinatorial function is invoked with

a distinct pair of arguments j,U . In addition, the number

of different enumerators U used throughout the recursion is

at most the number of components, because of the relation

A↓t in each chain. Therefore, the complexity of calculating

Nl(m,A) is at most m times the number of components in

A. This implies low complexity in practice because initially

when the number of components is large the optimal m is

typically small, and the optimal m is typically large only

later in decoding when the number of components is already

small. One issue to consider here is the need to evaluate

large binomial coefficients, which may impose numerical

difficulties. This can be solved in practice by replacing the

exact binomial coefficients with well known approximations

that are more numerically stable.

C. Example of optimal on-line encoding

The following (small) example serves to demonstrate how

degrees are optimally chosen given the current decoding state.

Example 1. Suppose the current decoding state of a certain

receiver is given by the component enumerator polynomial
A(x) = 2 + x2 + x4. In other words, out of the k = 8 input

symbols, 2 are already decoded (black), and the remaining 6
are divided to one component of size 2 and one of size 4. For
each possible degree m∈{1, . . . , k}, the receiver computes the

probabilities P1(m,A), P2(m,A), and the sum thereof. These
values are given in Table I. The outcome of these calculations

m 1 2 3 4 5 6 7 8

P1 0.75 0.428 0.464 0.571 0.464 0.428 0.75 0

P2 0 0.286 0.286 0.229 0.286 0.286 0 0
P1+P2 0.75 0.714 0.75 0.8 0.75 0.714 0.75 0

TABLE I

DECODING-PROGRESS PROBABILITIES FOR DIFFERENT DEGREES m

is that the optimal degree for the current state is m̂ = 4, which

gives P1 + P2 = 0.8 (bold in Table I). To see how this value
is obtained, we count N1(4,A) and N2(4,A). To get an odd

number of symbols in one component (Case 1) for m = 4,
we have the following possibilities: 1 black and 3 in the size-

4 component, 1 black, 2 in the size-2 component and 1 in the

size-4 component, or 1 black, 2 in the size-4 component and 1
in the size-2 component. These amount to 2 ·4 = 8, 2 ·1 ·4 = 8
and 2 ·6 ·2 = 24, respectively. Hence N1(4,A) = 40. To get an

odd number of symbols in two components (Case 2), we have
the following possibilities: 3 in the size-4 component and 1 in

the size-2 component, or 2 blacks, 1 in the size-2 component
and 1 in the size-4 component. These amount to 4 · 2 = 8,

and 1 · 2 · 4 = 8, respectively. Hence N2(4,A) = 16. Since
(

k
4

)

= 70, we get

P1(4,A)+P2(4,A) =
N1(4,A)+N2(4,A)

(

k
4

) =
40+16

70
= 0.8.

V. A SIMPLIFIED ON-LINE FOUNTAIN CODE

In the previous section, an on-line fountain code was given

where the receiving clients can efficiently calculate the optimal

degree at any stage of decoding. In this section, we leave

the regime of strictly optimal degree choices, and consider

a simplified on-line fountain code that is simpler both for

implementation and for analysis. With the simplified code, it

is shown that a simpler criterion than maximizing P1(m,A)+

7

P2(m,A) precisely can with high probability give the optimal

encoding degrees at intermediate decoding stages. The main

result pertaining to the simplified code is an upper bound on

the redundancy overhead, which is shown to be much lower

than known on-line fountain codes.

A. Specification

In the simplified scheme, the encoding is first coarsely

divided to two phases called build-up and completion. In the

build-up phase the degree is set to constant 2, and in the

completion phase the client uses a simplified instantaneous-

degree optimization, which only depends upon the number of

decoded (black) symbols. Note that while the chosen degrees

depend on the instantaneous number of decoded symbols,

these degrees do not optimize solely for higher probability

of symbol decoding, but rather jointly optimize the symbol-

decoding probability and the connectivity of the decoding

graph. This is in contrast with known schemes [8], [2] that

only optimize for the former (and are thus much more costly

in terms of overhead). A description of the two-phase coding

procedure now follows.

1) Build-up

At the build-up phase, the sender transmits uniform code

symbols of degree 2. These symbols add edges to the decoding

graph at the receiver. The build-up phase continues until a

connected component of size |D| = β0k exists in the graph

(0 < β0 < 1 is a parameter). Then the sender colors the large

component in black by sending uniform degree-1 symbols

until hitting the largest component for the first time. The

expected number of degree-1 symbols required before hitting

a component of size linear in k is a small constant.

2) Completion

Given a graph with βk black vertices, choose the degree m̂
that maximizes the sum probability of cases 1’ and 2’ below.

Case 1’ A received symbol sums a single white symbol with

m− 1 black symbols.

Case 2’ A received symbol sums two white symbols with

m− 2 black symbols.

Symbols that fall into cases 1’ and 2’ are used to update the

decoding graph. Other symbols are discarded.

A few remarks on the completion phase are now in place.

Case 1’ decodes at least one white symbol (the white symbol’s

component), and Case 2’ adds an innovating edge, i.e. an

edge that increases the dimension of the received subspace,

unless the two white symbols are in the same component.

The motivation to consider cases 1’ and 2’, and not the more

elaborate cases 1 and 2 of Section IV is the following. The

appeal of cases 1’ and 2’ is that their probabilities can be

calculated based on β alone (as detailed in the next paragraph),

without need to know the complete component enumerator. If

the white connected components are fairly small compared to

k, then cases 1’ and 2’ are good approximations of cases 1 and

2 of Section IV, due to the low probability of having multiple

symbols in the same component. This is shown analytically in

Section V-B.

The two cases 1’ and 2’ at the completion phase are

illustrated in Figure 3. Note that edges between white nodes

do exist in the graph, but the classification to Case 1’ and 2’

ignores these edges.

Case 1’

Case 2’

Other

Figure 3. Case 1’ and Case 2’ sought in the completion phase. Other
cases (showed at the bottom) result in discarding the received symbol.

A formal specification of the simplified code is now given

as Construction 2.

Construction 2. The code is defined on a block of k input

symbols.
Decoder:

1) Initialize the decoding graph as a graph with k white

nodes and no edges.

2) If a received code symbol falls under Case 1’ or Case 2’,
update the decoding graph. Otherwise discard the code

symbol.

Encoder:

In the build-up phase: send uniformly distributed degree-2

symbols.

After the build-up phase: send uniformly distributed degree-1
symbols until the largest component turns black.

In the completion phase: given the current decoding state pre-

sented as a fraction β of black symbols, the coding strategy is
set to drawing uniformly at random code symbols with degree

m̂, where

m̂ = argmaxm [P1′(m,β) + P2′(m,β)] , (9)

and P1′(m,β) and P2′(m,β) are the probabilities of Case 1’

and Case 2’, respectively.

Note that P1′ and P2′ used in Construction 2 depend on

m and β, the fraction of black symbols, but not on the full

component enumerator as in Construction 1 of Section IV.

Assuming selection of m symbols from the size-k block with

replacement, the expressions for P1′ and P2′ are given by

P1′(m,β) =

(

m

1

)

βm−1(1− β), (10)

P2′(m,β) =

(

m

2

)

βm−2(1− β)2. (11)

In equations (10),(11) we see the complexity benefits of using

the simplified code. Instead of evaluating the full recursive

formulas for P1,P2 in Section IV, now we have a closed-

form expression for the surrogate probabilities P1′ ,P2′ . The

values of P1′ + P2′ as a function of β for different m values

are plotted in Figure 4.

The following theorem provides a lower bound on P1′+P2′ ,

which will be used for analysis in the next sub-section.

8

2

3

4
5

6

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

β

P1′ + P2′

Figure 4. The sum probability of cases 1’ and 2’ as a function of
the fraction of black symbols. Plotted for m = 2, 3, 4, 5, 6.

Theorem 8. For any β, there exists a m̂ such that

P1′(m̂, β) + P2′(m̂, β) > (1 +
√
2)e−

√
2 = 0.5869, (12)

and m̂ is the unique m that satisfies

√

(m− 1)(m− 2)√
2 +

√

(m− 1)(m− 2)
6 β <

√

m(m− 1)√
2 +

√

m(m− 1)
.

Proof: The proof will divide into two main parts. First we

prove the bound when the value β is taken from an infinite

discrete sequence of real values. Then we show that the first

part implies the bound at all points of the real-line segment

[0, 1). The sequence of discrete real values we consider in the

first part contains all the values β that satisfy

P1′(m,β)+P2′ (m,β) = P1′(m+1, β)+P2′(m+1, β), (13)

for some integer m. These β values are the transition points of

the encoder from degree m to degree m+1, seen in Figure 4

as the intersections of two curves with adjacent labels. When

we substitute P1′(m,β) from (10) and P2′(m,β) from (11)

into (13) and solve2 for β, we obtain

βm =

√

m(m− 1)√
2 +

√

m(m− 1)
. (14)

The values βm can be regarded as a sequence B = {βm}∞m=1.

The evaluation of the sequence B is

B = {0, 0.5, 0.634, 0.710, 0.760, 0.795, ...},

and it tends to 1 as m tends to infinity. To show the lower

bound on points in B, we substitute the right-hand side of (14)

as β into (10) and (11), and obtain

P1′(m,βm) + P2′(m,βm) =

m+
√

2m(m− 1)− 1

m− 1
·
(

m2 −m−
√

2m(m− 1)

m2 −m− 2

)m

.

(15)

2Equation (13) has in addition a trivial solution βm = 1, for any m, which
we ignore in the remainder of the proof.

Now reorganizing (15), we obtain

P1′(m,βm) + P2′(m,βm) =
(

1 +

√

2m

m− 1

)

·
(

1−
√
2√

2 +
√

m(m− 1)

)m

>

(

1 +

√

2m

m− 1

)

·
(

1−
√
2√

2 +m− 0.6

)m

, (16)

where the last inequality comes from the fact that
√

m(m− 1) > m − 0.6 for m > 1. It is clear that both

terms in the right-hand side of (16) are positive and monotone

decreasing with m, and hence their product is also monotone

decreasing with m. This gives the bound

P1′(m,βm) + P2′(m,βm) >

lim
m→∞

(

1 +

√

2m

m− 1

)

·
(

1−
√
2√

2 +m− 0.6

)m

=

(1 +
√
2)e−

√
2 = 0.5869. (17)

Now that we proved the lower bound for β values on the

transitions from m to m + 1, we move to the second part of

the proof, which extends the bound to all β values. The idea

of the second part is to show that P1′(m,β) + P2′(m,β) is

concave for β ∈ (βm−1, βm). Concavity implies that for all

β ∈ (βm−1, βm)

P1′(m,β) + P2′(m,β) >

min [P1′(m,βm−1) + P2′(m,βm−1),P1′(m,βm) + P2′(m,βm)] .

The concavity proof of P1′(m,β)+P2′(m,β) in (βm−1, βm)
is direct, using elementary calculus. We take the second

derivative of P1′(m,β) + P2′(m,β) with respect to β, and

find that it is negative in the interval

1−m+
√
3m2−10m+16− 4

m(m− 3)
< β < 1−m−

√
3m2−10m+16− 4

m(m− 3)
.

The concavity in the desired domain is established by showing

that for all positive integers m > 3

1− m+
√
3m2−10m+16− 4

m(m− 3)
< βm−1

and

βm < 1− m−
√
3m2−10m+16− 4

m(m− 3)
.

For m = 2, 3 similar concavity can be proved by first

substituting m in (10) and (11), and then taking the second

derivative and verifying its negativity in (βm−1, βm).
For the analysis upcoming in the next sub-section we need

the following corollary, showing that P1′(m̂, β) and P2′(m̂, β)
individually tend to constants for β → 1, and not just their

sum.

Corollary 9. For the m̂ that attains (12) in Theorem 8, both

P1′(m̂, β) and P2′(m̂, β) tend to constants as β tends to 1.

Proof: We examine the ratio between P1′(m̂, β) and

P2′(m̂, β)
P1′(m̂, β)

P2′(m̂, β)
=

2β

(m̂− 1)(1− β)
.

9

Substituting βm̂ from (14) yields

P1′(m̂, βm̂)

P2′(m̂, βm̂)
=

√

2m̂(m̂− 1)

m̂− 1
,

which tends to a constant as m̂ tends to infinity. The ratio and

the sum both tending to constants imply that each of P1′(m̂, β)
and P2′(m̂, β) tends to a constant.

B. Overhead analysis

While the greatest appeal of on-line fountain codes is in

the presence of adversarial or other non-random losses, it

is important to analyze them in the case where losses are

random. The objective of the forthcoming analysis is to show

that the on-line fountain codes proposed here have acceptable

overheads, far below what existing on-line fountain codes

require.

The analysis concentrates on the simplified code of Con-

struction 2, because analyzing the optimal Construction 1 is

challenging. It is clear that the overhead will only decrease if

the optimal code is used instead of the simplified one.

We begin at the build-up phase of Section V-A. Randomly

chosen edges added in the build-up phase construct a random

graph G. To analyze the properties of G, we use known results

on random graphs found in [1, Ch.10]. At the end of the build-

up phase, G = G(k, p) is a random graph on k vertices, where

each of the k(k−1)/2 possible edges is taken with probability

p independently of other edges. We define p = c/k, and note

the known relationship between c and β0, the fractional size

of the largest connected component, as

β0 + e−cβ0 = 1. (18)

Hence for each specified component size β0 < 1, there is a

unique density parameter c > 1 that achieves it with high

probability. The following results from [1, Ch.10] will be

found useful in analyzing the completion phase.

Theorem 10. [1] Given c > 1 and β0 < 1 with the relation
given in (18), in a random graph G = G(k, c/k) the remainder

sub-graph outside the large component is itself a random graph

G′ = G(t, d/t), where t = (1 − β0)k and d = c(1 − β0) < 1.

We will also use the following classical results by Erdős and

Rényi.

Corollary 11. [6] In a random graph G = G(k, c/k) with

c > 1, almost always all the components except the large
component are of sizes O(log k). Furthermore, the number of

small components that have cycles is vanishingly small.

With the properties of G′ quoted above, we turn to analyze

the completion phase. We start with a qualitative description of

the completion phase’s dynamics, then move to more precise

statements. At the outset of the completion phase, G′ has small

tree components (including isolated vertices, which are trivial

trees). Case 1’ symbols move components out of G′ to the

large (black) component, and Case 2’ symbols add edges in

G′. Since P1′(m̂, β) and P2′(m̂, β) are both constants of the

same order, a component of G′ cannot grow much before it

is colored black. This is because the probability to add an

edge touching a given component is similar to the probability

to connect the same component to the large component. Now

given that the components of G′ remain much smaller than a

constant fraction of k, the probability to introduce a cycle in

G′ is negligible. Thus with high probability a Case 2’ symbol

is not redundant. The next theorem formally proves that with

high probability every Case 2’ symbol in the completion phase

adds an innovating edge to G′.

Theorem 12. The probability that a cycle is introduced (by a

Case 2’ symbol) to a component of G′ before the component
joins the main component (by a Case 1’ symbol) tends to zero

as k goes to infinity.

Proof: Let a random process take an event from {X,Y, ∗}
at each discrete-time instance i. For X and Y with respective

probabilities PX and PY , the probability that X occurs before

Y is
∞
∑

i=0

(1− PX − PY)
iPX =

PX

PX + PY

.

(Any number of ∗ events are allowed before X .) For a given

component of G′ with l vertices, we take X to be the event

that a new code symbol is a Case 2’ edge that creates a cycle

in the component, and Y to be the event of a Case 1’ symbol

connecting the component to the large component. ∗ represents

all other events caused by a new code symbol. Then we write

the probability PX as

PX = P2′(m,β)

(

l

(1− β)k

)2

.

The left multiplicand is the probability that the symbol is

Case 2’; the right multiplicand is the probability that both

ends of the G′ edge fall on the size-l component. The right

multiplicand can be interpreted as a conditional probability to

doubly-hit a component given the symbol is a Case 2’ symbol.

Similarly, the probability PY is written as

PY = P1′(m,β)
l

(1 − β)k
. (19)

The left multiplicand is the probability that the symbol is Case

1’; the right multiplicand is the probability that the vertex of

G′ connected to the main component belongs to the size l
component. The probability that X happens before Y is then

PX

PX + PY

=
P2′(m,β)

P2′(m,β) + (1−β)k
l

P1′(m,β)
. (20)

It is clear that the expression in (20) tends to 0 as k tends to

infinity, so long as P1′(m,β) and P2′(m,β) are both constants

for any β, and in addition l is bounded from above by a

function that is o(k). The former is proved in Corollary 9;

the latter is proved in the following lemma.

Lemma 13. The probability that a G′ component grows by

more than log k vertices tends to zero as k goes to infinity.

Proof: The proof follows similar lines to the main theorem’s

proof. For a given component of G′ with l vertices, we now

take Z to be the event that a new code symbol is a Case 2’

10

edge that connects the component to a different component

within G′. We have

PZ = P2′(m,β)

[

2
l

(1− β)k

[

1− l

(1 − β)k

]]

< P2′(m,β)
2l

(1 − β)k
.

Y as before is the event of a Case 1’ symbol connecting that

component to the large component. Given PY in (19), the

probability that Z occurs log k times before Y occurs is thus

at most
(

2P2′(m,β)

2P2′(m,β) + P1′(m,β)

)log k

,

which clearly tends to zero assuming constant Pi′(m,β)
probabilities for any β.

Since the components of G′ at the beginning of the completion

phase are of sizes O(log k) (Corollary 11), by Lemma 13 their

sizes remain O(log k) throughout the completion phase. This

shows that l = o(k), which is sufficient for (20) to go to zero.

This proves the theorem.

Theorem 12 implies that Case 2’ symbols are not redundant

with probability tending to 1, hence we have the following

result.

Theorem 14. The expected number of Case 1’ and Case 2’

symbols (combined) required to complete decoding in the com-

pletion phase is

k(1− β0)

[

1− (1− β0)c

2

]

, (21)

in the limit of large k.

Proof: The number of symbols left to decode after the

build-up phase equals t, the number of vertices in G′. By the

definition of the build-up phase we have

t = k(1− β0). (22)

According to Theorem 10, the expected number of edges in

G′ at the beginning of the completion phase is

1

2
td =

1

2
k(1− β0)(1− β0)c. (23)

A classical result by Erdős and Rényi states the following.

Lemma 15. [6] In a random graph G′ = G(t, d/t) with d < 1,
the expected number of connected components equals

t− td

2
+O(1),

where the termO(1) depends on d, but is a constant not growing

with t.

Lemma 15 is implied by the well known fact that almost all

of the vertices in a random graph with d < 1 are in connected

components that are trees. Substituting t from (22) and td/2
from (23), the expected number of components in G′ equals

k(1− β0)

[

1− (1− β0)c

2
+ o(1)

]

, (24)

where the term o(1) tends to zero as k tends to infinity. By

Proposition 1 the number of symbols the receiver needs to

receive to fully decode equals the number of components

in G′, where we count a received symbol for that purpose

only if it reduces the number of components by one. Case 1’

symbols always reduce the number of components by one. By

Theorem 12 all but a vanishing fraction of Case 2’ symbols

reduce the number of components by one. Hence the expected

number of Case 1’ and Case 2’ symbols (combined) required

in the completion phase equals to

k(1− β0)
[

1− (1−β0)c
2 + o(1)

]

1− o(1)
.

This equals the expression in the theorem statement when k
tends to infinity.

This leads to the main analysis results that now follow.

Theorem 16. For any choice of β0 < 1, the expected number
N of code symbols required for decoding the k input symbols

is bounded by

N <
1

2
ck +

e
√
2

1 +
√
2
k(1− β0)

[

1− 1

2
(1− β0)c

]

, (25)

where c and β0 are related by β0 + e−cβ0 = 1.

Proof: The first term in (25) is the expected number of

symbols received in the build-up phase. This is from random-

graph theory [1, Ch.10], whereby reaching a component of

size β0k happens when a vertex has on average c edges (the

factor 1/2 is because each edge has two ends). The second

term in (25) is the expected number of symbols received in

the completion phase. The constant factor in the second term

is the inverse of the lower bound on P1′(m,β) + P2′(m,β)
from Theorem 8, which is an upper bound on the expected

number of received symbols per symbol of Case 1’ or 2’.

Choosing β0 = 0.645 for ending the build-up phase (which

gives c = 1.6), we get the following corollary.

Corollary 17. The expected redundancy overhead of Construc-

tion 2 is bounded by

N − k

k
< 0.236.

C. Discussion and comparison

It is important to note that the 0.236 upper bound on the

expected overhead may be a substantial over-estimate of the

true overhead. While the probabilities of Cases 1’ and 2’ are

known for any β, our analysis was only able to incorporate the

β → 1 limit value of (12) as a lower bound. More involved

arguments on random-graph dynamics may tighten this bound.

In an experimental study of the simplified code we observe

overheads smaller than 0.2, even for relatively short block

lengths k. We also observe experimentally that the overhead

is not very sensitive to the choice of β0 to end the build-

up phase. A complete experimental view of on-line fountain

codes is deferred to a future publication.

Comparing the proven overhead upper bound of Construc-

tion 2 to known on-line schemes, a significant improvement is

offered. Growth codes [8], the known state-of-the-art on-line

11

fountain scheme, has an expected overhead that is bounded

from below by ln 2 = 0.69 (as explained in the sequel)–

three times higher than the new proposal. The growth codes

scheme can be seen as a special case of our simplified scheme,

whereby the degrees are chosen to maximize the probability

of Case 1’ symbols alone. Therefore, degree 1 symbols are

received until a β0 = 0.5 fraction of black symbols exists

(at which point symbol-decoding probability with degree 2
symbols crosses over that probability with degree 1 symbols).

During that phase, the rate of symbol decoding is dβ =
(1 − β)dy, where dy is an infinitesimal fraction of received

symbols. Hence the fraction of received symbols y0 required

to obtain β0 = 0.5 can be found by solving the simple integral

y0 =

∫ 0.5

0

dβ

(1 − β)
= ln 2.

After that phase, the probability of symbol decoding, for any

degree m, is at most 0.5, thus the remaining 0.5 fraction of

input symbols will need at least an additional 1 fraction of

received symbols. Adding this 1 fraction to the ln 2 fraction

of the first phase gives a ln 2 lower bound on overhead.

For the scheme of real-time oblivious codes [2] the authors

quote an upper bound of 1 for the overhead, which is more

than 5 times higher than Construction 2.

VI. EXPERIMENTAL PERFORMANCE EVALUATION

To complement the analytical evaluation of the new on-line

fountain codes, in this section we conduct an experimental

study through simulation. The study will concentrate on com-

paring the performance of the simplified code (Construction 2)

with growth codes, the best previously known on-line fountain

code. We also include in the study LT codes employing the

robust-soliton degree distribution with the standard parameter

choice c = 0.9, δ = 0.1 (see e.g. in [7]). For Construction 2

we use the parameter β0 = 0.65 to end the build-up phase.

The purpose of this study is to illustrate the performance

behavior of our codes with respect to the most similar (growth

codes) and most understood (LT codes) counterparts. There

are many other alternatives of fountain codes that employ

feedback, which are likely to have better performance at many

operation regimes. Given that each such alternative makes a

different use of feedback (number of feedback transmissions,

their distribution across the transmission block, the type of

information they carry, etc.), we found it impossible to perform

a fair comparison. Therefore, the subsequent results should

be interpreted only as an illustrative demonstration of the

performance achievable by codes with the on-line property,

and not as a claim of superiority of the new codes over known

fountain schemes with feedback in general.

A. Coding overhead

First in the performance figures to evaluate is the coding

overhead. To measure the overhead, we simulate the coding

schemes and count the number of code symbols needed to

be received to complete decoding of the k input symbols.

We repeat the simulation over many iterations, and plot

the average number of required code symbols. Figure 5

shows the results of this experiment for input block lengths

k∈ {1000, 1500, 2000, 2500}, plotted for each of the two on-

line coding schemes under comparison. It can be seen in

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1000 1500 2000 2500

A
ve

ra
ge

 r
eq

ui
re

d
co

de
 s

ym
bo

ls

Number of input symbols

Growth
Const. 2

Figure 5. The average number of code symbols required at the
receiver for full decoding. Solid line: Construction 2, dashed line:
Growth codes.

Figure 5 that for the block lengths k used in the experi-

ment, Construction 2 offers great performance advantage over

Growth codes. The conclusion from this plot is that the

refinement of the on-line property to also include degree-2

symbols pays nicely in total overhead.

B. Feedback cost

In the previous sub-section we compared the benefits of on-

line fountain codes in reducing communication overhead from

the sender to the receiver. Now we want to evaluate the cost

of these benefits in feedback transmissions from the receiver

back to the sender. To measure feedback cost, we added to

the same simulation of Section VI-A a counter of feedback

transmissions required by the two on-line fountain codes. A

feedback transmission is required by the on-line fountain code

(Growth codes and Construction 2) whenever the respective

optimal degree changes following the receipt of the previous

code symbol. Hence for this experiment we assume that find-

ing the optimal degree given the decoding state is performed

by the receiver, thus allowing to issue a feedback transmission

only when there is a change in the optimal value. Following

this experiment we plot in Figure 6 the average numbers

of feedback transmissions for k ∈{1000, 1500, 2000, 2500}.

The results of Figure 6 reveal that the use of feedback by

Construction 2 is limited to only 2-3% of the block length, and

that the feedback cost is roughly half that of Growth codes.

Therefore, Construction 2 is better than Growth codes in both

overhead and feedback. At this point it is important to note

that these results are only a starting point for a very interesting

possibility to refine the current on-line fountain codes such that

overhead and feedback are jointly minimized. This interesting

direction is deferred to future work.

12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 1500 2000 2500

A
ve

ra
ge

 r
eq

ui
re

d
fe

ed
ba

ck
s

Number of input symbols

Growth
Const. 2

Figure 6. The average number of feedback transmissions per code
block. Solid line: Construction 2, dashed line: Growth codes.

C. Intermediate symbol decoding

The previous sub-sections showed results pertaining to the

block decoding performance. Now we want to “zoom into”

the decoding process, and see for each intermediate number of

received code symbols how many of the input symbols are de-

coded. There are two purposes for measuring the intermediate-

decoding performance. One is to shed quantitative light on the

way the decoding state evolves through the decoding process.

Another is to evaluate the real-time performance of the codes,

which amounts to the ability of the decoder to pass decoded

symbols over to the application before the full-block decoding

is completed. Results comparing the intermediate-decoding

performance of the three codes are given in Figure 7. The

plots show the median results among 100 runs, thus capturing

the behavior of the majority of the coding instances. There

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 250 500 750 1000 1250 1500

M
ed

ia
n

nu
m

be
r

of
 d

ec
od

ed
 s

ym
bo

ls

Number of received code symbols

LT
Growth

Const. 2
U. bound

Figure 7. For k = 1000 the median number of decoded input symbols
for each number of received code symbols. Solid line: Construction 2,
dashed line: Growth codes, dash-dotted line: LT codes, no-markers
line: upper bound.

are several interesting facts to observe in Figure 7. First

to see is the initial flat interval in the decoding curve of

Construction 2. This flatness stems from the build-up phase

where only degree 2 symbols are sent, and thus no symbol is

decoded. Next, after the build-up phase is over, the number

of decoded symbols jumps, and from then on continues at a

roughly linear slope to complete first from the three codes. It is

also interesting to link the features of the Construction 2 curve

to the random-graph analysis of Section V-B. The x-coordinate

at which the jump occurs corresponds to the threshold β0, and

specifically to the number of symbols required to be received

until the formation of a connected component of size β0k.

The magnitude of the jump amounts to a little more than β0k
symbols, including both the large component and other smaller

components decoded with the first received symbols in the

completion phase. Finally, the slope at the latter part of the

curve shows good real-time performance in the completion

phase. That is to say that optimizing the degrees for both P1′

and P2′ does not hurt the intermediate-decoding rate. Clearly

there is an interesting tradeoff here between minimizing the

full-decoding time and maximizing the real-time performance

of the code. We can use β0 as a simple “knob” to control

this tradeoff (reducing β0 will shrink the flat interval, but will

result in a smaller jump and a slower completion slope).

VII. CONCLUSION

In addition to providing low-overhead on-line fountain con-

structions, the results of this paper open new avenues for future

research. The most natural direction is attempting to further

reduce the overhead, and at the same time deriving lower

bounds on the overhead required to attain the on-line property.

Another important extension of this work is to address point-

to-multipoint communications, where the encoder strategy

needs to be optimized for multiple receivers simultaneously.

Finally, it is also important to consider the effect on the on-

line property when the feedback of decoding-state information

from the receiver to the sender is limited.

VIII. ACKNOWLEDGMENT

We would like to thank Morteza Hashemi for providing

code that helped obtaining the simulation results. We also want

to thank the anonymous referees for suggesting significant

additions to the paper, which improved it considerably.

REFERENCES

[1] N. Alon and J. Spencer, The probabilistic method. Wiley, 2000.
[2] A. Beimel, S. Dolev, and N. singer, “RT oblivious erasure correcting,”

IEEE/ACM-Trans-Networking, vol. 15, no. 6, pp. 1321–1332, Dec. 2007.
[3] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital

fountain approach to reliable distribution of bulk data,” in Proc. ACM

SIGCOMM’98, Vancouver BC, Canada, 1998, pp. 56–67.
[4] Y. Cassuto and A. Shokrollahi, “On-line fountain codes for semi-random

loss channels,” in Proc. IEEE Information Theory Workshop, Paraty,
Brazil, 2011.

[5] J. Considine, “Generating good degree distributions for sparse parity
check codes using oracles,” CS Department, Boston University, Tech.
Rep. BUCS-TR-2001-019, 2001.

[6] P. Erdős and A. Rényi, “On the evolution of random graphs,” in
PUBLICATION OF THE MATHEMATICAL INSTITUTE OF THE HUN-
GARIAN ACADEMY OF SCIENCES, 1960, pp. 17–61.

[7] A. Hagedorn, S. Agarwal, D. Starobinski, and A. Trachtenberg, “Rate-
less coding with feedback,” in INFOCOM 2009, IEEE, 2009, pp. 1791–
1799.

13

[8] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes:
maximizing sensor network data persistence,” in Proc. ACM SIG-

COMM’06, New York NY USA, 2006, pp. 255–266.
[9] S. Kokalj-Filipovic, P. Spasojevic, E. Soljanin, and R. Yates, “ARQ

with doped fountain decoding,” in Spread Spectrum Techniques and

Applications, 2008. ISSSTA ’08. IEEE 10th International Symposium
on, 2008, pp. 780–784.

[10] M. Luby, “LT codes,” in Proc. of the Annual IEEE Symposium on

Foundations of Computer Science FOCS, Vancouver BC, Canada, 2002,
pp. 271–280.

[11] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information

Theory, vol. 52, no. 6, pp. 2551–2567, 2006.
[12] A. Talari and N. Rahnavard, “LT-AF codes: LT codes with alternating

feedback,” in Proc. of the IEEE International Symposium on Info.
Theory, Istanbul, Turkey, July 2013, pp. 2646–2650.

Yuval Cassuto (S’02-M’08-SM’14) is a faculty member at the Department of
Electrical Engineering, Technion – Israel Institute of Technology. His research
interests lie at the intersection of the theoretical infomration sciences and the
engineering of practical computing and storage systems.

During 2010-2011 he has been a Scientist at EPFL, the Swiss Federal
Institute of Technology in Lausanne. From 2008 to 2010 he was a Research
Staff Member at Hitachi Global Storage Technologies, San Jose Research
Center. From 2000 to 2002, he was with Qualcomm, Israel R&D Center, where
he worked on modeling, design and analysis in wireless communications.

He received the B.Sc degree in Electrical Engineering, summa cum laude,
from the Technion, Israel Institute of Technology, in 2001, and the MS
and Ph.D degrees in Electrical Engineering from the California Institute of
Technology, in 2004 and 2008, respectively.

Dr. Cassuto has won the 2010 Best Student Paper Award in data storage
from the IEEE Communications Society, as well as the 2001 Texas Instru-
ments DSP and Analog Challenge $100,000 prize.

Amin Shokrollahi (M’00-SM’06-F’07) has worked and published on a
variety of topics, including coding theory, computational number theory and
algebra, and computational/algebraic complexity theory. He is best known
for his work on iterative decoding algorithms of graph based codes, an area
in which he has published several influential papers, and holds more than
20 granted and pending patents. He is the co-inventor of Tornado codes,
and the inventor of Raptor codes. His codes have been standardized and
successfully deployed in industrial applications involving data transmission
over lossy networks.

Amin finished his Ph.D. in 1991 at the University of Bonn. From 1995
to 1998, he was a Senior Researcher at the International Computer Science
Institute in Berkeley. From 1998 to 2000, he was a Member of the Technical
Staff at the Mathematical Sciences Research Center at Bell Laboratories.
In 2000, he became the Chief Scientist of Digital Fountain, a company
specializing on fast and reliable data transmission on unreliable networks.
He held this position until early 2009, when the company was acquired
by Qualcomm. In 2003, Amin joined the faculty of EPFL where he holds
a position as a full professor jointly in the departments of Mathematics,
and of Computer Science. He is the co-founder of Kandou Technologies,
a company specializing in the design and implementation of high speed and
energy efficient serial links of which is he currently the CEO.

Amin is a Fellow of the IEEE. He was awarded the best paper award of the
IEEE IT Society in 2002 for his work on iterative decoding of LDPC codes,
the IEEE Eric Sumner Award in 2007 for the development of Fountain Codes,
and the joint Communication Society/Information Theory Society best paper
award of 2007 for his paper on Raptor Codes. He is also a recipient of the
prestigious 2009 Advanced Research Grant of the European Union Research
Council. In addition, he is the co-recipient of the 2012 IEEE Hamming medal.

