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Consecutive Switch Codes
Sarit Buzaglo, Yuval Cassuto, Paul H. Siegel, and Eitan Yaakobi

Abstract—Switch codes, first proposed by Wang et al., are codes
that are designed to increase the parallelism of data writing
and reading processes in network switches. A network switch
is required to write n incoming packets and read k outgoing
packets while using m memory banks, each able to write and
read one packet per time unit. Each set of n packets written to
the switch simultaneously is called a generation. The objective is
to store the packets in the banks such that every request of k
packets, which can be from previous generations, can be handled
by reading at most one packet from every bank.

In this paper we study a new type of switch codes that can
simultaneously deliver large symbol requests and good coding
rate. These attractive features are achieved by relaxing the
request model to a natural sub-class we call consecutive requests.
For this new request model we define a new type of codes
called consecutive switch codes. These codes are studied in both
the computational and combinatorial models, corresponding to
whether the data can be encoded or not. For binary codes, we
also study an intermediate model in which a coded packet is
formed by the XOR operations of at most two input packets.
We present several code constructions and prove the optimality
of one family of these codes by providing the corresponding
lower bound. Finally, we introduce a construction of conventional
switch codes, which improves upon the best known results for
the case n = k.

Index Terms—Batch codes, Network switch, Switch codes.

I. INTRODUCTION

Switch codes were first suggested a few years ago by Wang
et al. in [20] for networking applications and were further
studied in [21], [4], [5], [6], [7], [19]. A network switch
is a device used to connect between a computer network
and external devices. The main task of the network switch
is to process and forward packets from the input ports to
their designated output ports. Upon arrival, the packets from
the input ports are processed and stored in a switch fabric
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comprising multiple memory banks. In each time unit, called
a generation, at most one packet can be written to or read
from each bank. The main problem facing a network switch
is that it needs to fulfill an arbitrary request for packets stored
in its memory, subject to the limitation of physically reading
at most one packet from each bank per time unit.

To address this problem, switch codes form a coding scheme
in which incoming packets are encoded before their write to
memory, such that it is guaranteed that an arbitrary set of
packets can be decoded while reading at most one physical
packet from each bank. Since the packet requests are arbitrary,
it is intuitively clear that each packet, after being encoded to
the banks, should have multiple options to be read and decoded
from the banks, in order to avoid contention between multiple
requested packets stored in the same bank. Given the current
trend of scaling switches by adding more parallel banks (other
scaling methods have become more challenging and/or costly),
switch codes are likely to become a useful tool to provide
efficient rate scaling by overcoming bank contention between
requested packets. For switch codes to succeed within the
network-switch application, they should be made efficient in
terms of both redundancy and various measures of complexity,
which is the exact aim of this paper. Mathematically speaking,
a switch code is required to satisfy the following property.
Assume there are n input packets, k output packets, and m
banks. In each generation the n input packets are encoded
into m packets which are stored in the banks. Then, in each
generation, the code can fulfill every request for k packets,
which is specified by the write-generation number and the
packet index in the generation for each of the k packets.

Switch codes are associated with the family of codes called
batch codes. Batch codes were first studied in the previous
decade by Ishai et al. [11] and recently in [13], [15], [16],
[18], [22]. A batch code encodes n information symbols into
m buckets such that any request for k information symbols
can be answered by reading at most one, and more generally
t, symbols from each bucket. If the set of k requested symbols
can have repetitions and each bucket stores a single symbol,
then the batch code is called a multi-set primitive batch code
and it is equivalent to a switch code of the same parameters.
For completeness, we prove this relationship between batch
codes and switch codes in Appendix A. (See also the discus-
sion about this connection in [21].) Despite this equivalence,
there are two distinctions between switch codes and the more
general batch codes. One distinction is that switch codes are
commonly designed with k = n, which balances the output
and input switching rates. Correspondingly, all the construc-
tions we propose in this paper apply to this important case.
Another distinction is that they introduce a time dimension,
which inspires us to define and study a new type of switch
codes called consecutive switch codes. This refinement of
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the model is shown herein to allow significant reduction in
redundancy over the standard non-consecutive model.

In the original definition of batch and switch codes the
packet requests are not constrained and can be from any
previous generation. However, from a practical point of view it
is reasonable to assume that packet requests in each generation
are restricted to some ` previous consecutive generations. This
motivates us to study consecutive switch codes, which follow
this restriction on the packet requests. Another motivation to
study consecutive switch codes is that this model also takes
into account the number of packets that each bank can store.
(A related and stronger type of codes, but closer to the original
model, where for every 1 ≤ r ≤ n, the rth input packet
can be requested from at most ` generations, was studied
in [5].) We study two main classes of these codes, namely,
combinatorial and computational consecutive switch codes.
In the combinatorial class, it is assumed that the packets stored
in the banks are simply copies of the input packets (that is, they
are not coded), while in the computational class the packets
can be encoded. We note that the combinatorial model of
consecutive switch codes extends the corresponding one for
batch codes which was extensively studied in the literature,
see e.g [1], [2], [3], [17], as well as the combinatorial model
of (non-consecutive) switch codes which was explored when
switch codes were first proposed in [20]. In many scenarios
in practice, the coding schemes are very restricted in the
encoding and decoding complexities they can afford. One such
scenario when the encoder and decoder can only use plain
XOR operations was considered in [19], [20]. In these papers
the degree of a switch code was defined to be the maximum
number of input packets that participate in the encoding of
each parity packet (using only XOR operations) and limited
degree switch codes were considered. We adapt the concept of
the degree to consecutive switch codes and study such codes
where the degree is two. Note that if the degree is limited to
one then the consecutive switch code is combinatorial and if
the degree is limited to n then the combinatorial switch code
is computational (with no limitation on the degree). Thus, the
limited degree case can be viewed as an intermediate model
between the combinatorial and computational models.

The rest of the paper is organized as follows. In Section II,
we formally define switch codes and batch codes and note
the equivalence between switch codes and multi-set primitive
batch codes. We also present in this section a construction
of switch codes (and hence also of batch codes) for the case
n = k, which improves upon the state-of-the-art results for
this case. In Section III, we formally define consecutive switch
codes. In Section IV, we give constructions and a bound for
combinatorial consecutive switch codes and in Section V we
give a construction of consecutive switch codes in which ` = 2
and the degree is 2. In Section VI, we construct consecutive
switch codes for the computational class. Finally, Section VII
concludes the paper and lists several open problems.

II. PRELIMINARIES

In this section we present some of the definitions and
notation used throughout this paper. In particular, we formally

define switch codes and describe their connection to batch
codes [11].

For a positive integer n, denote by [n] the set of n integers
{1, 2, . . . , n}. For two integers a, b, where a < b, denote by
[a, b] the set of b−a+1 integers {a, a+1, . . . , b}. A multi-set
M = {i1, i2, . . . , ik} over [n] of size k is a collection of k
elements of [n] with repetitions, i.e., an element can appear in
M multiple times. The set of all natural numbers is denoted
by N and a q element field is denoted by Fq .

A (ν, µ)(ν, µ)(ν, µ)-code, C, over Fq , is a subset of Fνq of size qµ. An
encoder for C is an injection from Fµq to C. Throughout this
paper, we assume that a code C is equipped with an encoder,
which will be denoted by EC . If C is a linear subspace of
Fνq (over Fq) then C is called linear and is referred to as a
[ν, µ][ν, µ][ν, µ]-code.

For a string x ∈ Fµq and for a positive integer d, let Rd :
Fµq → Fdµq be the encoder of the d-repetition code, which
encodes x to the concatenation of d copies of x.

Definition 1. A (n, k,m, t)q(n, k,m, t)q(n, k,m, t)q-switch code is an infinite se-
quence {CT }T≥1 of (ν = m,µ = n)-codes over Fq such
that the following hold.

1) For every T ≥ 1, a string x(T ) ∈ Fnq is encoded by ECT
to a string c(T ) ∈ Fmq .

2) For every set of k different pairs

I = {(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [n]× N,

there exists a set J ⊂ [m]×N, which depends upon only
the set I , such that:

i. for every r ∈ [k], the symbol x(Tr)
ir

can be recovered
from {c(Tr)

j }(j,Tr)∈J .
ii. for every j ∈ [m], J contains at most t pairs of the

form (j, T ), for some T ≥ 1.
The set I is called the request set, whereas the set J is called
the recovery set for the request set I .

Concretely, a switch code encodes strings of input packets
into rows of a semi-infinite array and is able to recover any
k packets from all the input strings by accessing at most t
packets from each of the columns {c(T )

j }T≥1, j ∈ [m]. The
rate of the switch code is defined by R = n/m.

Example 1. The following semi-infinite array forms an (n =
2, k = 2,m = 3, t = 1)-switch code.

x
(1)
1c(1) x

(1)
2 x

(1)
1 ⊕ x

(1)
2

x
(2)
1c(2) x

(2)
2 x

(2)
1 ⊕ x

(2)
2

x
(T )
1c(T ) x

(T )
2 x

(T )
1 ⊕ x

(T )
2

If for example I = {(1, 1), (1, 2)} then J =

{(1, 1), (2, 2), (3, 2)} is a recovery set for I , since x
(1)
1

can be recovered from c
(1)
1 and x

(2)
1 can be recovered from
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c
(2)
2 and c(2)3 . Moreover, J consists of at most one element of

the form (j, T ), for each j ∈ [3].

Remark 1. In our definition of switch codes we only required
that the number of symbols read from each column is at most
t, and all read symbols can be used to decode each of the
requested symbols. An alternative definition, see e.g. [20],
requires that each symbol has a disjoint recovery set of
symbols (in the case of t = 1). However, these two definitions
are equivalent since the requested symbols may belong to
different rows, in which case a requested symbol x(T )

i can
be recovered only by symbols that are read from the T th
row. Thus, the recovery sets of the different requested symbols
are required to be disjoint as well. We chose the formulation
as in Definition 1 since from the application point of view
every output port can access any of the read symbols. We will
later see that even though the distinction between these two
definitions does not make a difference for switch codes, it does
for consecutive switch codes.

By definition, a switch code is specified by an infinite
sequence of codes and hence it might be very complicated to
construct good codes, i.e., codes with high rate. Fortunately,
as the next lemma states, it is enough to consider only switch
codes that are obtained by repeating the same code for every
generation. More precisely, for any set of parameters for which
a switch code exists, there also exists a switch code of the same
parameters, {CT }T≥1, such that CT = C, for all T ≥ 1.

Lemma 1. If there exists an (n, k,m, t)q-switch code
{CT }T≥1 then there exists an (m,n)-code C over Fq such
that the infinite sequence of codes {C̃T }T≥1, where C̃T = C,
for all T ≥ 1, forms an (n, k,m, t)q-switch code.

Proof. Since there are only finite number of (m,n)-codes over
Fq , there exists a code C that appears in the sequence {CT }T≥1
an infinite number of times. The lemma now follows from the
simple observation that any infinite subsequence of {CT }T≥1
is again an (n, k,m, t)q-switch code.

By Lemma 1, we can restrict our discussion to switch codes
that are formed by only one code C. Henceforth, an (m,n)-
code over Fq will be called an (n, k,m, t)q-switch code if the
infinite sequence of codes {CT = C}T≥1 is an (n, k,m, t)q-
switch code.

Two subsequences u = wi1wi2 . . . wir and v =
wj1wj2 . . . wjs of a string w ∈ Fmq are called disjoint if
{i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} = ∅. In [11], Ishai et al.
proposed multi-set batch codes.

Definition 2. A (n,N, k,m, t)q(n,N, k,m, t)q(n,N, k,m, t)q-multi-set batch code encodes
a string x ∈ Fnq into the concatenation of some m strings y =

y1y2 . . . ym, yj ∈ F∗q
def
= ∪ν∈NFνq for all j ∈ [m], of total length

N , such that for every multi-setM = {i1, i2, . . . , ik} over [n]
of size k, the k symbols xi1 , xi2 , . . . , xik can be recovered from
y, where the following conditions hold.

1) For every j ∈ [m], at most t symbols from each of the
strings yj are accessed.

x
(1)
1c(1) x

(1)
2 x

(1)
k

· · · y
(1)
1 y

(1)
2 y

(1)
m−k· · ·

x
(2)
1c(2) x

(2)
2 x

(2)
k

· · · y
(2)
1 y

(2)
2 y

(2)
m−k· · ·

x
(T )
1c(T ) x

(T )
2 x

(T )
k

· · · y
(T )
1 y

(T )
2 y

(T )
m−k· · ·

Systematic Part Parity Part

Fig. 1: Systematic (k,m)q-switch code. For every k pairs
(i1, T1), (i2, T2), . . . , (ik, Tk), the symbols x

(T1)
i1

, x
(T2)
i2

, . . . , x
(Tk)
ik

can be recovered by accessing at most one entry from each column.

2) For every 1 ≤ r < s ≤ k, the two subsequences of
y = y1y2 . . . ym that are used to recover xir and xis ,
respectively, are disjoint.

3) The k position sets of the subsequences of y that are
accessed depend only on M.

In [11] the authors defined the general concept of batch
codes, which are by default not multi-set batch codes. How-
ever, we will only consider multi-set batch codes, and hence-
forth we refer to multi-set batch codes as batch codes for
short. In [11] the authors also considered the concept of
primitive batch code, where each of the m strings into
which the input is encoded to is of length one, i.e. yj ∈ Fq
for all j ∈ [m], and hence N = m. Even though the
following connection between batch codes and switch codes
is somewhat known, we state it in the following lemma for
the completeness of the results in the paper and provide the
proof in Appendix A.

Lemma 2. For k ≤ n, a code C is an (n,N = m, k,m, t =
1)q-primitive batch code if and only if C is an (n, k,m, t =
1)q-switch code.

In this paper we will consider only switch codes for which
n = k and t = 1 and we denote these codes by (k,m)q-switch
codes. This case was also studied in [11], [19], [20], however
most of the constructions in [11] (and also all the constructions
in [15] and [18]) apply to cases in which k is much smaller
than n. The case n = k is motivated by the need to equate the
switch write and read rates and t = 1 models a simple memory
delivering one data packet per time unit. Note that in this case
the recovery sets must be disjoint. Furthermore, we mostly
consider systematic switch codes, i.e. we assume that for all
x ∈ Fkq , EC(x) = xy, for some y ∈ Fm−kq (see Figure 1). In
fact, all the constructions in this paper use linear codes, which
always admit a systematic encoder [14]. An intriguing question
is whether or not for all parameters for which switch codes
exist, systematic switch codes also exist. Unfortunately, we do
not have the answer to this question; however, we remark that
our state-of-the-art construction of binary switch codes yields
systematic switch codes.

A construction of (k,m)2-switch codes, where m =
k2/ log2 k was given in [19]. This construction is optimal
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in the setting in which each parity check bit is restricted
to be the sum of at most log2 k information bits. In [11], a
construction of (k,m)2-switch code with m = klog2 3 ≈ k1.58
was presented. Our main result in this section is a construction
of (k,m)2-switch codes, where m ≈ 2k1.5. Our construction
significantly improves upon the results in [11], [19] and to
the best of our knowledge, it is the best known construction
of a (k,m)2-switch code and thus also of batch codes with
the same parameters. The proof of this result appears in
Appendix B.

Theorem 1. For every sufficiently large k, there exists a
(k,m)2-switch code with m ≈ 2k1.5.

III. CONSECUTIVE SWITCH CODES

Primitive batch codes and switch codes are equivalent, as
Lemma 2 states, yet there is a significant conceptual difference
between these two formulations. Unlike batch codes, switch
codes introduce a time dimension which motivates us to define
a variation of switch codes, which we refer to as consecutive
switch codes. Consecutive switch codes are designed for a
natural sub-class of the request set I in Definition 1. As for
switch codes, these codes are capable of retrieving k informa-
tion symbols, from different generations, by accessing at most
t entries from each column. However, for `-consecutive switch
codes the k information symbols must belong to ` consecutive
generations. One motivation for this variation of switch codes
is that in practice two input strings that were encoded in a short
time interval store correlated data, and therefore are likely to
be of interest to the same user. Restricting the switch codes
to this natural sub-class of requests allows us to increase the
rate dramatically, and thus to design practical-rate codes that
behave like switch codes for the more common queries of
information symbols. Another motivation is that consecutive
switch codes, as will be shown later, are also an adaptation
of switch codes to the practical scenario in which the number
the number of packets that can be stored in a bank is limited.

Definition 3. A (n, k,m, t)q(n, k,m, t)q(n, k,m, t)q-`̀̀-consecutive switch code is an
infinite sequence of codes {CT }T≥1 of (ν = m,µ = n)-codes
over Fq such that the following hold.

1) For every T ≥ 1, a string x(T ) ∈ Fnq is encoded by ECT
to a string c(T ) ∈ Fmq .

2) For every set of k pairs

I = {(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [n]×[T, T+`−1],

for some T ≥ 1, there exists a set J ⊂ [m]×N depending
only on I , such that for every r ∈ [k], the symbol x(Tr)

ir

can be recovered from {c(T )
j }(j,T )∈J and for every j ∈

[m], J contains at most t pairs of the form (j, T ), for
some T ≥ 1.

Recall that for general switch codes, Lemma 1 states that
instead of considering an infinite sequence of codes, it is
enough to consider only one code. For `-consecutive switch
codes, the next lemma states that it is enough to consider only
a sequence of ` codes. The proof of the lemma is trivial and
thus omitted.

Lemma 3. If {CT }T≥1 is an (n, k,m, t)q-`-consecutive switch
code then {C̃T }T≥1, where C̃T = Cu for u ∈ [`] such that
T ≡ u (mod `), is also an (n, k,m, t)q-`-consecutive switch
code.

By Lemma 3 we can restrict our discussion to switch codes
that are formed by a sequence of ` codes, C1, C2, . . . , C`, which
are extended periodically. Henceforth, a sequence of ` codes,
{CT }T∈[`] will be called an (n, k,m, t)q-`-consecutive switch
code if the infinite sequence of codes that is formed by using
{CT }T∈[`] periodically is an (n, k,m, t)q-`-consecutive switch
code. From Lemma 3 we also conclude that `-consecutive
switch codes can be considered as an adaptation of switch
codes to the more practical scenario in which the switch code
is represented by a finite two dimensional array with ` rows,
rather than a semi-infinite one.

Example 2. The following `×m array forms an (n = 4, k =
4,m = 6, t = 1)2-2-consecutive switch code.

x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
1 ⊕ x

(1)
2 x

(1)
3 ⊕ x

(1)
4

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
2 ⊕ x

(2)
3 x

(2)
4 ⊕ x

(2)
1

If for example I = {(1, 1), (2, 1), (1, 2), (2, 2)} then J =
{(1, 1), (5, 1), (2, 2), (4, 2), (6, 2)} is a recovery set for I ,
depending only on I , such that for all j ∈ [6], (j, T ) appears
at most once at J . We remark that this code has degree two i.e.,
each parity-check bit is the XOR of at most two information
bits, and it is a special case of the general construction given
in Section V for 2-consecutive switch codes with degree two.
Moreover, C1 6= C2 and this code is optimal, i.e., there does
not exist an (n = 4, k = 4,m = 5, t = 1)2-2-consecutive
code. Moreover, there does not exist an (n = 4, k = 4,m =
6, t = 1)2-2-consecutive switch code in which C1 = C2 and C1
is a linear code.

Note that in the last example we used the same symbols to
recover both x(1)1 and x(1)2 and thus their recovery sets were not
disjoint. Recall that in our definition of switch codes we only
require to read at most one symbol from each column and thus
it is possible to use the same read symbols to recover different
requested symbols. If we were to use the other definition of
switch codes [20], where the recovery sets have to be disjoint,
the construction in the example would not have satisfied the
requirements of a switch code.

An (n, k,m, t)q-`-consecutive switch code, {CT }T∈[`],
is called combinatorial if there exists a matrix F =
(FT,j)T∈[`], j∈[m] that takes values in [n], such that for every
T ∈ [`], c(T ) = ECT (x(T )) = x

(T )
FT,1

x
(T )
FT,2

. . . x
(T )
FT,m

. The
matrix F is called the index matrix of the switch code. Note
that {CT }T∈[`] is completely determined by its index matrix
F . Intuitively, a combinatorial `-consecutive switch code does
not use any coding to encode a string x, only copies of the
entries of x in some order. Hence, the alphabet size q does not
play an important role in the combinatorial case and therefore
we omit the subscript q from the notation of such codes and
assume that the symbols are taken from some alphabet Σ. A
consecutive switch code in which the symbols can be encoded,
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x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
1 x

(1)
2 x

(1)
3

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
4 x

(2)
4 x

(2)
4

F =

(
1 2 3 4 1 2 3
1 2 3 4 4 4 4

)

Fig. 2: Example of a combinatorial (4, 7)-2-consecutive switch code
and its index matrix F ∈ [4]2×7.

as opposed to only repeated, is called computational; in
particular, a combinatorial switch code is by definition also
a computational switch code. By default, a consecutive switch
code is computational. For linear binary consecutive switch
codes we define the degree to be the maximum number
of input symbols that participate in the encoding of each
parity symbol (using only XOR operations). In Section V we
consider 2-consecutive switch codes in which the degree is
two. These codes are in some sense the simplest computational
consecutive switch codes that are not combinatorial.

As for general switch codes, we will consider only (n =
k, k,m, t = 1)q-`-consecutive switch codes and we denote
these codes by (k,m)q-`-consecutive switch codes. For two
positive integers k and ` let A(k, `) be the smallest integer m
for which a combinatorial (k,m)-`-consecutive switch code
exists. A combinatorial (k,m)-`-consecutive switch code is
called optimal if m = A(k, `). The simplest combinatorial
(k,m)-`-consecutive switch code is the `̀̀-repetition switch
code in which every code C(T ) encodes a string x ∈ Σk into
R`(x) (the concatenation of ` copies of x), and thus A(k, `) ≤
`k. In Section IV we present a construction of combinatorial
consecutive switch codes for every ` ∈ [2, k]. In particular, we
show that A(k, 2) = 2k − 1, while A(k, `) is much smaller
than k` for ` ≥ 3. Figure 2 shows an optimal combinatorial
2-consecutive switch code with parameters (k,m) = (4, 7),
along with its index matrix. Notice that the codes {C(T )}T∈[`]
are depicted in an increasing order of the index T from bottom
to top, whereas the row indexing of the index matrix F follows
the conventional row indexing for matrices, i.e., row indices
increase from top to bottom.

IV. COMBINATORIAL CONSECUTIVE SWITCH CODES

In this section we construct combinatorial (k,m)-`-
consecutive switch codes, for every ` ∈ [2, k] and also show a
lower bound on A(k, 2), which assures that the construction
for ` = 2 is optimal.

We start with the simplest case in which ` = 2.

Construction 1. Let F ∈ [k]2×2k−1 be defined by

F =

(
1 2 · · · k 1 2 · · · k − 1
1 2 · · · k k k · · · k

)
.

Theorem 2. Let {CT }T∈{1,2} be the combinatorial switch
code whose index matrix is the matrix F from Construction 1.
Then {CT }T∈{1,2} is a (k,m = 2k − 1)-2-consecutive switch
code.

Proof. We have to show that for every set of k pairs I =
{(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [k] × {1, 2} there exist k
distinct indices j1, j2, . . . , jk, such that FTr,jr = ir for all
r ∈ [k].

The indices j1, j2, . . . , jk are defined as follows. If
(ir, Tr) = (i, 1) for some i ∈ [k − 1] then jr = i + k.

If (ir, Tr) = (i, 2) for some i ∈ [k − 1] then jr = i. The
column index k can be used for the recovery of one pair of
the form (k, T ). If both (k, 1) and (k, 2) were requested then
there exists i ∈ [k−1] such that (i, 1) 6∈ I and thus (k, 2) can
be recovered from j = i+ k.

Construction 1 provides us with 2-consecutive switch codes
in which m = 2k − 1, i.e., m is only one less than the
length of the trivial 2-repetition switch code. The next theorem
states that the code from Construction 1 is optimal, namely
A(k, 2) = 2k − 1.

Theorem 3. If {CT }T∈{1,2} is a combinatorial (k,m)-2-
consecutive switch code, then m ≥ 2k − 1.

Proof. Let F be the index matrix of {CT }T∈[2] and let
G(L,R,E) be the bipartite graph whose left and right ver-
tex sets are L = [k] and R = [k], respectively, and
whose edge set E consists of all the edges of the form
ej = (F1,j , F2,j), j ∈ [m]. (E may contain parallel edges.)
In particular, |E| = m. Since {CT }T∈{1,2} is a (k,m)-2-
consecutive switch code, it follows that for every set of k
pairs I = {(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [k]×{1, 2} there
exist k distinct indices j1, j2, . . . , jk such that FTr,jr = ir,
for all r ∈ [k]. This implies that for all S1 ⊆ L and S2 ⊆ R,
where s = |S1|+ |S2| ≤ k, there exist s distinct edges of the
form (u, v), where u ∈ S1 or v ∈ S2.

Assume to the contrary that m ≤ 2k− 2. We will show the
existence of S1 ⊆ L and S2 ⊆ R, where s = |S1|+ |S2| ≤ k,
such that the number of edges (u, v) for which u ∈ S1 or
v ∈ S2 is less than s and derive a contradiction.

Since |E| = m < |L| + |R| − 1, it fol-
lows that G contains b ≥ 2 connected compo-
nents, G1(L1, R1, E1),G2(L2, R2, E2),. . . , Gb(Lb, Rb, Eb).
We claim that at least two of these connected components
are trees. Indeed, if none of these connected components is
a tree, then |Ei| ≥ |Li| + |Ri| for all i ∈ [b] and hence
|E| ≥ 2k. If only one connected component is a tree then
|E| ≥ 2k− 1. Assume without loss of generality that G1 and
G2 are trees and that |L1|+ |R1| ≤ |L2|+ |R2|. Let S1 = L1

and S2 = R1. Then s = |S1| + |S2| ≤ (|L| + |R|)/2 ≤ k.
Notice that since G1 is a connected component, it follows
that for every edge (u, v) ∈ E, u ∈ S1 if and only if v ∈ S2,
and there exist exactly |E1| edges that connect an element of
S1 with an element of S2. Since G1 is a tree, it follows that
|E1| = |S1|+ |S2| − 1 < s, a contradiction.

Given a matrix F ∈ [k]`×m we define the index graph of
F to be the bipartite graph GF (L,R,E), with left vertex set
L = [k], right vertex set R = [m], and an edge set E that
consists of all the pairs of the form (i, j) ∈ L×R, such that
FT,j = i, for some T ∈ [`]. Intuitively, the set R corresponds
to the columns of the matrix F , the set L corresponds to all
possible entries of F , and an edge (i, j) indicates that i appears
in the jth column of F . Note that E may contain parallel edges
if some symbol appears more than once in some column of F .
Furthermore, the graph GF has the property that the degree
of each vertex in R is exactly `. An example of a matrix
F ∈ [6]3×4 and its index graph are given in Figure 3.
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F =

 3 4 5 6
4 3 6 5
1 2 1 2

 1 2 3 4 5 6

1 2 3 4

Fig. 3: Example of a matrix F ∈ [6]3×4 and its index graph, where
the vertex sets L and R are represented by the circles and squares,
respectively. Note that this graph is also a (6, 4, 3, 3)-matching graph.

Given a bipartite graph G(L,R,E), for every S ⊆ L we
define N(S) ⊆ R to be the set of all vertices in R that are
connected by an edge to some vertex in S.

Definition 4. A bipartite graph G(L,R,E) is called a
(k, ν, `, r)(k, ν, `, r)(k, ν, `, r)-matching graph if the following hold.

1) Its left and right vertex sets are of sizes |L| = k and
|R| = ν, respectively.

2) The degree of each vertex in R is `.
3) If S ⊆ L is of size s ≤ r then |N(S)| ≥ s.

By Hall’s theorem [8], condition (3) is equivalent to the
condition that for every S ⊆ L of size s ≤ r there exists
a matching, i.e., there exists s disjoint edges from S to R.
Figure 3 illustrates a (6, 4, 3, 3)-matching graph. Matching
graphs are, in a sense, a special type of expander graphs [9].
However, we are not aware of any result on expander graphs
that fits this description of matching graphs. The study of
bipartite expander graphs focuses on the setting in which the
degree restriction in item (2) is either omitted or imposed on
the vertex set L. Moreover, the neighborhood of S ⊆ L is
required to “expand” S, i.e. to be much larger than the set S,
and not only to be at least of the same size as S, as required
in item (3).

We will show how matching graphs can be useful to
construct combinatorial `-consecutive switch codes, but first
we need one more definition. The row cyclic shift mapping
RS : [k]`×m → [k]`×m is defined by (RS(F ))i,j

def
=Fi−1,j ,

for i ∈ [2, `], and (RS(F ))1,j
def
=F`,j , for all j ∈ [m]. Define

RS0(F )
def
=F and for i ∈ [` − 1], define the iiith row cyclic

shift of a matrix F by

RSi(F )
def
= RS ◦RS ◦ · · · ◦RS︸ ︷︷ ︸

i times

(F ).

Construction 2. Let D ∈ [k]`×ν be a matrix whose index
graph is a (k, ν, `, k/2)-matching graph and let m = k +

(`−1)ν. Define the matrix F (SC)def= (F1|F2| . . . |F`) ∈ [k]`×m,
where F1 ∈ [k]`×k is the matrix

F1
def
=


1 2 . . . k
1 2 . . . k
...

...
...

...
1 2 . . . k


and for all b ∈ [2, `], Fb

def
=RSb−2(D).

Theorem 4. Let {CT }T∈[`] be the combinatorial switch code
whose index matrix is the matrix F (SC) from Construction 2.
Then {CT }T∈[`] is a (k,m)-`-consecutive switch code.

M(3, 5) =

 1 2 3 4 5
2 3 4 5 1
3 4 5 1 2

 1 2 3 4 5

1 2 3 4 5

Fig. 4: The matrix M(ω, δ) and its index graph Gω,δ for ω = 5 and
δ = 3. Again, the circle nodes represent the left vertex set L, while
the square nodes represent the right vertex set R.

Proof. We have to show that for every set of k pairs I =
{(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [k] × [`] there exist k

distinct indices j1, j2, . . . , jk, such that F (SC)
Tr,jr

= ir. Note that
F

(SC)
T,i = (F1)T,i = i, for all (i, T ) ∈ [k]× [`]. For all r ∈ [k],

if there is no s ∈ [k] \ {r} such that is = ir then we set
jr = ir. Hence, we can assume without loss of generality that
for every r ∈ [k], there exists s ∈ [k] \ {r}, such that ir = is.
Let S = {i : ∃r ∈ [k], ir = i}. Then |S| ≤ k/2. Since the
index graph of the matrix D, GD(L,R,E), is a (k, ν, `, k/2)-
matching graph, it follows that there exists a matching for
S ⊂ L in the graph GD(L,R,E). This implies that there
exist |S| distinct integers ĵ1, ĵ2, . . . , ĵ|S| ∈ [ν] such that for
all 1 ≤ r ≤ |S|, ir appears in the ĵrth column of D. Since,
Fb = RSb−2(D), for all 2 ≤ b ≤ `, it follows that ir appears
in ` − 1 distinct rows of the columns of F (SC) indexed by
ĵr+k, ĵr+k+ν, . . . , ĵr+k+(`−2)ν. If for some b ∈ [0, `−2],
F

(SC)

Tr,ĵr+k+bν
= ir then we set jr = ĵr + k + bν. Otherwise,

we set jr = ir and we have that F (SC)
Tr,jr

= ir. In this case, for
every s 6= r, if is = ir then there exists a unique b ∈ [0, `−2]

such that F (SC)

Ts,ĵs+k+bν
= is.

Notice that the last k − 1 columns of the matrix F
from Construction 1 define a matrix whose index graph is
a (k, k−1, 2, k/2)-matching graph. Therefore, Construction 1
is a special case of Construction 2 and Theorem 4 is a gener-
alization of Theorem 2. Next, an example of a 3-consecutive
switch code is given.

Example 3. Let

D =

 3 4 5 6
4 3 6 5
1 2 1 2


be the matrix from Figure 3, whose index graph is a (6, 4, 3, 3)-
matching graph. Then

F (sc) =

 1 2 3 4 5 6 3 4 5 6 1 2 1 2
1 2 3 4 5 6 4 3 6 5 3 4 5 6
1 2 3 4 5 6 1 2 1 2 4 3 6 5


is the index matrix of a combinatorial (6, 4)-3-consecutive
switch code.

In order to apply Theorem 4 we must construct a
(k, ν, `, k/2)-matching graph. To this end, for every pair of
positive integers δ and ω, δ ≤ ω, we define the bipartite graph
Gω,δ(L,R,E) where L = [ω], R = [ω] and E = {(u, v) ∈
L×R : ∃r ∈ [δ], u ≡ v + r − 1 (mod ω)}.

The graph Gω,δ is the index graph of the matrix M(ω, δ) ∈
[ω]δ×ω defined by

(M(ω, δ))i,j ≡ i+ j − 1 (mod ω).
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Figure 4 shows the matrix M(ω, δ) and the graph Gω,δ for
ω = 5 and δ = 3.

For a bipartite graph G(L,R,E) and for X ⊂ R we denote
by G(L,R,E)\X the subgraph of G(L,R,E) that is obtained
from G by removing from R all the vertices of X and all
the edges of the form (u, v) ∈ L × X . The next lemma
states a property of the graph Gω,δ that will be useful for
our construction of a (k, ν, `, k/2)-matching graph.

Lemma 4. Let δ ∈ [ω] and consider the graph Gω,δ(L,R,E).
If X ⊂ R is of size δ − 1 then the graph Gω,δ \ X is an
(ω, ω − δ + 1, δ, ω − δ + 1)-matching graph.

Proof. We prove the lemma by induction on δ and ω. For the
basis of induction we need to verify that the lemma holds for
δ = 1 and for every ω ≥ 1. This case is trivial, since X can
only be the empty set and Gω,1 is an (ω, ω, 1, ω)-matching
graph.

For the induction hypothesis we assume that we can remove
any δ − 2 vertices from the right vertex set of Gω−1,δ−1 and
obtain an (ω− 1, ω− δ+ 1, δ− 1, ω− δ+ 1)-matching graph.

For the induction step, let S ⊂ L and X ⊂ R have sizes
ω − δ + 1 and δ − 1, respectively. By symmetry, we assume
without loss of generality that ω 6∈ S. Let b = max{v : v ∈
X\[ω−δ+2, ω−1]}. Since |X| = δ−1 and |[ω−δ+2, ω−1]| =
δ−2, it follows that b is well defined. We claim that Gω,δ\{b}
(the subgraph of Gω,δ obtained by removing the vertex b from
R) contains a subgraph, Ĝ, that is isomorphic to the graph
Gω−1,δ−1 by a relabeling of its right vertex set (and using
the identity mapping on the left vertex set). If we can prove
this claim then by the induction hypothesis Ĝ \ (X \ {b}) is
an (ω − 1, ω − δ + 1, δ − 1, ω − δ + 1)-matching graph with
left vertex set [ω − 1]. Since ω 6∈ S and |S| = ω − δ + 1, it
follows that there exists a matching for S in Ĝ \ (X \ {b})
and therefore also in Gω,δ \X , as desired.

Hence, to conclude the proof of the lemma we prove the
existence of the subgraph Ĝ. We distinguish between two cases
according to whether or not b = ω.

Case 1: b 6= ω. For the relabeling of the vertex set R \ {b},
let φ : [ω] \ {b} → [ω − 1] be the bijection defined by

φ(v) =

 v + 1, if v ∈ [1, b− 1]
v, if v ∈ [b+ 1, ω − 1]
1, if v = ω

.

It is sufficient to show that the set of edges Ẽ = {(u, v) ∈
[ω−1]× [ω]\{b} : ∃r ∈ [δ−1], u ≡ φ(v)+r−1 (mod ω−
1)} is contained in the edge set of Gω,δ \ {b}. Assume that
(u, v) ∈ Ẽ. If v ∈ [b − 1], then since b ≤ ω − δ + 1 it
follows that u = v + r for some r ∈ [δ − 1] and therefore
u ≡ v + r − 1 (mod ω) for some r ∈ [2, δ]. Hence, (u, v) is
an edge of Gω,δ \ {b}. If v ∈ [b + 1, ω − 1] or v = ω then
either u = v + r − 1 or u = v + r − ω, for some r ∈ [δ − 1],
(depending on whether or not v + r − 1 < ω). In any case, it
is an edge of Gω,δ \ {b}.

Case 2: b = ω. In this case we define the relabeling of the
vertex set R \ {ω} to be the identity function. It is sufficient
to show that the set of edges Ẽ = {(u, v) ∈ [ω − 1] × [ω −
1] : ∃r ∈ [δ − 1], u ≡ v + r − 1 (mod ω − 1)} is contained
in the edge set of Gω,δ \ {ω}. Assume that (u, v) ∈ Ẽ. Then

either u = v + r − 1 or u = v + r − ω, for some r ∈ [δ − 1],
(depending on whether or not v + r − 1 < ω). In any case, it
is an edge of Gω,δ \ {ω}.

Given a matrix M = (Mi,j) ∈ [ω]δ×ω and a positive integer
α, define the matrix M + α ∈ [1 + α, ω + α]δ×ω , where
(M + α)i,j = Mi,j + α, for all i ∈ [δ] and j ∈ [ω].

Construction 3. Let k = (` − 2)f(f + 1), for some positive
integer f , ω = (` − 2)f , and δ = ` − 1. Define the matrix
D ∈ [k]`×(`−2)f

2

by

D
def
=

(
M1 M2 · · · Mf

x x · · · x

)
,

where x = (k − ω + 1, k − ω + 2, . . . , k) and for all j ∈ [f ],
Mj = M(ω, δ) + (j − 1)ω ∈ [(j − 1)ω + 1, jω]δ×ω .

Theorem 5. The index graph of the matrix D from Construc-
tion 3 is a (k, k − ω, `, k/2)-matching graph.

Proof. By the definition of the index graph of D,
GD(L,R,E), we have that L = [k], R = [k −
ω], and every vertex v ∈ R has degree `. Since
the index graph of Mj , j ∈ [f ], is equivalent to
Gω,δ , it follows that GD contains f disjoint subgraphs
G1(L1, R1, E1), G2(L2, R2, E2), . . . , Gf (Lf , Rf , Ef ), Lj =
[(j−1)ω+1, jω] and Rj = [(j−1)ω+1, jω], for all j ∈ [f ],
where each subgraph is equivalent to Gω,δ .

Let S ⊂ L = [k] of size |s| ≤ k/2. We need to show that
|N(S)| ≥ s. For all j ∈ [f + 1], let Sj = S ∩ Lj , sj = |Sj |,
and let dj = min{ω−sj , `−2}. By Lemma 4, for all j ∈ [f ],
we can choose any set of dj vertices of Rj , Xj , and find
a matching for Sj in Gj \ Xj . Therefore, by the definition
of D, we have the flexibility to choose the sets Xj , so we
will have a matching for the set (∪fj=1Sj) ∪ B, where B is
any subset of [k − ω + 1, k] of size

∑f
j=1 dj . In particular, if

sf+1 ≤
∑f
j=1 dj , then we have a matching for S. Otherwise,

let r = |{j ∈ [f ] : dj = ω − sj < `− 2}|. Notice that since
sf+1 >

∑f
j=1 dj we have that

s =

f+1∑
j=1

sj >

f∑
j=1

sj + dj = rω +
∑
j∈[f ]:
dj=`−2

sj + dj

≥ rω + (f − r)(`− 2)

and hence

rω + (f − r)(`− 2) <
k

2
=
ω(f + 1)

2
,

which implies that r < f−1
2 . Hence,

sf+1 >

f∑
j=1

dj ≥ (`− 2)(f − r) ≥ (`− 2)(f + 1)

2
.

By the definition of GD, it follows that |N(u1)| = f and
N(u1)∩N(u2) = ∅, for all u1, u2 ∈ [k−ω+1, k]. Therefore,

|N(S)| ≥ |N(Sf+1)| = sf+1f

>
(`− 2)(f + 1)f

2
= k/2 ≥ s.
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Combining Theorems 4 and 5 we conclude the following.

Corollary 1. If k = (`−2)f(f+1), for some positive integer
f , then

A(k, `) ≤ `k − (`− 1)(`− 2)f ≈ `k − (`− 1)
√

(`− 2)k.

V. 2-CONSECUTIVE SWITCH CODE OF DEGREE 2

In this section we show a construction of a linear binary
(k,m = 2k−2)-2-consecutive switch code of degree two, i.e.,
each parity symbol is formed by the XOR operations of at most
two input symbols. This construction reduces the redundancy
by one over the optimal combinatorial (degree 1) 2-consecutive
switch code.

Construction 4. Given an even integer k, let µ =
k/2 and let E : Fµ−12 → Fµ−22 be the encoder that
maps x = (x1, x2, . . . , xµ−1) ∈ Fµ−12 to E(x) =
(E(x)1, E(x)2, . . . , E(x)µ−2), where E(x)i = xi ⊕ xi+1, for
all i ∈ [µ−2]. Let C1 and C2 be the two [m = 2k−2, k]-codes
defined as follows.
• For T ∈ {1, 2}, decompose the T th input

string x(T ) as x(T ) = (x
(T )
1 ,x

(T )
2 , x

(T )
µ+1,x

(T )
µ+2),

where x
(T )
2 = (x

(T )
2 , x

(T )
3 , . . . , x

(T )
µ ) and

x
(T )
µ+2 = (x

(T )
µ+2, x

(T )
µ+3, . . . , x

(T )
k ).

• The string x(T ) is systematically encoded to c(T ) as
shown in the following array.

x(1) E(x(1)
2 ) x

(1)
1 ⊕ x

(1)
2 x

(1)
µ+1 ⊕ x

(1)
µ+2 E(x(1)

µ+2)

x(2) E(x(2)
2 ) x

(2)
µ ⊕ x(2)µ+1 x

(2)
k ⊕ x

(2)
1 E(x(2)

µ+2)

Theorem 6. Let {CT }T∈{1,2} be the code specified by Con-
struction 4 for some even k. Then {CT }T∈{1,2} is a (k,m =
2k − 2)-2-consecutive switch code of degree two.

Proof. First, notice that, for all T ∈ {1, 2}, x
(T )
2 ,x

(T )
µ+2 ∈

Fµ−12 and hence E(x
(T )
2 ) and E(x

(T )
µ+2) are correctly defined

vectors of length µ−2, given by E(x
(T )
2 )i = x

(T )
i+1⊕x

(T )
i+2 and

E(x
(T )
µ+2)i = x

(T )
µ+i+1 ⊕ x

(T )
µ+i+2, for all i ∈ [µ− 2]. Therefore,

the code C(T ) is indeed of length m = k+2(µ−2)+2 = 2k−2
and degree two.

Given a request set I = {(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂
[k] × {1, 2} we need to show the existence of a recovery set
for I . To this end we distinguish between 6 cases.

Case 1: There exist r ∈ [3, µ], s ∈ [µ + 3, k], and T̂r, T̂s ∈
{1, 2}, such that (r, T̂r), (s, T̂s) 6∈ I . We assume that T̂r =
T̂s = 1, however it will be clear from the proof that different
choices of T̂r and T̂s can be handled similarly.

Since I ⊂ Î = ([k]× {1, 2}) \ {(r, 1), (s, 1)}, it suffices to
show a recovery set for Î . We will first show how to recover
[2, µ]×{1, 2}\{(r, 1)} by reading systematically at most one
of the symbols x(1)j , x

(2)
j , j ∈ [2, µ], and from E(x

(2)
2 ). In the

first step, the symbol x(2)r is read systematically from x(2). We
then continue in a sequential manner. For every i ∈ [r+ 1, µ],
assume that x(2)i−1 was already recovered. Then the symbol

x
(1)
i is read systematically and the symbol x(2)i is recovered

from x
(2)
i−1 and E(x

(2)
2 )i−2 = x

(2)
i−1⊕x

(2)
i . Similarly, for every

i ∈ [2, r − 1], assume that x(2)i+1 was already recovered. Then
the symbol x(1)i is read systematically and the symbol x(2)i is
recovered from x

(2)
i+1 and E(x

(2)
2 )i−1 = x

(2)
i ⊕ x

(2)
i+1.

From symmetry we have that [µ+ 2, k]× {1, 2} \ {(s, 1)}
can be recovered by reading systematically at most one of the
symbols x(1)j , x

(2)
j , j ∈ [µ+ 2, k], and from E(x

(2)
µ+2).

It remains to show how to recover x(T )
1 and x

(T )
µ+1, T ∈

{1, 2}. The symbols x(2)1 and x
(2)
µ+1 are read systematically.

Since we already recovered x(1)2 and x(1)µ+2 (regardless of the
values of T̂r and T̂r), we can recover x(1)1 and x(1)µ+1 from the
parities x(1)1 ⊕ x

(1)
2 and x(1)µ+1 ⊕ x

(1)
µ+2, respectively.

Thus, we have a recovery set for Î in which at most one
entry from each column of the array is read. Such a recovery
set for Î , where k = 8, is given in Example 4.

Case 2: I = [1, µ] × {1, 2}. In this case the symbol x(1)1 is
read systematically and we use the parity symbol x(2)k ⊕ x

(2)
1

and the systematic symbol x(2)k to recover x
(2)
1 . We then

use the parity symbol x
(1)
1 ⊕ x

(1)
2 together with x

(1)
1 to

recover x
(1)
2 . As in case 1, for every i ∈ [3, µ], if x

(1)
i−1

was already recovered then the symbol x(2)i can be read
systematically and the symbol x(1)i can be recovered from
x
(1)
i−1 and E(x

(1)
2 )i−2 = x

(1)
i−1 ⊕ x

(1)
i .

Case 3: There exist two indices r, s ∈ [k] \ [2, µ] and T̂r, T̂s ∈
{1, 2} such that I = ([2, µ] × {1, 2}) ∪ {(r, T̂r), (s, T̂s)}.
It is easy to see that the only non-trivial sub-case is when
(1, 2) ∈ I . In all other cases, x(1)2 can be recovered by x

(1)
1

and x
(1)
1 ⊕ x

(1)
2 , from which point the remaining symbols

can be recovered in a sequence like in case 2. Now assuming
(1, 2) ∈ I , if (k, 1) 6∈ I , then x

(2)
1 can be recovered from

x
(2)
k and x

(2)
k ⊕ x

(2)
1 and x

(1)
1 is read systematically for the

recovery of the remaining symbols in a sequence like in case
2. If (k, 1) ∈ I , then x(1)k can be recovered by reading x(1)k−1
systematically and from E(x

(1)
µ+2)µ−2 = x

(1)
k−1 ⊕ x

(1)
k . From

which point the remaining symbols can be recovered as if
(k, 1) 6∈ I .

Case 4: There exist two indices r, s ∈ [2, k] \ [3, µ]
and T̂r, T̂s ∈ {1, 2} such that I = ([3, µ] × {1, 2}) ∪
{(1, 1), (1, 2), (r, T̂r), (s, T̂s)}. It is easy to see that the only
non-trivial sub-case is when (2, 2), (k, 1) ∈ I . In all other
cases one of the symbols x

(1)
1 or x

(2)
1 can be recovered

by either x(1)2 and x
(1)
1 ⊕ x

(1)
2 or by x

(2)
k and x

(2)
k ⊕ x

(2)
1 ,

after which the remaining requests can be recovered in a
sequence like in case 2. Now assuming (2, 2), (k, 1) ∈ I ,
we can recover x(1)k by reading the systematic symbol x(1)k−1
and the parity symbol E(x

(1)
µ+2)µ−2 = x

(1)
k−1 ⊕ x

(1)
k and

then recover x
(2)
1 by reading the systematic symbol x

(2)
k

and parity symbol x(2)k ⊕ x
(2)
1 . The remaining requests in

([3, µ] × {1, 2}) ∪ {(2, 2)} can now be recovered in both
generations similarly to case 2.
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Case 5: All indices [3, µ] are requested from both generations
and neither of index 1 or 2 is requested from both generations.
This case is trivially easier than case 4.

Case 1 covers the scenario in which there exist r ∈ [3, µ]
and s ∈ [µ+ 3, k] that were both requested from at most one
generation. Cases 2–5 cover the scenario in which all indices
[3, µ] are requested from both generations. The remaining case,
where all indices from [µ + 3, k] are requested from both
generations, is symmetric to the union of cases 2–5.

Example 4. The following array forms a binary (k = 8,m =
14)-2-consecutive switch code of degree 2.

x(1) x
(1)
2 ⊕ x

(1)
3 x

(1)
3 ⊕ x

(1)
4 x

(1)
1 ⊕ x

(1)
2 x

(1)
5 ⊕ x

(1)
6 x

(1)
6 ⊕ x

(1)
7 x

(1)
7 ⊕ x

(1)
8

x(2) x
(2)
2 ⊕ x

(2)
3 x

(2)
3 ⊕ x

(2)
4 x

(2)
4 ⊕ x

(2)
5 x

(2)
8 ⊕ x

(2)
1 x

(2)
6 ⊕ x

(2)
7 x

(2)
7 ⊕ x

(2)
8

If for example

I = {(2, 1), (2, 2), (4, 1), (4, 2), (6, 1), (6, 2), (8, 1), (8, 2)}

then we read x(2)3 from the systematic part and use the parity
symbols x(2)2 ⊕x

(2)
3 and x(2)3 ⊕x

(2)
4 to recover x(2)2 and x(2)4 , re-

spectively. The symbols x(1)2 and x(1)4 are read systematically.
Similarly, we can recover the symbols x

(1)
6 , x

(2)
6 , x

(1)
8 , x

(2)
8

by reading x
(1)
6 , x

(2)
7 , x

(1)
8 systematically and from the parity

symbols x(2)6 ⊕ x(2)7 , x(2)7 ⊕ x(2)8 . As shown in case 1 of the
proof of Theorem 6, it is also possible to recover the symbols
x
(1)
1 , x

(2)
1 , x

(1)
5 , x

(2)
5 by reading x

(2)
1 and x

(2)
5 systematically

and from the parity symbols x(1)1 ⊕ x
(1)
2 and x(1)5 ⊕ x

(1)
6 .

VI. COMPUTATIONAL CONSECUTIVE SWITCH CODES

In this section we study computational consecutive switch
codes i.e., consecutive switch codes that are not necessarily
combinatorial, and show constructions of `-consecutive switch
codes for arbitrary k and `.

Before we present our constructions, we review a few more
fundamental concepts in coding theory. Let C be a (ν, µ)-code
over Fq . The minimum distance of the code C is defined by

d(C)def= min{dH(u,v) : u,v ∈ C, u 6= v},

where dH(u,v) is the Hamming distance between u =
(u1, u2, . . . , uν) and v = (v1, v2, . . . , vν) defined by

dH(u,v)
def
= |{j ∈ [ν] : uj 6= vj}|.

It is well known that if the minimum distance of C is d then C
can correct any d−1 erasures. More formally, given an encoder
EC : Fµq → Fνq , there exists a decoder DC : (Fq ∪ {?})ν → Fµq
such that if z ∈ (Fq∪{?})ν is obtained from EC(x) by at most
d − 1 erasures, where an erasure is indicated by the symbol
?, then DC(z) = x. Another interpretation of this property,
which we will repeatedly use in the rest of the section, is that
x is recoverable from any ν − d + 1 entries of E(x). In this

section we will use only linear codes and refer to a [ν, µ]-code
with minimum distance d by [ν, µ, d][ν, µ, d][ν, µ, d]-code.

Next, we present our constructions. Let us first start with
the case of ` = 2.

Construction 5. Let C be a [k, µ, d]-code C over Fq , where
d ≥ bk/2c+ 1 and let E : Fµq → Fkq be a systematic encoder
for C. Let C1 and C2 be the two [m = 2k−µ, k]-codes defined
as follows.
• For the first generation, x(1) = (x

(1)
1 , . . . , x

(1)
k ) ∈ Fk is

encoded to

c(1) = (x
(1)
1 , . . . , x

(1)
k−µ, x

(1)
k−µ+1, . . . , x

(1)
k , y

(1)
1 , . . . , y

(1)
k−µ),

where

E(x
(1)
k−µ+1, . . . , x

(1)
k ) = (x

(1)
k−µ+1, . . . , x

(1)
k , y

(1)
1 , . . . , y

(1)
k−µ).

• For the second generation, x(2) = (x
(2)
1 , . . . , x

(2)
k ) is

encoded to

c(2) = (y
(2)
k−µ, . . . , y

(2)
1 , x

(2)
k , . . . , x

(2)
k−µ+1, x

(2)
k−µ, . . . , x

(2)
1 ),

where

E(x
(2)
k−µ+1, . . . , x

(2)
k ) = (x

(2)
k−µ+1, . . . , x

(2)
k , y

(2)
1 , . . . , y

(2)
k−µ).

The resulting code sequence {C1, C2} is illustrated in Figure 5.

Theorem 7. The code sequence {C1, C2} from Construction 5
forms a (k,m = 2k − µ)q-2-consecutive switch code.

Proof. Since C is a [k, µ, d] code over Fq , it follows that each
x ∈ Fµq can be recovered from any dk/2e entries of E(x).

We next prove that {C1, C2} satisfies the requirement of a
(k, 2k − µ)q-2-consecutive switch code. Given a request set
I = {(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [k] × {1, 2}, let k1
and k2 be the number of elements in I of the form (i, 1)
and (i, 2), respectively, i ∈ [k]. In particular, k1 + k2 = k.
Assume without loss of generality that k1 ≤ k2. The k1
symbols from the first generation are read systematically from
the first k entries of c(1). Hence, no symbol is read from
the last k − µ columns of the first (bottom) row of the
array (see Figure 5). As for the requested symbols from the
second generation, every symbol from the first k − µ entries
of x(2) is read systematically from the last k − µ entries of
c(2), since no symbol was read from these columns for the
first generation. In order to read (if necessary) the symbols
from the last µ entries of x(2) it suffices to read any dk/2e
entries of E(x

(2)
k−µ+1, . . . , x

(2)
k ), which is stored in the first

k columns of the array. This is possible, since the number
of available columns (from which no symbol was read) is
k − k1 ≥ dk/2e.

Corollary 2. There exists a (k,m = 1.5k)q-2-consecutive
switch code over a field of size q+1 ≥ k and a binary (k,m)2-
2-consecutive switch code, where m = 2k − blog2 kc.

Proof. This corollary follows immediately from Theorem 7.
One simply has to note that for q > k, there exists a [k, µ =
dk/2e, d = bk/2c+ 1]-code C over Fq , e.g., a Reed-Solomon
code (if k = q or k = q + 1, one might use extended or
doubly-extended Reed-Solomon codes), and that there exists
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x
(1)
1

· · · x
(1)
k−µ x

(1)
k−µ+1

· · · x
(1)
k y

(1)
1

· · · y
(1)
k−µ

y
(2)
k−µ · · · y

(2)
1 x

(2)
k

· · · x
(2)
k−µ+1 x

(2)
k−µ · · · x

(2)
1

Fig. 5: Description of the (k,m = 2k − µ)q-2-consecutive switch
code from Construction 5.

a binary [k = 2s − 1, µ = s, d = bk/2c + 1]-code, e.g., a
shortened Reed-Muller code with s variables and total degree
one. (See [14] for more information on Reed-Solomon and
Reed-Muller codes.)

The next Theorem provides a lower bound on the length of
a systematic 2-consecutive switch code.

Theorem 8. If {C(T )}T∈{1,2} is a systematic (k,m)q-2-
consecutive switch code, then m ≥ 1.5k.

Proof. If the first k/2 entries from each of the strings x(1) and
x(2) are requested then at most k/2 requested entries can be
recovered from the systematic part. Hence, in order to recover
the remaining symbols, the length of the parity part must be
at least k/2.

Notice that although the 2-consecutive switch code from
Construction 5 is not systematic, if q + 1 ≥ k, a systematic
(k, 1.5k)q-2-consecutive switch code can be constructed by
taking C(1) = C(2) = C, where C is a systematic MDS code
of length 1.5k and dimension k. Hence, in the systematic case
the lower bound on m from Theorem 8 is tight.

We can generalize Construction 5 for an arbitrary number
of rows.

Construction 6. For ` ≥ 2, 0 < α, integers µ = αk, ν =
(`−1)(1−α)k+αk, and q > ν, let C be a [ν, µ, d = ν−µ+1]q-
code over Fq (e.g., a Reed-Solomon code) and let E : Fµq → Fνq
be a systematic encoder for C. Let m = `(1−α)k+αk and let
{CT }T∈[`] be a sequence of [m, k]-codes defined as follows.
• For T ∈ [`], the T th generation input string x(T ) is

partitioned into two parts, x(T ) = (x
(T )
1 ,x

(T )
2 ), where

x
(T )
1 ∈ F(1−α)k consists of the first (1 − α)k entries of

x(T ) and x
(T )
2 ∈ Fαk consists of the last αk entries of

x(T ).
• The string x(T ) is encoded to c(T ) which consists of two

parts which we refer to as the left and right parts of c(T ).
The left part consists of the first `(1−α)k entries, where
we treat these entries as ` blocks, each of length (1−α)k.
The right part consists of the last αk entries.

• The first part of the input string, i.e. x
(T )
1 , is stored

systematically in the (1−α)k entries of the T th block of
the left part of c(T ).

• The second part of the input string, i.e. x(T )
2 , is stored

systematically in the αk entries of the right part of c(T ).
• Let y(T ) ∈ Fν−µ be the string for which E(x

(T )
2 ) =

(x
(T )
2 ,y(T )). The string y(T ) is stored in the remaining

blocks of c(T ) (with no specific order). Note that this step
is possible since the number of available entries is

(`− 1)(1− α)k = ν − µ.

Fig. 6 shows the structure of {CT }T∈[`].

Theorem 9. For α = (`−1)2
`(2`−3) , the sequence of codes

{CT }T∈[`] from Construction 6 is a (k,m)q-switch code with

m = `(1− α)k + αk =

(
`

2
+

3

4
− 1− 3`/4

2`(`− 3/2)

)
k.

Proof. Since C is a [ν, µ = αk, d = ν−µ+1]-code over Fq , it
follows that each x ∈ Fµq can be recovered from any µ = αk
entries of E(x).

We next prove that {CT }T∈[`] from Construction 6 sat-
isfies the requirement of a (k,m = `(1 − α)k + αk)q-
`-consecutive switch code. Given a request set I =
{(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [k] × [`], let kT , T ∈ [`],
be the number of elements in I of the form (i, T ), i ∈ [k]. In
particular,

∑`
T=1 kT = k. Assume for now that k1 ≤ k2 ≤

· · · ≤ k`, while it will be clear from the proof that different
orders can be handled similarly. The requested symbols are
recovered by the following steps.

1) The requested symbols from the first generation are read
systematically from the k1 entries where they are stored
in the left and right parts of c(1).

2) The requested symbols from the second generation are
read in two steps. All requested symbols from x

(2)
1 are

read systematically from the second block in the left part
of c(2). If symbols from x

(2)
2 are requested and cannot

be read systematically, then we read any αk entries from
c(2) which belong to either the first block of its left part
or its right part. For the success of this step we need to
require that

(1− α)k + αk − k1 ≥ αk

and since k1 ≤ k/`, it is enough to require that

`− 1

`
≥ α =

(`− 1)2

`(2`− 3)
,

which holds for ` ≥ 2. Note that the number of columns
used in this part is at most k2 + αk.

3) The requested symbols from the T th generation, T ∈
[3, `], are also read in two steps. All requested symbols
from x

(T )
1 are read systematically from the T th block in

the left part of c(T ). If symbols from x
(T )
2 are requested,

which again cannot be read systematically, then we read
any αk symbols from available entries in c(T ), which
belong to either blocks 1, 2, . . . , T − 1 from its left part
or its right part. For the success of this step we need to
require that

(T−1)(1−α)k+αk−(k1+· · ·+kT−1)−(T−2)αk ≥ αk

and since k1 + k2 + · · · + kT−1 ≤ (T − 1)k/`, it is
enough to require that

(T − 1)(`− 1)

`
≥ (2T − 3)α = (2T − 3)

(`− 1)2

`(2`− 3)
,

which holds for all T ∈ [3, `].
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x
(1)
1

· · · x
(1)
2

x
(2)
1

· · · x
(2)
2

x
(`)
1

· · · x
(`)
2

`

` blocks of length (1− α)k αk entries

Fig. 6: Description of the (k,m = `(1− α)k + αk)q-`-consecutive
switch code from Construction 6. For all T ∈ [`], the empty blocks
in the T th row store y(i), where E(x(i)

2 ) = (x
(i)
2 ,y(i)).

Note that, for ` = 2, we get from Theorem 9 the same
result as in Corollary 2 of m = 1.5k. Indeed, Constructions 5
and 6 coincide for ` = 2 up to changing the order of blocks
in the array. In general, according to Theorem 9, we get a
reduction of almost a half of the number of columns over a
trivial construction, which uses `k columns, or Construction 2,
which uses about (1− o(1))`k when ` is fixed. For ` = 3, we
get that the number of columns is 19

9 k ≈ 2.11k. We show in
the next construction how to improve this result to only 2k
columns.

Construction 7. For an integer µ = k/3 and for q + 1 ≥ k,
let C be a [k, µ, d = 2k/3 + 1]-code over Fq (e.g. a doubly
extended Reed-Solomon code) and let E : Fk/3q → Fkq be a
systematic encoder for C such that E(x) = (x, E1(x), E2(x)),
for E1, E2 : Fk/3q → Fk/3q . Let Ê2 : F2k/3

q → Fk/3 be defined
by Ê2(u,v) = E2(u) + E2(v), for all u,v ∈ Fk/3q . Define
a sequence of three [m = 2k, k]-codes {CT }T∈[3], by the
following steps.
• For T ∈ [3], the T th input string x(T ) is partition into

three parts of length k/3, x(T ) = (x
(T )
1 ,x

(T )
2 ,x

(T )
3 ).

• The string x(T ) is encoded to c(T ) which consists of six
blocks of length k/3.

• The structure of the codewords c(T ), T ∈ [3] is shown in
the following array.

x
(1)
1 x

(1)
2 x

(1)
3 E1(x(1)

3 ) Ê2(x(1)
1 ,x

(1)
3 ) E1(x(1)

1 )

Ê2(x(2)
1 ,x

(2)
3 ) E1(x(2)

1 ) x
(2)
1 x

(2)
2 x

(2)
3 E1(x(2)

3 )

x
(3)
3 E1(x(3)

3 ) Ê2(x(3)
1 ,x

(3)
3 ) E1(x(3)

1 ) x
(3)
1 x

(3)
2

Theorem 10. The sequence of codes {CT }T∈[3] from Con-
struction 7 forms a (k,m = 2k)q-3-consecutive switch code.

Proof. For all T ∈ [3], assume that kT symbols are requested
from the input string x(T ), where k1+k2+k3 = k, and assume
without loss of generality that k1 ≤ k2 ≤ k3. Furthermore, let
kT,1, kT,2, and kT,3 be the number of symbols requested from
the strings x

(T )
1 ,x

(T )
2 , and x

(T )
3 , respectively. The requested

symbols are recovered according to the following steps.
1) For T = 1, the k1 requested symbols of x(1) are read

systematically from the k1 entries in which they are
stored in the first, second, and third block of c(1).

2) For T = 2, the k2,2 + k2,3 requested symbols of x
(2)
2

and x
(2)
3 are read systematically from the fourth and

fifth blocks of c(2). Since C is a [k, k/3, 2k/3 + 1]
code, it follows that any k/3 entries from the string
(x

(2)
1 , E1(x1)) are sufficient to recover x(2)

1 . We read

A = min

{
k

3
− k1,3,

2k

3
− k2,2 − k2,3 − k1,3

}
entries from the third block of c(2) and k/3−A entries
from the second block of c(2). To show this is possible,
we need to show that 0 ≤ A ≤ k/3−k1,3 and k/3−A ≤
k/3−k1,2. Clearly, A ≤ k/3−k1,3. From 0 ≤ k1,3 ≤ k

3

and 0 ≤ k2,2 + k2,3 + k1.3 ≤ 2k
3 we have that A ≥ 0. If

A = k/3 − k1,3 then k/3 − A = k1,3 ≤ k/3 − k1,2. If
A = 2k/3−k2,2−k2,3−k1,3 then k/3−A = k2,2+k2,3+
k1,3 − k/3 and since k1,2 + k1,3 + k2,2 + k2,3 ≤ 2k/3,
it again follows that k/3−A ≤ k/3− k1,2. This proves
the correctness of this step.

3) For T = 3, the k3,2 requested symbols of x(3)
2 are read

systematically from the sixth block of c(3). In order to
recover the string x

(3)
3 , read k

3 entries from the first
and second blocks, which are sufficient to successfully
recover the string x

(3)
3 . It is possible to read k

3 entries
from the first two blocks since the number of entries
already read from these blocks is k1,1 + k1,2 + k

3 − A,
and

k1,1 + k1,2 +
k

3
−A = k1,1 + k1,2 +

k

3

−min

{
k

3
− k1,3,

2k

3
− k2,2 − k2,3 − k1,3

}
= k1,1 + k1,2 +

k

3

+ max

{
k1,3 −

k

3
, k2,2 + k2,3 + k1,3 −

2k

3

}
= max

{
k1, k2,2 + k2,3 + k1 −

k

3

}
≤ k

3
.

In order to recover the string x
(3)
1 , read k/3 entries

from blocks three, four, and five of c(3). First note
that, since x

(3)
3 was already recovered, the value of

E2(x
(3)
3 ) is known and thus we can assume that the string

stored in the third block is E2(x
(3)
1 ). Hence, reading k/3

entries from these three blocks is sufficient to decode the
message x(3)

1 . It is possible to read this number of entries
since the number of entries read so far from these three
blocks is

k1,3 +A+ k2,2 + k2,3

≤ k1,3 +
2k

3
− k2,2 − k2,3 − k1,3 + k2,2 + k2,3 =

2k

3
.

VII. CONCLUSION AND OPEN PROBLEMS

In this paper the concept of `-consecutive switch codes,
in which the request sets are restricted to ` consecutive
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generations, was studied. This natural variation of switch codes
admits better coding rates than those achieved by conventional
switch codes and yet admits a large collection of common
request sets. Consecutive switch codes were studied mainely
for the combinatorial case and the computational case, but also
when the degree is limited by two. For the combinatorial case,
we constructed (k,m)-`-consecutive switch codes for every
` ≥ 2, where m ≈ `k − (`− 1)

√
(`− 2)k, and found a tight

lower bound on m when ` = 2. When the degree is limited by
two, we showed a construction that reduces the redundancy by
one over the optimal combinatorial 2-consecutive switch code.
For the computational case, constructions of a (k,m = 1.5k)-
2-consecutive switch code and a (k,m = 2k)-3-consecutive
switch code were given, along with a construction of a (k,m)-
`-consecutive switch code, for every ` ≥ 2, in which m ≈ 2

3`k
when ` is large. We also studied conventional switch codes and
presented the best known construction of binary (k,m)-switch
codes. Table I provides a summary of all the constructions
in the paper. For constructions of consecutive switch codes
the table shows the value of ` and for constructions of
computational switch codes the table shows the size of the
field, q.

TABLE I: Summary of constructions

Const- Syste- Consec-
m

Combina-
raction matic utive torial

Const. 1 Yes ` = 2 2k − 1 Yes
Const. 2 Yes ` ≥ 2 ≈ `k − `

√
`k Yes

Const. 4 Yes ` = 2 2k − 2 Yes, degree 2

Const. 5 No ` = 2
1.5k q ≥ k − 1

2k − log2 k q = 2
Const. 6 No ` ≥ 2 ≈ `k/2 q & (`− 1)k/2
Const. 7 No ` = 3 2k q ≥ k − 1
Const. 8 Yes No ≈ 2k1.5 q = 2

While the results in the paper advance the study of switch
codes, there are still several interesting problems which are
left open. Some of them are summarized as follows.

1) Find lower bounds on the length m of binary (k,m)-
switch codes.

2) Improve the constructions and find bounds for combi-
natorial consecutive switch codes for arbitrary ` (not
necessarily fixed).

3) Find constructions and bounds for linear binary `-
consecutive switch codes of limited degree.

4) Improve the constructions and find bounds for compu-
tational consecutive switch codes. Of particular interest
is to determine whether the construction of (k,m =
1.5k)q-2-consecutive switch codes is optimal in the
non-systematic case, either by finding a suitable lower
bound on the length or by demonstrating an improved
construction.
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APPENDIX A
PROOF OF LEMMA 2

In this appendix we prove Lemma 2 which states that for
k ≤ n, a code C is an (n,N = m, k,m, t = 1)q-primitive
batch code if and only if it is an (n, k,m, t = 1)q-switch
code.
Proof of Lemma 2. Assume that C is an (n,N = m, k,m, t =
1)q-primitive batch code. Given a set of k pairs I =
{(i1, T1), (i2, T2), . . . , (ik, Tk)} ⊂ [k]×N, letM be the multi-
set of size k, {i1, i2, . . . , ik}. Since k ≤ n, it follows that there
exists z ∈ Fnq such that zir = x

(Tr)
ir

, for all r ∈ [k]. Since C is
an (n,N = m, k,m, t = 1)q-primitive batch code, it follows
that there exist k pairwise disjoint subsequences of EC(z) = y,
u1,u2, . . . ,uk, such that zir can be recovered from ur, for
all r ∈ [k]. Moreover, the position sets which specify these
subsequences in y depend only on M and not on the entries
of z. This implies that if we denote by Jr the positions of
ur in y then, for all r ∈ [k], x(Tr)

ir
can be recovered from

the subsequence of c(T ) = EC(x(T )) that is specified by Jr.
Hence, the set J = {(j, Tr) : r ∈ [k], j ∈ Jr} is a recovery
set for I that depends only on I , such that for all j ∈ [m],
|{T : (j, T ) ∈ J}| ≤ 1. Thus, C is an (n, k,m, t = 1)q-
switch code.

Conversely, assume that C is an (n, k,m, t = 1)q-switch
code. Given a multi-set M = {i1, i2, . . . , ik} and z ∈ Fnq ,
let x(1),x(2), . . . ,x(k) ∈ Fnq be such that x

(r)
ir

= zir ,
for all r ∈ [k]. Since C is an (n, k,m, t = 1)q-switch
code, it follows that there exists a recovery set for I =
{(i1, 1), (i2, 2), . . . , (ik, k)}, J ⊂ [m]×N, such that for every
r ∈ [k], the symbol x(r)ir can be recovered from {c(T )

j }(j,T )∈J
and for every j ∈ [m], J consists of at most one element of
the form (j, T ). Moreover, J depends only on I and since
the same code is used for every generation, it depends only
onM. Hence, zi1 , zi2 , . . . , zik can be recovered from disjoint
subsequences of EC(z), whose positions are specified by the
disjoint sets Jr = {j : (j, r) ∈ J}, r ∈ [k], which depend
only on M. Thus, C is an (n,N = m, k,m, t = 1)q-primitive
batch code. 2

APPENDIX B
PROOF OF THEOREM 1

In this appendix we prove Theorem 1, which states that for
all sufficiently large k, there exists a (k,m)2-switch code with
m ≈ 2k1.5.
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We achieve this result by using the family of one-step
majority logic decodable code [12, pp. 273–275]. The con-
nection between this class of codes and distributed storage
was first observed in [10]. We show how such codes can be
used to construct (k,m)2-switch codes in general and then we
apply this method to a specific type of one-step majority logic
decodable code.

A (ν, µ)-code C over Fq is called a (ν, µ)(ν, µ)(ν, µ)-one-step majority
logic decodable code with availability bbb if for every x ∈ Fµq ,
and for all i ∈ [ν], there exist b disjoint subsequences of EC(x)
that can each recover the symbol xi. Moreover, the positions
of these subsequences in EC(x) depend only on i.

Construction 8. Let b ∈ [k] and let C(b) be a (ν, k)-one-
step majority logic decodable code over Fq with availability b.
Define the (m, k)-code , C, over Fq , where m = bk+bk/bc·ν,
as follows. For every x ∈ Fkq ,

EC(x) = Rb(x)Rbk/bc(EC(b)(x)),

i.e., EC(x) is the concatenation of b copies of x followed by
bk/bc copies of EC(b)(x).

Theorem A.1. The code C from Construction 8 is a (k,m)q-
switch code or equivalently C is an (n = k,N = m, k,m, 1)q-
primitive batch code.

Proof. Let z = EC(b)(x) and let c = EC(x) =
Rb(x)Rbk/bc(z). We have to show that for any multi-set
of k indices M = {i1, i2, . . . , ik}, the information symbols
xi1 , xi2 , . . . , xik can be recovered from c, where for every
r, s ∈ [k], r < s, the two subsequences of c that are used for
the recovery of xir and xis , respectively, are disjoint.

For every i ∈ [k], let ri be the number of appearances of
i in the multi-set M. Note that if i 6∈ M then ri = 0 and
hence

∑k
i=1 ri = k. For every i ∈ [k], let mi = min{b, ri}.

Since mi ≤ b, we can recover mi copies of xi directly from
Rb(x). For i ∈ [k] such that ri > mi = b, we recover the
remaining ri − b copies of xi from the bk/bc copies of z in
c. Since C(b) is a one-step majority logic decodable code, it
follows that there exist b disjoint subsequences of z that can
each recover xi. By using at most

⌈
ri−b
b

⌉
≤ ri

b copies of each
of the b subsequences in Rbk/bc(z) we can recover ri − b
copies of xi.

To complete the proof we have to show that we have enough
copies of z in Rbk/bc(z) to recover ri − b copies of xi, for
every i ∈ [k] for which mi = b < ri. For every j ∈ [ν] we
use at most ri

b copies of zj to recover xi. Hence, we use at
most ⌊

k∑
i=1

ri
b

⌋
≤
⌊
k

b

⌋
copies of zj and indeed Rbk/bc(z) consists of enough copies
of z.

Note that, for a given k, Construction 8 provides the smallest
value of m when the availability b is approximately

√
k. One

such code is a binary cyclic difference-set code. The proof
of the following lemma can be found in [12, p. 293].

Lemma A.5. The binary cyclic (ν = 22r + 2r + 1, µ = 22r +
2r−3r)-difference-set code is a (ν, µ)-one-step majority logic
decodable code with availability b = 2r + 1 ≈ √µ.

We are now in a position to prove Theorem 1.
Proof of Theorem 1 Let r be the smallest integer for which
k ≤ µ = 22r + 2r − 3r and let Ĉ be the binary cyclic (ν =
22r + 2r + 1, µ)-difference-set code. By Lemma A.5 we have
that Ĉ is a (ν, µ)-one-step majority logic decodable code with
availability b̂ = 2r + 1 ≈ √µ. By shortening the code Ĉ we
obtain a (ν−µ+k, k)-one-step majority logic decodable code,
C̃, with availability b, where b can take any value in

[
b̂
]
. In

particular, since b̂ ≈ √µ and µ ≥ k, it follows that we may
choose b to be approximately

√
k. By Theorem A.1, the code

C that is obtained from Construction 8 by setting C(b) to be
the code C̃ with b ≈

√
k is a (k,m)2-switch code, where

m = bk +

⌊
k

b

⌋
(ν − µ+ k).

Since r is the smallest integer for which k ≤ 22r + 2r− 3r, it
follows that k > 22r−2+2r−1−3r−1, and therefore ν−µ+k =
3r + 1 + k ≈ k. Thus, m is approximately 2k1.5. 2
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