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Abstract—In this paper, we introduce a new channel model we
term the q-ary bit-measurement channel (QBMC). This channel
models a memory device, where q-ary symbols (q = 2s) are stored
in the form of current/voltage levels. The symbols are read by
measuring a single bit from the symbol in each read step, starting
from the most significant bit. An error event occurs when not all
the symbol bits are known, e.g., due to a premature termination
of the read sequence. To deal with such error events, we propose
the use of GF(q) low-density parity-check (LDPC) codes and
analyze their iterative-decoding performance. In particular, we
show how to exploit the algebraic structure of the QBMC channel
for efficient analysis, and study the effect of the Tanner graph’s
edge-label distribution on the decoding performance. It is shown
that for q = 4 the optimal correction of single-bit erasures is
achieved by a distribution different from the uniform distribution
on the non-zero elements of GF(4).

I. INTRODUCTION

The rapid development of memory technologies has intro-
duced challenges to the continued scaling of memory devices
in density and access speed. A memory device can be of-
ten modeled as a measurement channel with q = 2s volt-
age/current levels, each represented as s bits. As an example,
there are eight voltage levels (i.e., q = 8) in a TLC (triple level
cell) flash memory, where the levels are represented as three
bits. Due to speed constraints, the read output may occasionally
be needed before the read circuitry was able to read all the bits
of the symbol. This results in an error event we call partial
erasure.

In this work, we introduce the q-ary bit-measurement chan-
nel (QBMC) model for targeting natural partial-erasure errors
in memory devices. In this model, the symbol bits are read
sequentially, starting from the most significant bit (MSB) and
providing the next significant bit at each measurement step.
That is, the first measurement determines whether the symbol
is known to belong to either the upper or lower q/2 symbols.
The second measurement gives the upper or lower q/4 symbols
within the previously obtained set of q/2 symbols, and so on.
In an error event, the read process terminates before all the bits
are measured. This leads to an output set, whose cardinality
is a power of 2, of consecutive symbols containing the input
symbol. In case the output set cardinality is larger than one,
we say that a partial-erasure event occurred. This terminology
was introduced previously in the q-ary partial erasure channel
(QPEC) model [1]. However, in contrary to the random output
sets in the QPEC model, the QBMC output sets are structured
in the sense they contain consecutive symbols.

The multi-bit structure of multi-level memories has attracted
some prior attention. For example, in [2] the error rates of the
different TLC bits were analyzed and addressed. In [3], low-
density parity-check (LDPC) codes were optimized to jointly

correct errors in the high and low bits of 4-level cells, where
in [4] LDPC codes were used for flash memories based on rank
modulation. This study considers the use of GF(q) LDPC codes
to deal with partial erasures, and contributes analytical insights
to a central problem related to flash-memory reliability. The
motivation to use LDPC codes is their low complexity of im-
plementation and good performance under iterative decoding.
We characterize structural properties of the messages passed in
the iterative decoding process, using concepts taken from field
theory and group theory. We then show that these properties
lead to simplified asymptotic decoding performance analysis.
To obtain a suitable measure of decoding performance, we
generalize the binary erasure channel (BEC) decoding thresh-
old [5], by defining the QBMC decoding threshold region. We
then demonstrate the dependency of this region on the edge-
label distribution of the Tanner graph representing the GF(q)
LDPC code.

The paper is structured as follows. In Section II, the QBMC
model and an iterative message-passing decoder are provided.
Structural properties of the decoder are discussed in Section
III. Performance analysis of the iterative decoder is provided
in Section IV, and the paper is concluded in Section V.

II. CHANNEL MODEL AND ITERATIVE DECODER

A. Channel model and capacity

The q-ary bit-measurement channel (QBMC) input alphabet
consists of q = 2s symbols: X = {0, 1, ..., q − 1}. We refer to
each symbol as a GF(q) field element, using the following
standard polynomial representation [6]. A symbol x ∈ X

is mapped to the polynomial fx (z) =
s−1∑
i=0

aiz
i, where the

coefficients ai are the binary representation of x. Arithmetic
operations between the field elements are then defined modulo
an irreducible polynomial of degree s over GF(2). For each
input symbol x and a given j (j = 0, 1, ..., s), the output of
the channel is a set of GF(q) symbols that are consistent with
the partially observed symbol. That is, the output set contains
2j consecutive symbols that have the same s − j left bits as
x in the binary representation. We denote the possible output
sets by Mj

x, and say that a partial-erasure event occurred if
j ≥ 1. The transition probabilities governing the QBMC are:

Pr
(
Y =Mj

x

∣∣X = x
)

= εj , (1)

where ε0 is the probability of no partial-erasure, and εj for
j = 1, ..., s are the partial-erasure probabilities.

Example 1. Assume that q = 4. The polynomial representa-
tion of the symbols in X is {0, 1, z, z + 1}. If the input symbol
is 0, the possible output sets are M0

0 = {0} with probability



ε0, M1
0 = {0, 1} with probability ε1, and M2

0 = {0, 1, 2, 3}
(i.e., full erasure) with probability ε2.

We now move to derive the QBMC capacity.

Theorem 1. The capacity of the QBMC channel defined by
(1) is

1−
s∑

j=1

jεj
s
, (2)

measured in q-ary symbols per channel use.

The proof of this theorem is based on standard capacity
calculation and is omitted. As expected, the QBMC capacity
reduces to the q-ary erasure channel (QEC) capacity if only
εs is non-zero.

B. GF(q) LDPC codes and QBMC iterative-decoder

The error-correcting codes we consider for dealing with
partial-erasure events are GF(q) LDPC codes [7]. These codes
are defined by a sparse parity-check matrix with elements
taken from GF(q), commonly visualized as a Tanner graph.
This (bipartite) graph has variable (left) nodes corresponding
to codeword symbols, and check (right) nodes corresponding
to parity-check equations. The edge labels on the graph are
taken from the non-zero elements of GF(q). The parity-check
equation induced by check node c is

∑
v∈N (c)

hc,v · v = 0, where

N (c) is the set of variable nodes adjacent to check node c,
and hc,v are the labels on the edges connecting check node c

to its neighbours. The calculations are performed using GF(q)
arithmetic, where symbols are interpreted as GF(q) elements.
In this work, we focus on regular LDPC codes, with check
nodes of degree dc and variable nodes of degree dv . The code
rate of a regular (dv, dc) ensemble is at least 1− dv/dc, with
equality attained when the LDPC code parity-check matrix is
of full rank [5].

GF(q) LDPC codes over the QBMC can be decoded using
a message-passing decoder with messages consisting of sym-
bol probabilities. Equivalently, we use the iterative decoder
presented in [1] that extends the BEC iterative decoder [5]
to partial erasures. The messages passed in this decoder,
either variable-to-check (VTC) or check-to-variable (CTV)
messages, are subsets of GF(q). We denote by CTV(l)

c→v the
CTV message from check node c to variable node v at iteration
l. In a similar way, VTC(l)

v→c denotes the VTC message from
v to c at iteration l. An outgoing message from a graph node
to a target (adjacent) node depends on incoming messages
along edges connected to the source node except the outgoing
message edge. At iteration l = 0 (initialization), variable node
v sends its channel information set (one of the setsMj

x defined
in Section II-A) to its adjacent check nodes. We denote these
initial messages by VTC(0)

v .
A CTV message at iteration l ≥ 1 is a set containing all the

possible symbol values of the target variable node that satisfy
the check node parity-check equation given the incoming VTC
messages at iteration l − 1. We use the sumset operation [8]
to calculate the CTV messages. The sumset of two sets A and
B that contain GF(q) elements is defined as

A+ B , {a+ b : a ∈ A, b ∈ B} , (3)

where the addition is performed using the GF(q) arithmetic.
That is, A+B is a set containing all pairwise sums of elements
taken from A and B. The CTV message from check node c

to variable node v is then (for characteristic-2 fields)

CTV(l)
c→v =

∑
v′∈{N (c)\v}

(
hc,v′

hc,v

)
·VTC

(l−1)
v′→c , (4)

where the sum is sumset and the multiplications are performed
element-wise. Once CTV messages are sent from all check
nodes, an outgoing VTC message from variable node v to
check node c is the intersection of the channel information set
at v and its incoming CTV message sets:

VTC(l)
v→c = VTC(0)

v

⋂ ⋂
c′∈{N (v)\c}

CTV
(l)
c′→v

. (5)

A decoding failure occurs if unresolved variable nodes (i.e.,
containing sets with more than one symbol) remain after the
decoder terminates.

III. STRUCTURAL PROPERTIES OF PASSED MESSAGES

In this section, we show that the VTC and CTV messages
admit certain structural properties that facilitate decoding-
performance analysis. Denote the additive group of GF(q) by
(GF (q) ,+), and its subgroups by {Hi}ti=1, where t is the
number of subgroups. We start with two fundamental proper-
ties of the sumset and intersection operations between cosets
of subgroups. Note that sums involving sets are understood as
sumsets (see (3)).

Lemma 2. Consider the cosets Ha +ga and Hb +gb for some
field elements ga and gb. Then:

(Ha + ga) + (Ha + gb) = (Ha +Hb) + (ga + gb) . (6)

In addition, if both cosets contain an element γ,

(Ha + ga)
⋂

(Hb + gb) =
(
Ha

⋂
Hb

)
+ γ. (7)

Proof. The right-hand side of (6) follows from the commu-
tativity of (GF(q), +). As sumset of commutative subgroups
results in a subgroup, the right-hand side of (6) is in fact a coset
of the subgroupHa+Hb. To prove (7), note that if γ ∈ Ha+ga
then Ha + ga = Ha + γ. Similarly, Hb + gb = Hb + γ. The
coset Ha +γ is actually a bijection ha 7→ ha +γ for ha ∈ Ha,
where Hb + γ is a bijection as well. As a result, (7) follows
as an intersection of bijective functions. The intersection of
subgroups is a subgroup, such that the right-hand side of (7)
is a coset of the subgroup Ha

⋂
Hb.

The properties derived in Lemma 2 imply that the sumset
and intersection operations between cosets result in cosets.
We now these properties to prove that messages passed in
the decoding process are cosets. Let us define Mj

x (z) as
the polynomials that correspond to the symbols in Mj

x (see
Section II-A). In a similar manner, we define Hi(z) as the
subgroup elements of Hi in polynomial representation.

Lemma 3. Consider an instance of the QBMC iterative
decoder. Then the VTC and CTV messages are cosets of
subgroups of (GF (q) ,+).

Proof. The set Mj
0(z) for a particular j contains all poly-

nomials of degree strictly less than j. As the sum of two
such polynomials must have a degree strictly less than j,
the elements of Mj

0(z) are closed under addition and thus
Mj

0(z) is a subgroup of (GF (q) ,+). Moreover, the channel
information set Mj

x is simply a translation of Mj
0:

Mj
x(z) =Mj

0(z) + fx(z), (8)



where the addition is performed element-wise. This establishes
channel-information sets as cosets of Mj

0(z).
Now assume the transmission of a codeword x, where xv is

the codeword symbol corresponding to variable node v and
fxv

(z) is its polynomial representation. The CTV message
from check node c to variable node v at iteration 1 is then
(see (4)) ∑

v′∈{N (c)\v}

[
gv′(z) · Mjv′

0 (z) + gv′(z) · fxv′ (z)
]
, (9)

where for a given v′, gv′(z) is a constant determined by the
edge labels, 2jv′ is the channel-information set cardinality at
v′, and fxv′ (z) is the correct codeword symbol at v′. A set
gv′(z) ·Mjv′

0 (z) is a subgroup, where closure follows from the
closure ofMjv′

0 (z). Thus, (9) is a coset, using the first part of
Lemma 2. Since fxv

(z) belongs to this coset (recall that the
channel may introduce partial erasures but no errors), (9) can
be written as ∑

v′∈{N (c)\v}

gv′(z) · Mjv′
0 (z)

+ fxv
(z), (10)

which is interpreted as a coset of the subgroup obtained as the
sumset of the subgroups incoming to node v.

The VTC message at iteration 1 from v to c is the intersec-
tion between the channel information coset Mjv

0 (z) + fxv
(z)

and CTV messages of the form (10) (which were shown to
be cosets). As fxv

(z) belongs to this intersection, we obtain a
coset of the form (using the second part of Lemma 2):Mjv

0 (z)
⋂
V′

j

∑
v′∈V′

j

gv′(z) · Mjv′
0 (z)

+ fxv
(z), (11)

for a variable node set V ′j that depends on c only. Repeating the
arguments above for the next decoding iterations, an invariant
is maintained that the VTC and CTV messages are cosets of
subgroups of (GF (q) ,+) at each decoding iteration.

The following is an important outcome of Lemma 3.

Theorem 4. Consider a fixed Tanner graph with given
channel-information sets at variable nodes. The probability of
decoding failure is independent of the transmitted codeword.
Furthermore, assuming the transmission of the all-zero code-
word, the possible messages are subgroups of (GF (q) ,+).

Proof. We formally prove the intuitive fact that decoding
progress only depends on the subgroups exchanged in the
messages, and not on which cosets of these subgroups are
exchanged. Consider the CTV (resp. VTC) messages at it-
eration 1 calculated in (10) (resp. (11)). The sets Mjv

0 and
gv′ ·Mjv′

0 are independent of the actual transmitted codeword
but rather depend on the partial-erasure pattern, i.e., on the
cardinalities 2jv (in addition to the edge labels that are a
property of the Tanner graph). Therefore, the messages (10)-
(11) can be considered as the result of the all-zero codeword
transmission up to a translation by fxv

(z).
A decoding failure occurs if a variable node set cardinality

is larger than one at the end of the decoding process (recall
that the correct symbol is always contained in the messages).
Subgroups and their cosets have the same cardinality, thus the
message-set cardinality on a certain edge is the same for all
the codewords. As a consequence, the probability of decoding
failure is independent of the transmitted codeword. Assuming
that the all-zero codeword is transmitted, fxv

(z) are all zero. In

Fig. 1: The number of subgroups of (GF (q = 2s) ,+) com-
pared to the number of subsets.

this case, the CTV (resp. VTC) messages (10) (resp. (11)) are
sumsets (resp. intersections) of (GF (q) ,+) subgroups, which
result in subgroups.

We remark that the possible subgroups transmitted as mes-
sages given the transmission of the all-zero codeword are
not necessarily restricted to the channel-information subgroups
Mj

0. This is due to the edge labels that multiply VTC
messages. To analyze the performance of the QBMC iterative
decoder, we need to track the probabilities of the passed
messages. The complexity of this analysis depends on the size
of the space of possible messages.

Theorem 5. The number of possible VTC and CTV messages
passed in the decoding process, assuming that the all-zero
codeword was transmitted, is upper bounded by

t =

s∑
j=0


j∏

i=1

(
2s − 2i−1

)
j∏

i=1

(2j − 2i−1)

, (12)

which is the number of subgroups of (GF (q = 2s) ,+).

Note that the number of subgroups of cardinality 2j is
the jth summand in (12). The proof of theorem (5) is based
on representing (GF (q = 2s) ,+) as an s-dimensional vector
space over GF(2). The number of subgroups of order 2j is
then found as the number of subspaces of dimension 2j (see
e.g. [9] for the details). In Figure 1, the number of subgroups
is plotted compared to the number of non-empty subsets of
(GF (q) ,+) as a reference. This figure reveals the importance
of the QBMC structure to the analysis feasibility, by which the
number of subgroups is orders of magnitude smaller compared
to the number of subsets of (GF (q) ,+). We remark that the
actual number of subgroups passed in the decoding process is
not necessarily t, and it depends on the channel information
and on the edge labels. As an example, the only possible
subgroups in the full-erasure case (i.e., if only ε0 and εs are
non-zero) are {0} and {0, 1, ..., q − 1}.

IV. THE QBMC DECODING THRESHOLD REGION

In the density evolution method [10], [11], the asymptotic
(in terms of codeword length) probability of the passed mes-
sages at each decoding iteration is tracked, where the aim is to
calculate the probability of decoding failure. Let us consider a



Tanner graph drawn uniformly at random out of graphs with
variable-node degree dv and check-node degree dc. We assume
a sufficiently large codeword length, such that the possible
messages are statistically independent with high probability
[10]. The all-zero codeword is transmitted (see Theorem 4),
such that the possible messages are subgroups of (GF (q) ,+).
For convenience, the subgroups {Hi}ti=1 of (GF (q) ,+) are
ordered by size, and lexicographically within each size. Recall
that the number of subgroups t is given in (12).

Example 2. There are t = 5 subgroups of (GF (q = 4) ,+):
H1 = {0}, H2 = {0, 1} ,H3 = {0, 2} ,H4 = {0, 3} and
H5 = {0, 1, 2, 3}. An element h in Hi is interpreted as its
polynomial representation fh(z).

In the case of binary LDPC codes, the edge labels of a
Tanner graph are simply ’1’s. However, the edge labels in
the GF(q) case are taken from the non-zero field elements.
Thus, a GF(q) LDPC ensemble is characterized by both degree
distributions and edge-label probability distribution, where we
denote the latter distribution by L. To obtain the QBMC
density-evolution equations, we proceed as follows. Define
w

(l)
i (resp. z(l)

i ) as the probability that a CTV (resp. VTC)
message at iteration l is Hi. In addition, denote an ordered
list containing incoming VTC (resp. CTV) message (subgroup)
indices to a check (resp. variable) node by SVTC (resp. SCTV).
The elements in the lists are taken from {1, 2, ..., t}, where
|SVTC| = dc − 1 and |SCTV| = dv − 1.

Example 3. Assume that q = 4 (i.e., t = 5 subgroups),
dv = 3 and dc = 6. Then the possible realizations of SVTC are
[1, 1, 1, 1, 1] , [1, 1, 1, 1, 2] , . . . , [5, 5, 5, 5, 5], and the possible
realizations of SCTV are [1, 1] , [1, 2] , . . . , [5, 5].

We define Pi (Hm∈SVTC ,) as the probability of the CTV
message Hi given the incoming VTC messages indexed
in SVTC and the edge-label probability distribution L.
Iji (Hm∈SCTV

) is an indicator function, which equals 1 if
the intersection of the CTV messages indexed in SCTV and
the channel-information set Mj

0 results in Hi. Otherwise,
Iji (Hm∈SCTV

) is 0 (note that the calculation of Iji is inde-
pendent of the edge labels). The following density-evolution
equations are obtained:

w
(l)
i =

∑
SVTC

( ∏
m∈SVTC

z(l−1)
m

)
· Pi (Hm∈SVTC

,L) , (13)

z
(l)
i =

s∑
j=0

εj
∑
SCTV

( ∏
m∈SCTV

w(l)
m

)
· Iji (Hm∈SCTV

) . (14)

The initial conditions of Equations (13)-(14) are determined by
the transition probabilities in (1). That is, z(0)

1 = ε0 and z
(0)
i

with i such thatHi equalsMj
0 (j ≥ 1) are initialized to εj . For

example, if q = 4, then z
(0)
1 = ε0, z(0)

2 = ε1 and z
(0)
5 = ε2,

where z(0)
3 = z

(0)
4 = 0. The asymptotic probability of decoding

failure at iteration l, denoted P
(l)
error, is the probability that a

VTC message at iteration l is not {0}:

P (l)
error =

t∑
i=2

z
(l)
i = 1− z(l)

1 . (15)

The QBMC is characterized by multiple partial-erasure
probabilities {εj}sj=1 rather than by a single erasure proba-
bility (as in the BEC). Thus, we define the QBMC decoding
threshold region by extending the BEC decoding threshold [5].

First, define the following QBMC L-region for given (dv, dc)
pair and edge-label distribution L:

ΩL (dv, dc) =

{
ε1, ε2, ..., εs ∈ [0, 1]

s
: lim
l→∞

P (l)
error(L) = 0

}
.

(16)
The QBMC decoding threshold region is the union of the
QBMC L-regions over all possible choices of L:

Ω (dv, dc) =
⋃
L

ΩL (dv, dc) . (17)

That is, the QBMC decoding threshold region is an s-
dimensional region that contains the partial-erasure probability
values resulting asymptotically in successful iterative decoding
for some choice of L. If both the boundaries of Ω (dv, dc) and
ΩL (dv, dc) contain the same certain point, we say that L is
optimal with respect to this point.

A. Edge-label distribution and decoding performance

Let us assume that the edge labels are i.i.d. random vari-
ables, where `j

∆
= Pr(The edge label is j) for j = 1, . . . , q−1

and L = {`j}q−1
j=1 . Our aim here is to demonstrate how

choosing L wisely leads to an improvement in the asymptotic
decoding performance. For this purpose, we investigate the
density-evolution equations (13)-(14) when q = 4 and ε2 = 0
(no full erasures). In this case (assuming the all-zero code-
word), the only possible partial-erasure VTC message is {0, 1},
and a variable node remains partially erased if and only if all
its incoming CTV messages are either {0, 1} or {0, 1, 2, 3}.
Denote the probabilities of these CTV messages at iteration
l by αl and βl, respectively. In addition, denote by xl the
probability of the VTC message {0, 1} at iteration l.

Due to the closure of the {0, 1} subgroup elements, the
sumset of {0, 1} with itself results in {0, 1}. Thus, to obtain a
CTV {0, 1} message, we need that at least one summand in (4)
is {0, 1}, and the rest are either {0, 1} or {0}. A summand of
{0, 1} is obtained when the VTC message is {0, 1}, and the
incoming edge label from v′ equals the outgoing edge label
to v. Overall the probability of the CTV message {0, 1} is
given in the following, where the sum index r is the number
of incoming {0, 1} VTC messages

αl =

dc−1∑
r=1

(
dc − 1

r

)
xrl (1− xl)dc−r−1

 3∑
j=1

`r+1
j

 , (18)

and
q−1∑
j=1

`r+1
j (r ∈ {1, 2, ..., dc − 1}) is the probability that all

edge labels of {0, 1} messages equal the outgoing edge label.
For the CTV message {0, 1, 2, 3} (full erasure), at least two
of the incoming VTC messages must be {0, 1}, and at least
two of those messages must have different edge labels. The
probability of CTV message {0, 1, 2, 3} is thus

βl =

dc−1∑
r=2

(
dc − 1

r

)
xrl (1− xl)dc−r−1

1−
3∑

j=1

`rj

 . (19)

Our interest lies in the sum αl+βl, which is required to calcu-
late xl+1. To simplify this sum, we use the following identity
based on the binomial distribution’s generating function for
η ∈ R

dc−1∑
r=0

ηr
(
dc − 1

r

)
xl

r(1− xl)dc−r−1 (20)

= (1− xl + ηxl)
dc−1

,



to obtain

αl + βl = (21)

1 + (1− xl)dc−1 −
3∑

j=1

(1− `j) (1− xl · (1− `j))dc−1
.

A variable node remains partially-erased at iteration l + 1
if it was partially-erased initially (with probability ε1), and its
dv−1 incoming CTV messages are either {0, 1} or {0, 1, 2, 3}.
This leads to the following single-letter recurrence relation

xl+1 = ε1 · (αl + βl)
dv−1

. (22)

If `1 = `2 = 1/2, `3 = 0 (or symmetrically any two `j each
equal 1/2 with the third being 0), (22) becomes

xl+1 = ε1

(
1−

(
1− xl

2

)dc−1
)dv−1

. (23)

We give the recurrence above for regular ensembles (fixed
dv , dc), but it is readily extended to irregular ensembles as
well. The outcome of the derivation (23) is that we obtain the
same recurrence equation as the BEC/QEC density evolution,
only with xl/2 replacing xl at the right-hand side. This is
clearly optimal because it implies an ε1 threshold that is
double the BEC threshold for the same ensemble, and thus
a capacity-achieving BEC ensemble will give a capacity-
achieving QBMC ensemble according to (2) (for s = 2 and
ε2 = 0). At the other extreme, the worst choice of label
distribution is `1 = 1, `2 = `3 = 0 (binary codes), which
gives the same threshold of the BEC without doubling1. It
is an interesting fact that achieving optimality requires a
label distribution that is not the uniform distribution over
the non-zero elements of GF(4). Instead, to obtain optimal
correction of QBMC partial erasures of cardinality 2, we need
to choose the label distribution `1 = `2 = 1/2, `3 = 0. We
note that if cardinality 2 partial erasures is the only type of
erasure the QBMC ever outputs, we can alternatively achieve
optimality by using a binary capacity-achieving ensemble on
the least significant bit (LSB) of the symbol, leaving the most
significant bit (MSB) uncoded. But the advantage of q-ary
ensembles with `1 = `2 = 1/2, `3 = 0 is that in addition to
the optimality for ε2 = 0, the same code has good correction
performance for infinitely many combinations of ε1, ε2.

In Figure 2, the boundary of the QBMC L-region defined in
(16) is plotted for the `1 = `2 = 1/2, `3 = 0 edge-label distri-
bution (dotted line) and for the uniform `1 = `2 = `3 = 1/3
distribution (solid line), for the (3, 6) LDPC code ensemble.
The boundary of the QBMC capacity region is also plotted
(dashed line) for reference. For the `1 = `2 = 1/2, `3 = 0
distribution, the lower-right corner is ε1 = 0.858, double the
BEC threshold 0.429 as discussed above. At the upper-left
corner (ε1 = 0), both label distributions attain the same ε2

threshold – identical to the standard BEC threshold for full
erasures. While the `1 = `2 = 1/2, `3 = 0 distribution is
superior at the lower-right corner, Figure 2 reveals that there
are values of ε2 > 0 at which the uniform distribution has
a higher ε1 threshold. This hints that in general there is no
single distribution L universally optimal for all combinations
of {εj}sj=1.

1This implies that with binary codes 1-bit erasures are as ”costly” as full
q-ary symbol erasures.

Fig. 2: The GF(4) QBMC L-region boundaries of two edge-
label distributions for the (3, 6) LDPC code ensemble (design
rate = 1/2). The QBMC capacity region is also plotted for
reference. The dash-dotted line refers to a naive independent
binary coding of the MSB and LSB bits (each with the (3, 6)
LDPC code ensemble), which is significantly worse compared
to the use of GF(4) LDPC codes.

V. CONCLUSION

This work offers a study of the performance of itera-
tive decoding of GF(q) LDPC codes over the QBMC. The
iterative decoder was shown to posses important structural
properties that result in simplified analysis. In addition, it was
demonstrated explicitly how the edge-label distribution affects
decoding performance. Our work leaves interesting problems
for future research, most immediately the joint optimization of
degree and edge-label distributions.
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