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Abstract—In this paper, we study a construction of binary switch
codes. A switch code is a code such that a multi-set request of
information symbols can be simultaneously recovered from disjoint
sets of codeword symbols. Our construction is optimal in thesense
that it has the smallest codeword length given its average encoding
degree, which is logarithmic in the code dimension. Moreover, the
number of queries needed to recover any information symbol in
the request is at most 2. As a result, our construction is the first
family of switch codes with low encoding and decoding complexity.

I. I NTRODUCTION

We study memory sub-systems of network switches that
are used to store packets between arrival from input ports
and departure to output ports. In particular, we consider a
coding scheme for network switches such that they scale with
information exchange speed and network size. Suppose that
a switch hask input ports andR output ports. In order to
parallelize the process of writing and reading in the memory
for different ports, multiple memory banks are used in a switch.
However, there is a contention problem for reading if the
requested packets from several output ports are written in the
same memory bank. To solve this contention problem, Wanget.
al proposed the use of switch codes [7].

Consider a toy example withk = R = 2 and two memory
banks. Suppose at each time slot every port transmits one
packet with fixed size, and every memory bank can support
one packet write and one packet read. At time slott, t ∈ T ,
denote the information of two input packets byAt, Bt, which
are written in the first and second bank, respectively. At some
time slot, supposeAt, As are requested from the two output
ports, respectively,t 6= s ∈ T . Since every bank can only
support one read, an undesired delay is incurred. An alternative
would be a coding scheme that uses three memory banks. At
every time t ∈ T , At, Bt, At + Bt are written in the three
banks, respectively, where “+” means bit-wise XOR of the two
packets. Then any request of size two can be solved by reading
at most one packet from every bank. Therefore any request can
be solved within a single time slot. In particular,At can be
solved by reading{At}, while As can be solved by reading
{Bs, As + Bs}. Observe that the two sets of banks used are
disjoint.

More generally, an(n, k,R) switch codeis a code of lengthn
and dimensionk, such that for every multi-set request of sizeR,
there is a solution such that the sets of codeword symbols for
recovering the requested symbols are disjoint. The maximum
number of codeword symbols used to recover an information
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symbol, denoted byr, is calledquery size. Typically, we require
k,R to be of the same order.

A switch code is a specialization of the primitive multi-set
batch codes by Ishaiet. al [1] to the case where the number
of input information symbolsk is close to the request sizeR.
This case captures well the regime in switching applications
where the input and output data rates are instantaneously similar,
whereas the outcome of most of the previous work on batch
codes has been codes withR much smaller thank, and cannot
support steady-state switching.

A related notion is locally decodable codes (e.g., [8]), which
satisfy the smoothness property: for any information symbol,
all the r-queries used to decode that symbol cover then
codeword symbols uniformly. This property ensures that if the
same information symbol is requested multiple times, thereexist
disjoint solutions. However, it is not tight enough to achieve
non-asymptotic optimality. Moreover, probabilistic decoding is
considered for such codes, while for switch codes deterministic
decoding is required.

In addition, switch codes are related to locally repairable
codes with multiple availabilities (e.g. [3], [4], [5], [6]), but
known codes for the latter model do not give request lengthsR
close tok.

Previously, only switch codes with encoding degree two
(two information symbols are combined to get each codeword
symbol) and codes that can solve burst requests (only one
requested symbol is requested more than once) is known [7]. It
is an open problem to construct switch codes solving arbitrary
requests and having degree larger than two.

In this paper, we construct the first family of switch codes
with optimal length given its average encoding degree, which is
O(log k). Furthermore, the code is binary, and the query size is
r = 2. As a result, it has low complexity from a practical point
of view. The construction is based on simplex code and the
concatenation of multiple codewords. ForR = k, the codeword
length isn = O(k2/ log k), whereas the previous constructions
[7] have codeword lengthn = O(k2).

The paper is organized as follows. In Section II, we formally
define the switch codes and introduce necessary notations.
Section III gives the construction and the proof of its correctness
and optimality. Comparison with previous results are shownin
Section IV. Finally, we conclude in Section V.

II. D EFINITIONS AND NOTATIONS

In the rest of the paper, we use[i] to denote the set
{1, 2, . . . , i} for i ∈ N

+, and [i, j] to denote the set{i, i +
1, . . . , j} for i ≤ j ∈ Z. We use boldface to represent a vector.
For a vectorx, its length is represented by|x|. For a setS, its



cardinality is denoted by|S|. For a vectorx = (x0, . . . , xn−1)
and a subsetS = {s1, . . . , s|S|} ⊆ [0, n− 1], where0 ≤ s1 <
· · · < s|S| ≤ n − 1, we denote byxS = (xs1 , . . . , xs|S|

) the
vector of elements with coordinates inS. We uselog to denote
logarithm of base 2.

In formally, a switch codeover the alphabetX encodes
an information vectoru = (u0, . . . , uk−1) of length k into
a codeword vectorx = (x0, . . . , xn−1) of length n. For any
request of information indices(i1, . . . , iR), ij ∈ [0, k−1], there
exists disjoint setsS1, . . . , SR ⊆ [0, n−1], such thatuij can be
recovered from the codeword symbols indexed bySj, namely,
xSj

, for any j ∈ [R]. More formally, a switch code can be
defined as follows.

Definition 1. An (n, k,R) switch code on the alphabetX
consists of an encoding function

ϕ : X k → Xn,

a decoding set function

ξ : [0, k − 1]R → S,

whereS = {(S1, S2, . . . , SR) : Si ⊆ [0, n − 1], Si ∩ Sj =
∅, for all 1 ≤ i 6= j ≤ R} is the collection of all vectors ofR
disjoint sets, and decoding recovery functions

ψi
S : X |S| → X

for S ⊆ [0, n − 1], and i ∈ [0, k − 1]. The functions satisfy
the following: for all u ∈ X k and (i1, . . . , iR) ∈ [0, n − 1]R,
if ϕ(u) = x and ξ(i1, . . . , iR) = (S1, . . . , SR), then for every
j ∈ [R],

ψ
ij
Sj
(xSj

) = uj .

We call k the input sizeor the code dimension, andR the
request length. If a codeword symbol is systematic, namely, if
it equals to an information symbol, then it is called asingleton.
For a linear code, if a codeword symbol is a linear combination
of d information symbols, then itsencoding degreeis d.

For some code and a request, if there exist disjoint sets to
recover the requested symbols, then we say there is asolution
to a request, or the request issolvable. If the j-th information
symbol is requestedlj times, j ∈ [0, k − 1], then we write
the request (vector)asL = (l0, . . . , lk−1). Notice that the total
multiplicity is the request length, or

∑k−1
j=0 lj = R. Moreover,

to show a code solves arbitrary requests, it is sufficient to show
that it solves all request vectors. The set of codeword symbols
in Sj is called helpersor a helper setfor the j-th requested
information symbol.

If r is the smallest integer such that for any request of length
R and any information indexj ∈ [0, k − 1], we have

|Sj | ≤ r,

then we say thequery sizeis r.

III. C ODE CONSTRUCTIONS

In this section, we first construct binary switch codes from
simplex codes, and get codes with lengthn = (2R− 1)k/(1 +
logR), dimensionk, and query size 2, wherelogR andk/(1+
logR) are integers. We then show that this construction solves

arbitrary requests of lengthR. Lastly, we prove the optimality
of our construction.

An (N,K) simplex codeis constructed as follows. For every
non-empty subset of[0,K−1], form a bit in the codeword that
is the XOR of the elements in the subset. Hence, a simplex code
of dimensionK, K ≥ 1, has codeword lengthN = 2K − 1.

Construction 1. Fix k andR such thatlogR and k
1+logR are

integers. Partition thek information bits into k
1+logR groups of

sizeK = 1 + logR. Use an(N = 2R − 1,K = 1 + logR)
simplex code on every group, and then concatenate thek1+logR
codewords. The constructed code therefore has a codeword
length

n =
(2R− 1)k

1 + logR
.

Suppose the generator matrix of the(N = 2R − 1,K =
1 + logR) simplex code is given by(IK , G), whereIK is the
K×K identity matrix, andG is anK× (N−K) matrix. Then
the code given by Construction 1 has generator matrix











IK 0 · · · 0 G 0 · · · 0
0 IK · · · 0 0 G · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · IK 0 0 · · · G











.

We next show that the above construction solves arbitraryR
requests and has query size 2. To prove that, we first focus on
the (N,K) simplex code, and show that it solves an arbitrary
request of length2K−1 = N+1

2 .
For example, the code(A,B,A + B) described in the

introduction is a simplex code withK = 2, and any request
of length2K−1 = 2 can be solved.

In the following, we use the subsetS ⊆ [0,K−1] to represent
the corresponding bit in the codeword of the simplex code. The
information bits are the sets of size one, namely,{i} for any
i ∈ [0,K − 1]. By abuse of notation, we write “+” to denote
the XOR of two bits, or equivalently, the symmetric difference
of two sets. It is clear that any codeword bitS can be recovered
from the XOR of the two bits(S + S′) andS′, for arbitrary
S′. Therefore, the simplex code has query size of2 for any
information or parity bit. In particular, any information bit can
be computed from two codeword bits.

Consider a graph where every non-empty subsetS is a
vertex, and every edge(S, S′) corresponds to a solution to an
information bit, namely,|S+S′| = 1. Also add to this graphK
dummy vertices corresponding to the empty set, denoted byφi,
i ∈ [0,K − 1], along withK edges({i}, φi). See Figure 1 for
an example. First, notice that this graph represents all possible
solutions of information bits with query size no more than 2.
Next, notice that this is a bipartite graph where the partition
of the vertices is determined by the parity of|S|. The even
partition is of size2K−1 +K − 1 (includingK copies of the
empty set), while the odd partition is of size2K−1. A disjoint
solution for some request vector can be viewed as a matching
in the graph, and apparently the size of the matching, or the
request length, cannot exceed2K−1. We show later that this
upper bound on the request length,2K−1, is also achievable.
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Fig. 1. A bipartite graph onK = 3 input bits. Every edge corresponds to
a possible helper pair. The set of solid-line edges is a solution to the request
L = (4, 0, 0), or four times the input bit{0}.

Definition 2. A request vectorL onK input bits is said to be
short if its length satisfies

|L| ≤ f(K)
△
=

K

K + 1
2K−1.

Definition 3. A solution to a request vector is said to betype
I if singletons are not used in the solution, and the query size
is 2.

For example, letK = 4, and consider a short request
L = (1, 1, 1, 1) of length no more thanf(K) = 32/5.
Namely, every information bit is requested once. It can be
solved by the helper pairs({0, 1, 2}, {1, 2}), ({1, 2, 3}, {2, 3}),
({2, 3, 0}, {3, 0}), ({3, 0, 1}, {0, 1}), which is a type I solution,
since no singletons are used.

For a request vectorL = (l0, . . . , lK−1), one potential
solution is to first solveL′ = (l0 − 1, . . . , lK−1 − 1) without
singletons, and then(1, 1, . . . , 1) with singletons only. More
precisely, we later show that ifL′ is a short request for a large
enoughK, then it has a type I solution (Lemma 7), henceL is
solvable.

Definition 4. Let I be a set of integers of sizeK. Consider
all subsets ofI. They are also the codeword bits onK inputs
labeled byI, together with a dummy empty set. For anyi ∈ I,
define a partition of the subsets into two parts:

Ai = {S ⊆ I : i ∈ S},

Ai = {S ⊆ I : i /∈ S}.

Also define a 1-1 mapping between them:

δi : Ai → Ai,

such that for anyS ∈ Ai, we have

δi(S) = S\{i}.

Figure 2 shows an example of the partitions onK = 3 inputs.
The above partition forms a recursive structure of the codeword
bits. Apparently, any solution to the information bit{i} with
query size 2 must be a pair

(S, δi(S)), (1)

for some S ∈ Ai, where the ordering of the pair is not
considered. Besides, if the information bit{j}, j 6= i, can be
solved by a pair(R,S), with R+S = {j} andR,S ∈ Ai, then
it can also be solved by the pair

(δ−1
i (R), δ−1

i (S)) = (R ∪ {i}, S ∪ {i}).

Before proving the solvability of the simplex code, we outline
the proof steps with an example.

ø

{0,1}

{0,2}

{1,2}

{0}

{1}

{2}

{0,1,2}

Fig. 2. Partitions onK = 3 input bits labeledI = {0, 1, 2}. Every two
parallel faces form a partition. For example, the face on theright is A0 =
{{0}, {0, 1}, {0, 2}, {0, 1, 2}} containing element “0”, and the face on the
left is A0. One can see that any edge connecting the left and the right faces
corresponds to a solution to the bit{0}. Moreover, since the pair(∅, {1})
solves the bit{1}, we have that the pair(δ−1

0
(∅), δ−1

0
({1})) = ({0}, {0, 1})

also solves the same bit.

Example 5. Consider a request

L = (62, 59, 58, 55, 51, 50, 49, 45, 42, 41)

for K = 10. Crucial to the proof is that the entries in the
request vector are in non-increasing order. We writeL asL =
L1 + 2L2 + L3 with

L1 = (62, 0, 0, 0, 0, 0, 0, 0, 0, 0),
L2 = (0, 29, 29, 27, 25, 25, 24, 22, 21, 20),
L3 = (0, 1, 0, 1, 1, 0, 1, 1, 0, 1).

Lemma 7 below shows thatL2 can be solved by type I solution
onK − 1 = 9 inputs, which we explain in the next paragraph.
This solution can then be duplicated in the two partitions ofA0

andA0, respectively. Thus we can solve2L2, while we use the
singletons to solveL3. Finally, we demonstrate in Theorem 8
that there are sufficiently many pairs as in (1) still available for
the information bit{0} in the request vectorL1.

To show that L2 has a type I solution, we view
L2 as a short request onK − 1 inputs and write
L2 = (29, 29, 27, 25, 25, 24, 22, 21, 20). Again this is in non-
increasing order. Now consider

L
′
2 = (29, 30, 28, 26, 26, 24, 22, 22, 20),

and writeL′
2 = L4 + 2L5, where

L4 = (29, 0, 0, 0, 0, 0, 0 0, 0),
L5 = (0, 15, 14, 13, 13, 12, 11, 11, 10).

Notice that ifL′
2 is type-I solvable, so isL2. We showL5 is

type-I solvable using the base case in Lemma 7 onK − 2 = 8
inputs. In general ifK − 2 > 8, L5 can be shown to be a short
request onK − 2 inputs, and thus have a type I solution using
induction hypothesis in Lemma 7. Similar to the argument in
the previous paragraph, consider all codeword bits on theK−1
inputs labeledI = {1, 2, . . . ,K − 1}. The solution toL5 can
be duplicated in the two partitionsA1 and A1, respectively.
Finally, we solveL4 using the remaining pairs as in (1), which
is proved in the last part of Lemma 7.

The following is a lemma on a small input size, and forms
the base case of our proof.

Lemma 6. Consider a simplex code withK input bits.

(i) There is a type I solution to any request of length2K−1−
K, for all K ≤ 8.



(ii) There is a type I solution to any short request forK = 8.
(iii) There is a solution of query size 2 to any request of length

2K−1, for all K ≤ 8.

Proof: (i) This is proved by computer search.
(ii) This is obvious since a short request also has length no

more thanf(K) ≤ 2K−1 − K whenK = 8. We can simply
use a subset of pairs of helpers from (i).

(iii) For any request vectorL = (l0, . . . , lK−1), without loss
of generality, assumel0 ≥ l1 ≥ · · · ≥ lK−1. If lK−1 ≥ 1, let
L
′ = (l0 − 1, . . . , lK−1 − 1), andL′′ = (1, . . . , 1). Notice that

L
′ can be solved by (i) andL′′ can be solved by singletons, and

the two sets of helpers forL′ andL′′ are disjoint. Also notice
that L = L

′ + L
′′. Therefore,L is solvable. WhenlK−1 = 0,

this is proven by computer search.

Lemma 7. For the (N,K) simplex code,K ≥ 8, there is a
type I solution to any short request.

Proof: We prove by induction. WhenK = 8, this is
proven in Lemma 6 (ii). LetK ≥ 9 and consider a short
requestL = (l0, . . . , lK−1). Without loss of generality, assume
l0 ≥ · · · ≥ lK−1. Partition all codeword bits onK inputs
labeled{0, . . . ,K − 1} into two parts:A0, A0.

Let L′ = (0, ⌈ l1
2 ⌉, . . . , ⌈

lK−1

2 ⌉), L′′ = (l0, 0, . . . , 0). We next
show that2L′ +L

′′ is type-I solvable. Noticing thatL is short
and l0 is the largest component, the length satisfies

|L′| ≤
1

2

(

K−1
∑

i=1

li +K − 1

)

≤
1

2

(

K − 1

K
f(K) +K − 1

)

≤ f(K − 1)

for K ≥ 9. So we can viewL′ as a short request onK − 1
inputs labeled[K−1]. By induction hypothesis,L′ has a type I
solution. For every helper pair(S,R) in this solution onK− 1
inputs,|S+R| = 1, we generate two pairs onK inputs labeled
[0,K − 1], that solve the same information bit: the first is

(S ∪ {0}, R ∪ {0}), (2)

and both helpers belong toA0; the second is(S,R) and both
helpers belong toA0. SinceS,R are not singletons by induction
hypothesis, we know the generated helpers are not singletons,
either. Moreover, all the generated helpers are disjoint. So we
have a type I solution to the request2L′.

Let B,C be the set of helpers for2L′ generated inA0, A0,
respectively, which are both of size2|L′|. Notice that the
functionδ0 defines a 1-1 mapping fromB toC, and accordingly
from A0\B to A0\C. In other words, if we pick any unused
elementS ∈ A0\B, then we haveS\{0} ∈ A0\C, and
they can be the helper pair for{0}. As a result, there are
|A0\B| = 2K−1 − 2|L′| remaining ways to solve{0}, and
K of them involve singletons. Hence the number of helper sets
not using singletons for{0} satisfies forK ≥ 9,

|A0\B| −K = 2K−1 − 2|L′| −K

≥ 2K−1 − (|L| − l0 +K − 1)−K

≥ 2K−1 − (f(K)− l0 +K − 1)−K

≥ l0. (3)

So we have a type I solution for2L′+L
′′, and hence forL.

Theorem 8. Let L be a request of length2K−1 for the (N,K)
simplex code, then it is solvable with query size 2.

Proof: When K ≤ 8, this is true by Lemma 6 (iii).
AssumeK ≥ 9. Assume without loss of generalityL =
(l0, . . . , lK−1) with l0 ≥ · · · ≥ lK−1. Then rewriteL asL =
(l0, 0, . . . , 0) + 2L2 + L3, whereL2 = (0, ⌊ l1

2 ⌋, . . . , ⌊
lK−1

2 ⌋),
andL3 = (0, l1 mod 2, . . . , lK−1 mod 2). It is easy to see that
L2 is a short request onK−1 inputs, namely|L2| ≤ f(K−1),
and has a type I solution by Lemma 7 forK ≥ 9. Then, with
singletons, we can solveL3. Finally, with the same argument
as in (3), we havel0 pairs to solve{0} (using possibly some
singletons):

|A0\B| − |L3| = 2K−1 − 2|L2| − |L3| = l0, (4)

whereA0 is the partition of subsets of[0,K − 1] containing
“0”, andB is the set of helpers forL2 belonging toA0, defined
similar to (2).
Remark: For any request of length no more than2K−1, the
above proofs provide us with a recursive algorithm to find a
solution. The recursion ends at the base case of8 input bits,
and the complexity of the algorithm is linear inK.

Corollary 9. Construction 1 can solve any request of lengthR.

Proof: SetK = 1 + logR in the simplex code. Consider
any request of lengthR. If it only contains information bits of
the same group of sizeK, then the statement holds by Theorem
8. If it contains information bits from different groups, then for
every group we get a request of length less thanR = 2K−1,
and can solve it by Theorem 8 considering codeword bits from
that group.

Next, we show the optimality of our construction. Consider a
linear switch code. Suppose a codeword symbol indexedi is a
linear combination ofdi information symbols, then we say the
degreeof the codeword symbol isdi. Similar to [7], we have
the following lower bound on the codeword length.

Lemma 10. An (n, k,R) switch code with average degreed
for the codeword symbols satisfies

n ≥ kR/d.

Proof: Notice that every information symbol has to appear
in R codeword symbols, resulting in a total ofkR appearances.
Therefore, the sum of degrees satisfies

∑n−1
i=0 di ≥ kR. And

the lemma holds for the average degree.

Proposition 11. Construction 1 is optimal in terms of codeword
length with respect to its average degree.

Proof: For Construction 1, the average degree is also the
average degree of the(N,K) simplex code:

d =

∑K
i=1 i

(

K
i

)

2K − 1
=
K2K−1

2K − 1
=

(1 + logR)R

2R− 1
.

Given this value ofd, the upper bound from Lemma 10 is given
by

n ≥
kR

(1 + logR)R/(2R− 1)
=

(2R− 1)k

1 + logR
,



establishing the optimality of Construction 1.

IV. COMPARISON WITH BATCH CODES

In this section, we consider switch codes, or multi-set primi-
tive batch codes, proposed in [1]. Specifically, we focus on the
two classes ofbinary multi-set primitive batch codes: subcube
codes and subset codes.

A. Subcube codes

Fix parametersl and t to be positive integers. LetGl be the
l× (l+1) matrix given by(Il,1), whereIl is the l× l identity
matrix, and1 is the all-ones column vector. In other words,Gl

is the generator matrix of a code with a single parity bit.
A subcube codewith parametersl andt is then the linear code

generated by the matrixG(l, t) , G⊗t
l , whereA⊗t denotes the

Kronecker product oft A’s.
Hence, we check easily thatn = (l + 1)t, k = lt. In [6]

this code is viewed as a((l + 1)t, lt, t + 1) switch code with
query sizel. If we require a large request length, Ishaiet. al
[1] demonstrated that the subcube code can solve requests of
length2t. Therefore, in the subsequent discussions the subcube
code is viewed as a((l + 1)t, lt, 2t) switch code.

Due to the structure ofG(l, t), we observe that the average
encoding degree is given byd = (2l/(l+1))t = kR/n. Hence,
by Lemma 10, the subcube code is optimal in terms of codeword
length with respect to its average degree.

However, unlike Construction 1, thequery size of the sub-
cube code isk. In particular, consider2t requests for any
given information bit. Then there exists a helper set of size
lt = nlog l/ log(l+1). Hence, the query size of the subcube code
is lt = k and approachesn as l grows.

B. Subset codes

Fix parametersw and l to be positive integers withw < ℓ.
Consider subsets of[l] and let the information bitxT correspond
to a subsetT of sizew. Then asubset codewith parameters
l andw is a code whose codewords are indexed by subsets of
[l] with size at mostw. Every codeword bitxS is given by
∑

S⊆T, |T |=w xT . Hence, we have the codeword lengthn =
∑w

j=0

(

ℓ
j

)

and the dimensionk =
(

ℓ
w

)

.
Fix a subsetT . In order to solve a request for the information

bit xT , Ishai et. al considered the following collection of
subsets. For eachT ′ ⊆ T , consider the line

L(T, T ′) = {X : X ∩ T = T ′, |X | ≤ w}.

Ishai et. al then demonstrated that the set of codeword
bits {xS : S ∈ L(T, T ′)} on the lineL(T, T ′) solves the
request forxT . Furthermore, given requestsT1, T2, . . . , TR with
R = 2cw, where0 < c < 1 is some constant, they provided
a randomized algorithm to chooseT ′

1, T
′
2, . . . , T

′
R and showed

that the linesL(Tj , T ′
j) are pairwise disjoint with positive

probability. However, no deterministic solutions with guaranteed
decodability is known.

We demonstrate below that whenl = w+1, the subset code
can in fact solve requests of lengthR = 2w. Furthermore, the
helper sets can bedeterministicallycomputed. We make use of
the following observation.

Lemma 12. A subset code with parametersw and l = w + 1
is a (2w − 1, w) simplex code.

Proof: By definition, the codeword bits of subset code are
indexed by the subsets of[l] with size at mostw. Fix T to be
a subset of size at mostw and letS = [l] \ S. We change the
indices of the subset code such that the bitxS corresponds to
the bit yS . Sincel = w + 1, the new index set is given by the
nonempty subsets of[l].

Furthermore, if |T | = w, the information bit xT now
corresponds toyT = y{i} for some i ∈ [l]. For any subset
S with |S| ≤ w,

yS = xS =
∑

S⊆T, |T |=w

xT =
∑

S⊆([l]\{i})

x[l]\{i} =
∑

i∈S

y{i}.

This then coincides with the definition of a(2w−1, w) simplex
code.

Applying Theorem 8, we obtain the fact that a subset code
with parametersw andl = w+1 is a (2w − 1, w, 2w−1) switch
code. As pointed by a reviewer, the same fact was observed by
Ishai et al. [1]. Specifically, Ishaiet al. observed that a subset
code is a subcode of some binary Reed Muller code. Indeed
a simplex code is a shortened subcode of the first order Reed
Muller code [2, Fig 1.13].

V. CONCLUDING REMARKS

In this paper, we construct a family of binary switch codes
with optimal codeword length given the average degree. Com-
pared to probabilistic decoding methods studied for locally
decodable codes, such as Reed-Muller codes, our construction
provides a deterministic solution to an arbitrary request of
maximum length, as well as a small field size and a small
query size. Moreover, our algorithm in finding a solution to
any request has complexityO(k), for k input bits.

Interesting open problems on this topic include tight lower
bounds on the codeword length, and constructions with an
arbitrary encoding degree,d.
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