Optimal Binary Switch Codes with Small Query Size
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Abstract—In this paper, we study a construction of binary switch symbol, denoted by, is calledquery size Typically, we require
codes. A switch code is a code such that a multi-set request of;; R to be of the same order.
information symbols can be simultaneously recovered from ijoint A switch code is a specialization of the primitive multi-set

sets of codeword symbols. Our construction is optimal in thesense .
that it has the smallest codeword length given its average ending batch codes by Ishat. al [1] to the case where the number

degree, which is logarithmic in the code dimension. Moreowethe ~ Of input information symbols: is close to the request size.
number of queries needed to recover any information symbolri  This case captures well the regime in switching application

the request is at most 2. As a result, our construction is the it  here the input and output data rates are instantaneousigasi
family of switch codes with low encoding and decoding compléty.  \yhereas the outcome of most of the previous work on batch

|. INTRODUCTION codes has been codes withmuch smaller thark, and cannot

We study memory sub-systems of network switches thgPPort steady-state switching.
are used to store packets between arrival from input ports” related notion is locally decodable codes (e.g., [8]), ahhi
and departure to output ports. In particular, we considerSatisfy the smoothness property: for any information syimbo
coding scheme for network switches such that they scale with the r-queries used to decode that symbol cover the
information exchange speed and network size. Suppose tf@geword symbols uniformly. This property ensures thahé t
a switch hask input ports andR output ports. In order to Same information symbol is requested multiple times, tlearst
parallelize the process of writing and reading in the memofjsjoint solutions. However, it is not tight enough to asfeie
for different ports, multiple memory banks are used in acit Non-asymptotic optimality. Moreover, probabilistic delaty is
However, there is a contention problem for reading if theonsidered for such codes, while for switch codes detestidni
requested packets from several output ports are writtehen gdecoding is required.
same memory bank. To solve this contention problem, Wetng N addition, switch codes are related to locally repairable
al proposed the use of switch codes [7]. codes with multiple availabilities (e.g. [3], [4], [5], [B] but
Consider a toy example with = R = 2 and two memory known codes for the latter model do not give request lengths
banks. Suppose at each time slot every port transmits di@se tok.
packet with fixed size, and every memory bank can supportPreviously, only switch codes with encoding degree two
one packet write and one packet read. At time glot € 7', (two information symbols are combined to get each codeword
denote the information of two input packets Hy, B,, which symbol) and codes that can solve burst requests (only one
are written in the first and second bank, respectively. Atesorfeduested symbol is requested more than once) is knownt[7]. |
time slot, supposed,, A, are requested from the two outpuﬂS an open problem to construct switch codes solving anyitra
ports, respectivelyt # s € T. Since every bank can onlyrequests and having degree larger than two.
support one read, an undesired delay is incurred. An aligena In this paper, we construct the first family of switch codes
would be a coding scheme that uses three memory banks.Wiih optimal length given its average encoding degree, isc
every timet € T, A, B:, A, + B, are written in the three O(log k). Furthermore, the code is binary, and the query size is
banks, respectively, wherer” means bit-wise XOR of the two © = 2. As a result, it has low complexity from a practical point
packets. Then any request of size two can be solved by read®gview. The construction is based on simplex code and the
at most one packet from every bank. Therefore any request é@mcatenation of multiple codewords. Fér= £, the codeword
be solved within a single time slot. In particulat, can be lengthisn = O(k?/logk), whereas the previous constructions
solved by reading{ A}, while A, can be solved by reading[7] have codeword length = O(k?).
{Bs, A, + B,}. Observe that the two sets of banks used are The paper is organized as follows. In Section II, we formally
disjoint. define the switch codes and introduce necessary notations.
More generally, arin, k, R) switch codéds a code of length. Section Il gives the construction and the proof of its cotmess
and dimensiork, such that for every multi-set request of size and optimality. Comparison with previous results are shawn
there is a solution such that the sets of codeword symbols fection IV. Finally, we conclude in Section V.
recovering the requested symbols are disjoint. The maximum
number of codeword symbols used to recover an information
In the rest of the paper, we usg| to denote the set
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by the Center for Science of Information. For a vectorx, its length is represented By|. For a setS, its

II. DEFINITIONS AND NOTATIONS



cardinality is denoted bysS|. For a vectorx = (xo,...,2,—1) arbitrary requests of lengtR. Lastly, we prove the optimality
and a subsef = {s1,...,s/5/} C [0,n — 1], where0 < s; < of our construction.

- < 5151 < n— 1, we denote byxs = (zs,,...,25 ) the An (N, K) simplex codés constructed as follows. For every
vector of elements with coordinates $h We uselog to denote non-empty subset df), K — 1], form a bit in the codeword that
logarithm of base 2. is the XOR of the elements in the subset. Hence, a simplex code

In formally, a switch codeover the alphabett encodes of dimensionk, K > 1, has codeword lengthv = 2% — 1.
an information vectoru = (uo,...,ur_1) Of length k into . .

a codeword vectox = (xof.(.),:rn,l)k oi‘)lengthf. For any Construction 1. Fix k and R such thaflog R a}:‘d THes R &€
request of information indice§,, .. ., i), i; € [0,k — 1], there mtegers. Partition thé information bits into;.-% groups of
exists disjoint sets;, ..., Sk C [0, n— 1], such that;, can be size K = 1+1logR. Use an(N = 2R —1,K = 1+ logR)

recovered from the codeword symbols indexeddyy namely, Simplex code on every group, and then concatenate-te
xs,, for any j € [R]. More formally, a switch code can pecodewords. The constructed code therefore has a codeworc

defined as follows. length

(2R — 1)k
Definition 1. An (n,k, R) switch code on the alphabet n= T+logR
consists of an encoding function

X N Suppose the generator matrix of th&y = 2R — 1, K =
P AT = AT, 1+ log R) simplex code is given byIx,G), wherel is the
a decoding set function K x K identity matrix, and5 is an K x (N — K') matrix. Then

the code given by Construction 1 has generator matrix
€00,k -1 =S,

Ixr 0 .- o G 0 --- 0
WhereS:{(Sl,Sg,...,SR) .S C [O,TL*l],SiﬁSj = 0 Ix - 0 0o G --- 0
(0, for all 1 <i+# j < R} is the collection of all vectors of? o
disjoint sets, and decoding recovery functions : : I o I
0 0 oo I 0 0 -+ G

i xS 5 x
We next show that the above construction solves arbitfary

for 5 C [0,n —1], andi € [0,k — 1]. The functions satisfy ;o4 ests and has query size 2. To prove that, we first focus on

H . k . : R
the following: for allu € ™ and (i1, sir) € [0,n = 1%, 40 (N, K) simplex code, and show that it solves an arbitrary
if o(u) =x and&(iy,...,ig) = (S1,...,Sr), then for every request of lengtie® —1 = N-AL.
Jj € [R], i For example, the codéA, B, A + B) described in the
s, (xs;) = uj. introduction is a simplex code witl' = 2, and any request

We call k the input sizeor the code dimensionand R the of length2~! = 2 can be solved.
request lengthlf a codeword symbol is systematic, namely, if In the following, we use the subs&tC [0, K —1] to represent
it equals to an information symbol, then it is callediagleton the corresponding bit in the codeword of the simplex code Th
For a linear code, if a codeword symbol is a linear combimatidnformation bits are the sets of size one, namgly, for any
of d information symbols, then itencoding degreés d. i € [0, K — 1]. By abuse of notation, we writet” to denote

For some code and a request, if there exist disjoint setstf® XOR of two bits, or equivalently, the symmetric diffecen
recover the requested symbols, then we say theresislugion Of two sets. It is clear that any codeword Bitcan be recovered
to a request, or the requestssivable If the j-th information from the XOR of the two bit§S + 5’) and S’, for arbitrary
symbol is requested; times, j € [0,k — 1], then we write S’. Therefore, the simplex code has query size2dfor any
the request (vectorpsL = (o, ..., lx_1). Notice that the total information or parity bit. In particular, any informatiorittzan
multiplicity is the request length, oY _; I; = R. Moreover, be computed from two codeword bits.
to show a code solves arbitrary requests, it is sufficienhaws ~ Consider a graph where every non-empty subSets a
that it solves all request vectors. The set of codeword sysnbertex, and every edggs, S”) corresponds to a solution to an
in S; is calledhelpersor a helper setfor the j-th requested information bit, namely|.S+S’| = 1. Also add to this grapli

information symbol. dummy vertices corresponding to the empty set, denoteg} by
If » is the smallest integer such that for any request of lengtte [0, X — 1], along with K edges({i}, ¢;). See Figure 1 for
R and any information indey € [0, k — 1], we have an example. First, notice that this graph represents aHiples

solutions of information bits with query size no more than 2.

S5l <, Next, notice that this is a bipartite graph where the pariiti

then we say thejuery sizeis 7. of the vertices is determined by the parity [&f|. The even
partition is of size2®~! + K — 1 (including K copies of the

lll. CODE CONSTRUCTIONS empty set), while the odd partition is of si2& 1. A disjoint

In this section, we first construct binary switch codes fromsolution for some request vector can be viewed as a matching
simplex codes, and get codes with lengte= (2R — 1)k/(1+ in the graph, and apparently the size of the matching, or the
log R), dimensionk, and query size 2, wheleg R andk/(1+ request length, cannot exceeff —!. We show later that this
log R) are integers. We then show that this construction solvepper bound on the request leng?¥ 1, is also achievable.
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Fig. 1. A bipartite graph oK' = 3 input bits. Every edge corresponds to
a possible helper pair. The set of solid-line edges is aisolub the request
L = (4,0,0), or four times the input bi{0}.

9 {0}

Fig. 2. Partitions onK = 3 input bits labeledl = {0, 1,2}. Every two

Definition 2. A request vectoil. on K input bits is said to be parallel faces form a partition. For example, the face onripbt is Ag =
shortif its length satisfies {{0},{0,1},{0,2},{0,1,2}} containing element(”, and the face on the
left is Ag. One can see that any edge connecting the left and the riges fa

A Ko g corresponds to a solution to the Hib}. Moreover, since the paifd, {1})

IL| < f(K) = ﬁQ . solves the bit{1}, we have that the pait, * (0), 55 ' ({1})) = ({0}, {0,1})

+ also solves the same bit.

Definition 3. A solution to a request vector is said to type

| if singletons are not used in the solution, and the query siEé(ample 5. Consider a request

is 2. L = (62,59, 58, 55, 51, 50,49, 45, 42, 41)
For example, letk' = 4, and consider a short requestor K = 10. Crucial to the proof is that the entries in the
L = (1,1,1,1) of length no more thanf(K) = 32/5. request vector are in non-increasing order. We witas L =

Namely, every information bit is requested once. It can kg, + 2L, + L; with

solved by the helper pairg0, 1,2}, {1,2}), ({1, 2,3}, {2,3}), Li=@©2 0 0, 0 0, 0 0, 0 0 0

2,3,0},{3,0}), ({3,0,1},{0,1}), which is a type | solution, !
({2,3,03,13,0}). F{0.1}) yp Lo =(0, 29, 29, 27, 25, 25, 24, 22, 21, 20),

since no singletons are used. 2

For a request vectoL. = (ly,...,lx—1), One potential Ls = (0, L 0 L L 0 1, 1, 0 1)
solution is to first solvel,’ = (Ip — 1,...,lx—1 — 1) without Lemma 7 below shows that, can be solved by type | solution
singletons, and theril, 1,...,1) with singletons only. More on K — 1 = 9 inputs, which we explain in the next paragraph.

precisely, we later show that I’ is a short request for a largeThis solution can then be duplicated in the two partitionsigf
enoughk, then it has a type | solution (Lemma 7), herfeés and Ay, respectively. Thus we can sol2&.,, while we use the
solvable. singletons to solvd.s. Finally, we demonstrate in Theorem 8
that there are sulfficiently many pairs as in (1) still avdiafor
the information bit{0} in the request vectak; .

To show that L, has a type | solution, we view
L, as a short request onK — 1 inputs and write
Ly = (29,29,27,25,25,24,22,21,20). Again this is in non-

Definition 4. Let I be a set of integers of siz&. Consider
all subsets ofl. They are also the codeword bits @ inputs
labeled by, together with a dummy empty set. For ang 1,

define a partition of the subsets into two parts:

A;={SCI:ie8}, increasing order. Now consider
A;={SCTI:i¢8S}. L}, = (29, 30, 28, 26, 26, 24, 22, 22, 20),
Also define a 1-1 mapping between them: and writeL}, = L, + 2L5, where
5t Ay — A, L,=(29, 0, 0, 0, 0, 0, 0 0, 0,

such that for anys € A;, we have Ly =(0, 15 14, 13, 13 12, 11, 11, 10).

5:(8) = S\{i} Notice that if L, i; type-| solvable, S0 id5. We showLs is
‘ ’ type-1 solvable using the base case in Lemma 7onR 2 = 8
Figure 2 shows an example of the partitionsfon= 3 inputs. inputs. In general if —2 > 8, L can be shown to be a short
The above partition forms a recursive structure of the caddw request onk’ — 2 inputs, and thus have a type | solution using
bits. Apparently, any solution to the information Hit} with induction hypothesis in Lemma 7. Similar to the argument in

guery size 2 must be a pair the previous paragraph, consider all codeword bits orthel
S 5.(S 1 inputs labeled/ = {1,2,..., K — 1}. The solution toL; can
(8,4:(5)), @ be duplicated in the two partitiond; and A;, respectively.

for some S ¢ A;, where the ordering of the pair is notFinaIIy, we solveL, using the remaining pairs as in (1), which
considered. Besides, if the information Hif}, j # 4, can be is proved in the last part of Lemma 7.
solved by a paifR, S), with R+ S = {j} andR, S € A;, then

. . The following is a lemma on a small input size, and forms
it can also be solved by the pair

the base case of our proof.
—1 —1 . .
(0, (R),0;°(5)) = (RU {a}, S U{i}). Lemma 6. Consider a simplex code witK input bits.
Before proving the solvability of the simplex code, we augli (i) There is a type | solution to any request of length—! —
the proof steps with an example. K, forall K <8.



(i) There is a type | solution to any short request f6r= 8. So we have a type | solution f@L’ + L"”, and hence foL. &
(iii) There is a solution of query size 2 to any request of wngTheorem 8. Let L be a request of length ! for the (N, K)

K—-1 <
2 forall K <8. simplex code, then it is solvable with query size 2.
Proof: (i) This is proved by computer search. ] .
(i) This is obvious since a short request also has length &%SUZ(;OIE V\>/h%n fssﬁmse’ c\t]iltioljt tlr:Ses bg:c L(er?é]:;it; (l')'
more than/(K) < 2% — K when K = 8. We can simply ({1 l )_Wit.h lo>--->1 Then rev%/’riteL asL _
use a subset of pairs of helpers from (i). (lO,.O. " K61 ol 0 T wh_ergL_l.— (0, & o

(ii) For any request vectoL = (ly,...,lx_1), without loss \'0»*>---> ) +2Lo + Lg, 2= (0,[3],.., [,
of generality, assumé& > 1y > --- > g 1. If lxg 1 > 1, let

andLs = (0,1; mod 2,...,lx—1 mod 2). Itis easy to see that
L =(y—1,...,lg_1—1),andL” = (1,...,1). Notice that L is a short request o — 1 inputs, namelyL,| < f(K —1),

I’ can be solved by (i) ani” can be solved by singletons, and®d has a type | solution by Lemma 7 fAr > 9. Then, with
the two sets of helpers fdi’ andL” are disjoint. Also notice singletons, we can solvks. Finally, with the same argument

thatL = L/ + L”. Therefore L is solvable. Wherix_; = 0, 25 in (3), we havé, pairs to solve{0} (using possibly some

this is proven by computer search. m Singletons:
K—-1

Lemma 7. For the (N, K) simplex code,K > 8, there is a [Ao\B| — [Ls| = 277" = 2[La| — [La| = Lo, (4)
type | solution to any short request. where A, is the partition of subsets df), K — 1] containing

Proof: We prove by induction. Whenk = 8, this is 0" and B is the set of helpers fdk, belonging toA,, defined
proven in Lemma 6 (ji). Letk > 9 and consider a short Similar to (2). .
requestL = (lo, .. ., x_1). Without loss of generality, assumeReémark: For any request of length no more thafi—', the
lo > --- > lx_1. Partition all codeword bits ods inputs @above proofs provide us with a recursive algorithm to find a
labeled{0, ..., K — 1} into two parts:A, Ao. solution. The recursion ends at the base cas8 wiput bits,

Let L' = (0,[47,..., [lKT—lD' L” = (I,0,...,0). We next and the complexity of the algorithm is linear .

show that2L’ + L is type-I solvable. Noticing thal is short - corollary 9. Construction 1 can solve any request of length
and/y is the largest component, the length satisfies . ] i
Proof: Set K = 1 + log R in the simplex code. Consider

K-1
IL| < 1 Z L+ K1 any request of lengti®. If it only contains information bits of
T2\ & ! the same group of siz¥, then the statement holds by Theorem

1/K—1 8. If it contains information bits from different groups eth for
< | ——fEK)+K-1) < f(K-1) every group we get a request of length less tiiar= 251,
2 K . 2 .
] and can solve it by Theorem 8 considering codeword bits from
for K > 9. So we can viewL,' as a short request o — 1 {5t group. =
inputs labeled K —1]. By induction hypothesid,’ has atype | Next, we show the optimality of our construction. Consider a

solution. For every helper pai5, R) in this solution onK'—1  jinear switch code. Suppose a codeword symbol indexeca
inputs, |5 + k2| = 1, we generate two pairs ofi inputs labeled |inear combination of; information symbols, then we say the
(Su{0}, RU{0}), (2) the following lower bound on the codeword length.

and both helpers belong td; the second igS, k) and both Lemma 10. An (n,k, R) switch code with average degree
helpers belong tal,. SincesS, R are not singletons by inductionfor the codeword symbols satisfies

hypothesis, we know the generated helpers are not singleton n>kR/d
either. Moreover, all the generated helpers are disjoiotw® - '
have a type | solution to the requextt’. Proof: Notice that every information symbol has to appear

Let B, C be the set of helpers fal’ generated ind,, 4y, in R codeword symbols, resulting in a total bfz appearances.
respectively, which are both of siz2/L’|. Notice that the Therefore, the sum of degrees satisté[;O1 d; > kR. And
functiond defines a 1-1 mapping froid to C, and accordingly the lemma holds for the average degree. [ |
from Ao\ B to Ay\C. In other words, if we pick any unused
elementS € Ay\B, then we haveS\{0} € A4,\C, and
they can be the helper pair fdf0}. As a result, there are
|40\ B| = 2K-! — 2|L/| remaining ways to solvg0}, and Proof: For Construction 1, the average degree is also the
K of them involve singletons. Hence the number of helper setgerage degree of theV, K) simplex code:
not using singletons fof0} satisfies fork” > 9, Zijil Z(K) K251 (1+log R)R

i

Proposition 11. Construction 1 is optimal in terms of codeword
length with respect to its average degree.

[Ao\B| - K =28 —2|U/| - K =K1 Tk 17 2RI
>2f T (L -+ K-1) - K Given this value ofi, the upper bound from Lemma 10 is given
>28 1 (f(K)—lp+K—-1)- K by
- )=l ) kR (2R — D)k

> lo. 3 > -
= 3 "= M +1gRR/CR—-1) 1+logR’



establishing the optimality of Construction 1. B Lemma 12. A subset code with parametetsand! = w + 1

is a(2* — 1,w) simplex code.
IV. COMPARISON WITHBATCH CODES

In this section, we consider switch codes, or multi-set prim. Proof: By definition, the codeword bits of subset code are

tive batch codes, proposed in [1]. Specifically, we focustmn t|nde>t<)ed tbyfth_e sult)setsﬁt@ﬂ Vé'tlh %Zi alt mgslz\l/;\./ F'XhT o t:ﬁ

two classes obinary multi-set primitive batch codes: subcubg? SUPSEL 0f Size al most and et = [\ - VVe change the

codes and subset codes. indices of the subset code such that theahjtcorresponds to
the bitys. Sincel = w + 1, the new index set is given by the

A. Subcube codes nonempty subsets df].

Fix parameters and to be positive integers. Lef; be the  urthermore, if[T] = w, the information bitz7 now
I % (I+ 1) matrix given by(1;, 1), wherel, is thel x [ identity COTTeSPonds ey = yy;y for somei & [i]. For any subset
matrix, and1 is the all-ones column vector. In other words, S with [S] < w,

is the generator matrix of a code with a single parity bit. e — Z _ Z L Z _
. . . Ys=Ts = T = x i} = Ygid-
A subcube codwith parametersandt is then the linear code s g FMES b

SCT, |T|=w SC([\{i i€S
generated by the matri&(l,t) £ G, where A®* denotes the o "l . _([.]T{ D = _
Kronecker product of A’s. This then coincides with the definition of(@” — 1, w) simplex

Hence, we check easily that = (I + 1)t, k = It. In [6] C0de. .

this code is viewed as &1 + 1)!,1¢,t + 1) switch code with _Applying Theorem 8, we obt_ain the fact that alsubs_et code

query sizel. If we require a large request length, Isteai al With parameterso and/ = w + 1 is a(2v —1,w,2%" 1) switch

[1] demonstrated that the subcube code can solve request§Qte- As pointed by a reviewer, the same fact was observed by

length2¢. Therefore, in the subsequent discussions the subctBg@i et al. [1]. Specifically, Ishaiet al. observed that a subset

code is viewed as &1 + 1)*,1t, 2¢) switch code. code is a subcode of some binary Reed Muller code. Indeed
Due to the structure ofi(l,t), we observe that the average® simplex code is a shortened subcode of the first order Reed

encoding degree is given by= (2/(I + 1))t = kR/n. Hence, Muller code [2, Fig 1.13].

by Lemma 10, the subcube code is optimal in terms of codeword V. CONCLUDING REMARKS

length with respect to its average degree.

However, unlike Construction 1, thguery size of the sub- In this paper, we construct a family of binary switch codes

cube code isk. In particular, consideRt requests for any with optimal codeword length given the average degree. Com-

given information bit. Then there exists a helper set of siiJare<j to probabilistic decoding methods studied for chall_
It — plogl/log(i+1) Hence. the query size of the subcube Coc]agecodable codes, such as Reed-Muller codes, our constructi
- ) ’ query provides a deterministic solution to an arbitrary requekt o
is I* = k and approaches asi grows. ) . .
maximum length, as well as a small field size and a small
B. Subset codes query size. Moreover, our algorithm in finding a solution to
any request has complexity(k), for & input bits.
Interesting open problems on this topic include tight lower
bounds on the codeword length, and constructions with an

lpitrary encoding degred,

Fix parametersy and!/ to be positive integers withv < /.
Consider subsets ¢f] and let the information bit, correspond
to a subsefl” of size w. Then asubset codavith parameters
[ andw is a code whose codewords are indexed by subsets®
[I] with size at mostw. Every codeword bitxs is given by REFERENCES
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