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Abstract— In recent years, due to the spread of multi-level non-
volatile memories (NVM), q-ary write-once memories (WOM)
codes have been extensively studied. By using WOM codes, it is
possible to rewrite NVMs t times before erasing the cells. The use
of WOM codes enables the improvement of the performance of
the storage device, however, it may also increase errors caused by
inter-cell interference (ICI). This work presents WOM codes that
restrict the imbalance between code symbols throughout the write
sequence, hence decreasing ICI. We first specify the imbalance
model as a bound d on the difference between codeword levels.
Then a 2-cell code construction for general q and input size is
proposed. An upper bound on the write count is also derived,
showing the optimality of the proposed construction. In addition
to direct WOM constructions, we derive closed-form optimal
write regions for codes constructed with continuous lattices.

On the coding side, the proposed codes are shown to be
competitive with known codes not adhering to the bounded
imbalance constraint. On the memory side, we show how the
codes can be deployed within flash wordlines, and quantify their
BER advantage using accepted ICI models.

Index Terms— Codes, Channel coding, Write once memories,
Multi-write codes, Flash memory cells, Nonvolatile memory,
Inter-cell interference.

I. Introduction

In many multi-level non-volatile memory (NVM) tech-
nologies there is an inherent asymmetry between increasing
and decreasing the level to which a cell is programmed. In
particular, in flash memories cell levels are represented by
quantities of electrical charge, and removing charge is known
to be much more difficult than adding charge. This asymmetry
implies significant access limitations, whereby erasing cells
must be done simultaneously in large groups of order 106 cells
(called blocks). From this limitation stem many of the serious
performance issues of flash, most prominently low write rates
and accelerated cell wear.

A possible solution for reducing erasure operations and
increasing the lifetime of flash memories is using write-once
memory (WOM) codes. The use of WOM codes in flash
memories enables multiple writes before executing the costly
erasure operation. The performance benefits of WOM codes in
flash have been demonstrated in the literature. In particular, it
was shown [23], [28], that by using WOM codes it is possible
to reduce write amplification, and thus increase the lifetime
of the device. This justifies the recent extensive study of q-
ary WOM codes [3], [9], [11], [12], [19] that generalize the
original binary WOM model [25] to multi-level flash.
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In light of this promise, the main issue holding back WOM
codes from deployment seems to be concerns related to inter-
cell interference (ICI) [8]. Since WOM codes allow updating
pages in place and non-sequentially, there is a potential risk
that these updates will disturb adjacent pages. The risk of ICI
disturbance becomes more significant as cell levels are updated
to much higher levels than their neighbors.
The objective of this paper is to construct and study WOM
codes that impose lower ICI than known WOM codes. ICI
is a general problem in flash with many possible solutions,
hence our focus here is on addressing it for flash devices
that employ WOM codes for improved performance. The ICI-
mitigating WOM codes we propose in this paper reduce ICI by
maintaining a degree of balance between the physical levels of
the cells throughout the write sequence. As a consequence, the
level difference between adjacent memory cells is constrained
to be up to an imbalance parameter d chosen for the code.

In Section III we present our main contribution: a d-
imbalance 2-cell WOM-code construction that yields codes for
general values of q and input sizes. We also derive an upper
bound on the number of guaranteed writes given the imbalance
parameter, and show that our construction is optimal. With
a comparison table we show that the numbers of writes
our codes offer are favorable even relative to unconstrained
existing codes. The uniqueness of this work over prior ICI
codes is that it mitigates ICI within the WOM framework.
Whereas known ICI-WOM codes [21] only constrain the
transition of individual cells at an individual write, our codes
jointly maintain balance between the symbols of the WOM
codeword throughout the write sequence.

In section IV we pursue d-imbalance WOM codes using the
lattice-based WOM construction technique developed in [3],
[4], [19]. We derive in closed form the optimal continuous
write regions with the d-imbalance constraint for n = 2
cells and t = 2 writes. The optimal boundary between the
write regions turns out to be a parabola, while the known
optimal boundary in the unconstrained case is known to be
a hyperbola [19]. Another curious fact we find is that for the
d-imbalance case the optimal sum-rate is achieved by constant-
rate codes, in contrast to classical unconstrained codes exhibit-
ing a gap between optimal variable- and fixed-rate codes. We
emphasize that n = 2 is only the unit of construction, and the
actual coding in the memory is done in larger blocks of size
N (see Section V). Using a small n as a unit of construction
enjoys great complexity benefits. In particular, the decoding
and update functions can be represented in space quadratic
in q, while longer WOM codes in the literature have much
higher decoding and update complexities. In addition, using
short WOM constructions makes them easier to integrate with
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an error-correcting code (ECC), because they give a simple
way to WOM-encode the ECC parity symbols. Fortunately, the
information loss from coding with short 2-cell constructions
is minor considering the above advantages. For example, there
are several examples in [9] showing small gaps between 2-cell
constructions and the (variable-rate) WOM capacity.

In Section V we gear more toward practical realization of
the codes and show how multiple WOM codewords can be
concatenated in a flash wordline to maintain the d-imbalance
constraint globally. In addition, we analyze the improvement
in worst-case ICI expected when cells are constrained with the
d-imbalance property.

II. Background and Definitions

A. Inter-cell interference (ICI)

In flash memories, changing the electrical charge of one
floating-gate transistor can change the charge of its neigh-
boring transistors through the parasitic capacitance-coupling
effect [20]. This effect is referred to as inter-cell interference
(ICI), and it is one of the most dominant sources for errors
in flash memories. In addition, with the continuing process
of scaling down cell sizes, the distance between adjacent cells
becomes smaller. As a result, the parasitic capacitance between
a cell and its neighbor cells increases, which in turn increases
the ICI.
Moreover, as was shown in [2], the write process is also
a key feature in the ICI mechanism. NAND flash devices
commonly use the incremental step pulse program (ISPP)
write method to mitigate cell variability [6]. In the ISPP
method each program level induces a sequence of program
pulses followed by a verification process to assure proximity
to the target level. Each program step increases the voltage
level of a cell by ∆Vpp, which is significantly smaller than
the actual voltage levels representing memory values. As was
described in [2], when cells are programmed by ISPP, it is
possible to compensate ICI errors in the cells that have not yet
reached their target values. If during the write sequence cell
#1 causes ICI in cell #2, it can be detected by the verification
process of cell #2, and the program steps of cell #2 may be
modified to compensate for this ICI. However, when a certain
cell already reached its target level, ICI from a neighbor cell
cannot be compensated and may cause a write error.
The accepted conclusion from the ICI behavior described
above is that ICI errors are more likely when the difference
between target levels of adjacent cells is high [2], [26].
Therefore, a coding scheme that balances voltage levels of
adjacent cells, forbidding significant voltage differences, is
likely to reduce ICI errors. Detailed analysis of the ICI and
its effect on the bit-error rate (BER) appears in Section V-B.

ICI due to lateral charge spreading: Recently, a new 3D
vertical charge-trap flash memory was commercially intro-
duced [24]. This flash device was reported to have low ICI
from the capacitance-coupling effect, however, it suffers from
ICI due to charge migration between adjacent cells, termed as
lateral charge spreading effect. It was shown in [18] that if
the level difference between adjacent cells is small, the lateral
charge spreading effect is significantly reduced. Therefore, a
coding scheme that balances the charge levels of adjacent cells
is similarly warranted for this new form of ICI.

B. WOM codes
Our focus in this paper is on limited-imbalance codes in

the WOM model, because the in-place re-writing of WOM
codes makes them especially prone to ICI. We first review
some necessary background on q-ary WOM codes.

Definition 1. A fixed rate WOM code C (n, q, t,M) is a code
applied to a size n block of q-ary cells, and guaranteeing t writes
of input size M each.

A WOM code is specified through a pair of functions: the
decoding and update functions.

Definition 2. The decoding function is defined as ψ :
{0, . . . , q − 1}n → {0, . . . ,M − 1}, mapping the current levels of
the n cells to the data input in the most recent write. The update
function is defined as µ : {0, . . . , q − 1}n × {0, . . . ,M − 1} →
{0, . . . , q − 1}n, specifying the new cell levels as a function of
the current cell levels and the new data value at the input. By
the WOM requirement, the i-th cell level output by µ cannot be
lower than the i-th cell level in the input.

Definition 3. The code’s physical state is defined as the n q-ary
levels to which the cells are currently programmed. The code’s
logical state is the data element from {0, . . . ,M − 1} returned
by ψ on the current physical state.

A write region spanned from a physical state is a set of
physical states accessible from it under the WOM requirement.
The size of this set we call the area of the write region. If at
a given physical state the code admits more write(s), then this
physical state must span a write region with area at least M.

Example 1. Let us consider two sample WOM codes.
In Fig. 1 (a) we have the decoding function of
C (n = 2, q = 7, t = 3,M = 8) constructed by Construction
3 in [9]. This code is applied on a pair of q = 7-level memory
cells, enabling t = 3 guaranteed writes of size M = 8 each.
In Fig. 1 (b) we have a code C (n = 2, q = 7, t = 3,M = 8),
offering the same number of writes. Considering Fig. 1 (a),

Figure 1. Sample n = 2 WOM constructions (from [9]). (a) - Decoding
function ψ for the code C (2, 7, 3, 8). (b) - Decoding function ψ for the code
C (2, 7, 3, 8). Physical states are represented by (c1, c2) and logical states are
labeled inside each square.

let us assume we want to perform three writes of the logical
states 7, 6 and 2 using this WOM code. For the first write the
logical state is 7 and the physical state is (2, 1). When updating
the logical state to 6, the physical state becomes (2, 4). For the
third write of 2, the physical state becomes (2, 6). After the
third write, we reach a physical state with level difference of
4 between the cells. As a consequence, given that the pair of
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cells are adjacent, cell 1 is likely to suffer from ICI. The code
in Fig. 1 (b) maintains a better balance between the two cell
levels, but will offer fewer writes if extended beyond q = 7.

In order to reduce ICI, we now define the d-imbalance model
for WOM codes.

Definition 4. A d-imbalance WOM code Cd-imb (n, q, t,M) is
a WOM code that guarantees that after each write the physical
states of the cells ci, 1 6 i 6 n, must satisfy

max
i, j:i, j

|ci − c j| 6 d, (1)

for any write sequence.

A d-imbalance code guarantees that the level imbalance be-
tween cells cannot exceed d. Therefore, all cells sustain similar
(same up to d) levels of charge injection, thus imposing control
on the ICI disturbance. When d = q − 1, we get a standard
unconstrained WOM code without balancing properties. As d
decreases, the balancing improves, but the added constraints
may lead to lower re-write capabilities.

III. Optimal d-Imbalance Construction
Before showing our main construction, we prelude this

section with a discussion on which d parameters would be
interesting to consider. Given n and M, the d imbalance
parameter of a code Cd-imb (n, q, t,M) cannot be less than⌈

n√M
⌉
−1. That is because in any physical state, at most (d+1)n

states are accessible for the next write while keeping the d
imbalance constraint. So to be able to write any of the M
values in the next write we must have M 6 (d + 1)n.

Example 2. For n = 2 and M = 8, the lowest possible
imbalance parameter is d = 2. It turns out that for this extreme
case the simple “diagonal stacking” construction of Fig. 1(b) is
an optimal C2-imb (2, q, t, 8) code with t = b(q − 1) /2c writes.
It is straightforward to generalize this construction to produce
d = (a − 1)-imbalance codes Ca−1-imb

(
2, q, t, a2 − 1

)
, for any

2 < a ∈Z, and providing t = b(q − 1) / (a − 1)c writes.

Requiring maximal balance (minimal d) results in weak codes
with small numbers of writes. A better tradeoff between
balancing and re-write efficiency is obtained when d is relaxed
from the extreme value, in which case good balancing (low
ICI errors) is achieved while getting more writes. This will be
the case we handle in our following construction.

A. Construction
We now turn to present a construction where d is 1 larger

than in the extreme case of Example 2.

Construction 1. For any q, we define an n = 2 WOM code
with M = a2 − 1, 2 < a ∈Z, and d = a-imbalance parameter as
follows.

1) Decoding function:
The decoding function is specified in Fig. 2. The number
shown at position (c1, c2) represents the logical state as
returned by the decoding function ψ (c1, c2).

2) Update function:
The update function is specified with the aid of 3 distinctly
colored regions in Fig. 2, which represent the worst case
regions of the 3 writes. The update function determines the

new physical state (c′1, c
′
2) given the current state (c1, c2)

and the new value to be written m as follows:
a) locate all physical states with (c′′1 , c

′′
2 ) > (c1, c2)

element-wise, for which ψ(c′′1 , c
′′
2 ) = m.

b) (c′1, c
′
2) is chosen as the pair (c′′1 , c

′′
2 ) that minimizes the

sum of coordinates
∣∣∣(c′′1 , c′′2 ) − (c1, c2)

∣∣∣.
The bottom-left region in Fig. 2 has all M = a2 − 1 logical
states mi, j, 0 6 i, j 6 a − 1 excluding i = j = a − 1,
accessible for the first write. Each of the other two regions
has all the M = a2 − 1 logical states accessible from every
physical state in the region to the left and down. Hence the
update function supports any sequence of 3 written values
without exceeding the top-right region.

Figure 2. Decoding function of the d = a-imbalance WOM code
Ca-imb

(
2, q, t, a2 − 1

)
. The notation ma−1,0 · · ·

\ma−1,a−3
ma−1,a−2 represents all the

logical states ma−1,0 to ma−1,a−2 excluding ma−1,a−3. The three colored regions
represent the worst case regions of the first three writes of this code.

We next examine the imbalance parameter of Construction 1.
It is straightforward to see from Fig. 2 that all physical states
(x, y) used by the update function satisfy |y−x| 6 a, as required.
Before discussing the extension of Construction 1 beyond 3
writes, we give an example for the special case a = 3.

Example 3. In this example, we demonstrate Construction 1 for
M = 8 (corresponding to a = 3), and q = 6. The 3 writes of the
resulting code C3-imb (2, 6, 3, 8) are presented in Fig. 3, where
the labels mi, j are given by mi, j = i + ja. It can be checked that
for any sequence of 3 written logical states the update function
of Construction 1 can succeed without exceeding level 5 at any
of the cells.

Extending Construction 1 to general q. To extend the
decoding and update functions of Construction 1 to general q,
we copy the three regions of Fig. 2 and lay out the copies such
that the origin of a new copy is placed on the top-right corner
of the previous copy. Note that such extension requires us to
relabel the logical states along the main diagonal because the
origin logical state and the top-right logical state are different
(m0,0 vs. ma−2,a−2). Observe in Fig. 2 that the logical-state
values on the main diagonal are of the form mi,i, and that these
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Figure 3. Decoding function and update regions for the d = 3-imbalance
WOM code C3-imb (2, 6, 3, 8). The three colored regions represent the worst
case regions of the three writes of the code.

values do not appear elsewhere in the two-dimensional array.
This means that we can lay out these values in a cyclic fashion
across copies. That is, at physical state ( j, j) in the extended
array we place logical value m j mod a−1, j mod a−1. Apart from
the main diagonal, the extended copies of the three regions
have the same assignment of logical values as the base copy
of Fig. 2. In Example 3 we place the origin of a second
copy at physical state (5, 5), and get 3 more writes while
relabeling the main diagonal from 0, 4, 0, 4, 0, 4 in the first
copy, to 4, 0, 4, 0, 4, 0 in the second copy.

We now derive the number of guaranteed writes of a d-
imbalance code produced by Construction 1.

Theorem 1. For any q and 2 < a ∈Z, a d = a-imbalance
WOM code Ca-imb

(
2, q, t, a2 − 1

)
constructed by Construction 1

guarantees

t =

⌊
3 (q − 1)
3a − 4

⌋
(2)

writes.

Proof: With the periodic extension of Fig. 2, we know that
for t = 3` writes, ` integer, q − 1 = `(3a − 4) is sufficient.
Substituting ` = t/3 we get t = 3(q − 1)/(3a − 4) as required.
To complete the proof, we need to show (2) for t = 3` + r
writes, also for the cases r = 1, 2. In these cases, the last r
writes each increases q by a − 1. Therefore, we have

q − 1 = `(3a − 4) + r(a − 1). (3)

Substituting ` = (t − r)/3 and rearranging, we get

t =
3(q − 1) − r

3a − 4
. (4)

It appears that the expression in the right-hand side of (4)
may be smaller than the right-hand side of (2). We show that
this cannot happen. From (3) we know that q − 1 ≡ r(a − 1)
(mod 3a − 4). Therefore, 3(q − 1) ≡ 3r(a − 1) ≡ r(3a − 3) ≡ r
(mod 3a − 4). Now expanding (2), we get⌊
3 (q − 1)
3a − 4

⌋
=

3 (q − 1)
3a − 4

−
3(q − 1) mod (3a − 4)

3a − 4
=

3(q − 1) − r
3a − 4

,

(5)
which proves (2) for all t. The fact that the periodic extension
of Construction 1 has d = a is immediate from Fig. 2.

Substituting into (2) the special case a = 3, q = 6, given in
Example 3, we indeed get t = 3.

B. Upper bound on the guaranteed number of writes
We now derive an upper bound on the number of guaranteed

writes of a d-imbalance code that shows that Construction 1
gives optimal codes. Optimality will be proved for the special
case a = 3, that is, for codes with M = 8 and d = 3
imbalance. A similar technique can extend the upper bound to
more general a values. We start with the following definitions
and lemmas.

Definition 5. If a WOM code i-th write starts at state (xi, yi) and
ends at state (xi+1, yi+1), then the (non-negative) write sum of
the i-th write is defined as xi+1 − xi + yi+1 − yi.

The write sum is a powerful notion because lower bounds
on total write sums can give upper bounds on the number of
writes. For M = 8 it has been shown [9] that without balancing
constraints, write sum of 3 is both sufficient and necessary for
every write. The following lemma is key to our upper bound,
because it shows cases where a write sum of 4 is necessary.

Lemma 2. For any code C3-imb (2, q, t, 8), if a write starts from
state (x, y) satisfying |y − x| = d = 3, then the write region of
(x, y) must contain at least two states of write sum 4 (or higher).

Proof: Let us assume w.l.o.g that the start state is state S
showing on Fig. 4. All 5 states marked as X have write sum of
3 or less. The write sum of states A, B, and C is 4. Therefore,
in order for the write region to have area at least M = 8, it
must include at least two additional states out of A, B, C, or
some other state with higher write sum.

Figure 4. Proof of Lemma 2 – only 5 states (marked by X) have write sum
of 3 or less. States not on or between the shaded diagonals are forbidden due
to imbalance greater than d = 3.

The next two lemmas show how any 3-imbalance code must
get to the “problematic” state S of Fig. 4.

Lemma 3. For any code C3-imb (2, q, t, 8), if a write starts from
state (x, y) satisfying |y − x| = d − 1 = 2, then the write region
of (x, y) must contain at least three states of write sum 3 (or
higher), at least one of which has |y′ − x′| = d = 3 or write sum
at least 4.

Proof: Let us assume w.l.o.g that the start state is state S
showing on Fig. 5. All 5 states marked as X have write sum of
2 or less. The write sum of states A, B, and C is 3. Therefore,
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in order for the write region to have area at least M = 8 with
write sum 3, it must include the states A, B, C, and state A
has |y′ − x′| = d = 3. If A is not included, then a state with
write sum 4 is required.

Figure 5. Proof of Lemma 3 – state A is required for write sum of 3 or less.

Lemma 4. For any code C3-imb (2, q, t, 8), if a write starts from
state (x, y) satisfying |y − x| = d−2 = 1, then the write region of
(x, y) must contain at least two states of write sum 3 (or higher),
at least one of which has |y′ − x′| = d − 1 = 2 or write sum at
least 4.

Proof: Let us assume w.l.o.g that the start state is state S
showing on Fig. 6. All 5 states marked as X have write sum of
2 or less. The write sum of states A, B, and C is 3. Therefore,
in order for the write region to have area at least M = 8 with
write sum 3, it must include two states out of A, B, C, and both
A,C have |y′ − x′| = d − 1 = 2. If neither of A,C is included,
then a state with write sum 4 is required.

Figure 6. Proof of Lemma 4 – A or C are required for write sum of 3 or
less.

We are now ready to state the upper bound.

Theorem 5. Given a d = 3-imbalance WOM code
C3-imb (2, q, t, 8), the number of guaranteed writes is upper
bounded by

t 6
⌊
3 (q − 1)

5

⌋
. (6)

Proof: Throughout the proof we use lower bounds on write
sums, but for convenience we omit the term ”at least” when

we state the value of the write sums. If write sums are strictly
larger than the values quoted below, the proof is still correct,
and we may even reach the desired lower bound on total write
sum earlier by skipping lemmas that assume the lower quoted
value. By a simple area argument, after the first write any
M = 8 WOM code needs to use a state with write sum 3. Next
we show that we can invoke Lemmas 4, 3, 2 in sequence to
get lower bounds on the write sums of the second, third, and
forth write, respectively. Because all states with sum 3 have
|y− x| at least 1, the conditions of Lemma 4 are satisfied after
the first write (see state S in Fig. 6). By Lemma 4, after the
second write any code needs a state that satisfies the conditions
of Lemma 3 (see state A in Fig. 6 and state S in Fig. 5). By
Lemma 3, after the third write any code needs a state that
satisfies the conditions of Lemma 2 (see state A in Fig. 5 and
state S in Fig. 4). Altogether we conclude that for the second,
third, and fourth writes we need write sums of 3 + 3 + 4 = 10.
From Lemma 2, after the fourth write there are two states of
sum 13, which implies that one of them has |y − x| at least 1,
and we can again invoke Lemmas 4, 3, 2 in sequence for the
subsequent three writes requiring additional 3+3+4 = 10 write
sums. Continuing this argument periodically, for t = 1 + 3`
writes, ` integer, we need a total write sum s > 3 + 10`, and
since s 6 2(q− 1), we get 2(q− 1) > 3 + 10` = 3 + 10(t− 1)/3.
Rearranging, we get t 6 b3(q − 1)/5 + 1/10c = b3(q − 1)/5c
as needed. To complete the proof, we need to show (6) for
t = 1 + 3` + r writes, for the cases r = 1, 2. In this case,
the last r writes each requires write sum of 3, and we get
s > 3 + 10` + 3r. Because both Lemmas 4, 3 show existence
of two states with write sum 3, one of these final states has
|y − x| > 1. Thus we can tighten the relation between s and
q to s 6 x + y 6 q − 1 + q − 2 = 2q − 3. Now we write
2q− 3 > 3 + 10` + 3r = 3 + 10(t − 1)/3− r/3. Rearranging, we
get t 6 b3(q − 1)/5 − 1/5 + r/10c 6 b3(q − 1)/5c, and for the
last inequality we used the fact that r 6 2.
Note that for a = 3 the number of writes guaranteed by
Construction 1 is b3(q − 1)/5c, which is equal to the upper
bound (6), hence Construction 1 is optimal.

C. Performance comparison

Table I presents a summary of known results and bounds
for 2-cell, M = 8 WOM codes [9]. By examining the table, we
can notice that for q = 8, and q = 16 (which are currently the
practical values of q for NVMs), using Construction 1 does
not compromise the number of writes compared to optimal
unconstrained WOM, while it provides a better imbalance
d = 3. Using d = 2 constructions does compromise the number
of writes for all q values, including q = 8. It was also verified
numerically that for M = 8, q 6 16 and d = 3-imbalance,
codes constructed by Construction 1 reach the write-count
upper bound of unconstrained codes for every value of q in
this range.
Actually, as we can see in the next corollary, WOM codes

constructed by Construction 1 are good WOM codes even
if ignoring the d-imbalance property. In the following we
compare Construction 1 to the best known 2-cell construction
for general a from [9].

Corollary 6. When q > 1 +

⌈
(a2−2)(3a−4)

a−2

⌉
, a WOM code

Ca-imb

(
2, q, t, a2 − 1

)
, 2 < a ∈Z from Construction 1 guarantees
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TABLE I
Number of writes for 2-cell, M = 8 WOM codes

q
t - Upper bound
d-unconstrained

t - Construction 1
d = 3

t - Construction in [9]
d = 2

8 4 4 3
16 9 9 7
20 12 11 9
32 20 18 15

higher number of writes than a WOM code C
(
2, q, t̃, a2 − 1

)
constructed by Construction 2 in [9].

Proof: The number of writes guaranteed by Construction 1
is given by Theorem 1, while the number writes guaranteed
by Construction 2 in [9] is given by

t =

⌊
(q − 1) (a + 1)

a2 − 2

⌋
. (7)

So, we look for the lowest value of q which guarantees strictly
higher number of writes for the a-imbalance code. Due to the
floor function applied on the number of writes, we demand
that

3q − 3
3a − 4

>
(q − 1) (a + 1)

a2 − 2
+ 1. (8)

This inequality holds for q > 1 +
(
a2 − 2

)
(3a − 4) / (a − 2).

Ceiling this expression ends the proof.
In addition to offering strictly more writes for these q values,
the codes Ca-imb

(
2, q, t, a2 − 1

)
have at least as many writes as

C
(
2, q, t̃, a2 − 1

)
for all values of q. This makes them the best

known (unconstrained) WOM codes for these parameters and
general a (for a = 3 [9] has better codes than C

(
2, q, t̃, a2 − 1

)
.)

We can also notice that the number of guaranteed writes
offered by Construction 1 can reach the unconstrained upper
bound for some other values of M and q. Table II presents such
pairs of M, q values (the q values are taken in the practical
range 8 6 q 6 16).

TABLE II
M, q values for which Construction 1 attains the (unconstrained) upper

bound.

M values of q
15 9
24 9,10,12,13,16
35 11,15
48 13,14

IV. Lattice-Based d-imbalanceWOM Codes
To present d-imbalance codes in the lattice approach we

start with some formal definitions.
Definition 6. A variable-rate WOM codeC (n, q, t, M) is a code
applied to a size n block of q-ary cells, and guaranteeing t
writes, where the input size for the i-th write is Mi taken from
the vector M = (M1, . . . ,Mt).
Definition 7. The sum-rate Rsum of a WOM code C (n, q, t, M)
is defined as

Rsum =

∑t
i=1 log2 (Mi)

n
. (9)

In other words, the sum rate is the total number of written bits
divided by the number of memory cells.

A. Background and review of known results
Lattice-based WOM codes were first proposed in [19] by

Kurkoski, and were further extended by Bhatia et al. in [3],[4].
In the lattice approach, the n-dimensional discrete space of
physical states {0, . . . , q−1}n is approximated as the continuous
space [0, q − 1]n. In that approximation the i-th write’s input
size Mi is approximated by an area Zi in the continuous space.
Given the number of writes t, the space [0, q−1]n is partitioned
to t disjoint regions, each allocated to a write in the sequence
of t writes. In the process of paritioning the space, each write
i is allocated an area Zi. The objective of the partition is
to maximize the product of the areas

∏t
i=1 Zi, because this

would approximate maximizing the sum-rate of (9). After
the continuous space is partitioned, a discretization algorithm
assigns labels to discrete physical states in every region to
obtain the WOM decoding function. The advantage of the
lattice approach over the direct construction approach of [9]
and Section III is that it can use analytic geometry to find
region partitions with good properties. The key disadvantage
is that optimality can only be guaranteed for the continuous
approximation of the space, while the direct approach yields
explicit optimal codes in the true discrete space.

In a nutshell, a 2-cell 2-write lattice-based WOM code is
constructed by partitioning the 2-dimensional space [0, q−1]2

into 2 regions, one for each write. The first write gets allocated
an area of Z1 confined between the x,y axes and the boundary
curve (see Fig. 7). This leaves the second write an area Z2
of a rectangle confined between the boundary curve and the
x = q − 1, y = q − 1 lines. The boundary curve is chosen to
maximize Z1 ·Z2. It was shown [19] that the optimal boundary
takes the shape of a rectangular hyperbola. The constructions
of lattice-based WOM codes were generalized to any number
of writes t [4], and (non explicitly) to any number of cells n [3].
In [3] the lattice approach is applied to both variable-rate and
fixed-rate WOM codes. In order to make this paper cohasive,
we stick with the notations of Section III (rather than those
of the original papers [3],[4]) with one exception: we replace
the discrete cardinalities Mi of the input sizes with continuous
cardinalities Zi. With taking measures to avoid confusion, we
slightly abuse the term sum-rate to describe the continuous
areas Zi in lieu of the discrete input sizes Mi.

The following is a restatement of a result from [4].

Theorem 7. [4] The optimal continuous boundary between the
writes of a 2-cell 2-write lattice-based WOM code is given by
the following equation of a hyperbola

β (x) = q − 1 −
ω2 (q − 1)2

q − 1 − x
, (10)

where x ∈
[
0, (q − 1) (1 − ω2)

]
, and

ω2 = −
1
2

[
W−1

(
−1

2
√

e

)]−1

. (11)

W−1 is the real branch of the Lambert W function [10] satisfying
W (x) < −1.

In the xy plane the optimal boundary of Theorem 7 is given
in closed form as the curve y = β (x). This optimal boundary
was derived as follows. Let us assume the optimal boundary
between the two writes is given by some function y = β̃ (x).
Z1 is the area under β̃ (x) while Z2 is calculated as the area of
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a rectangle formed by some point on β̃ (x) with the x = q − 1
and y = q − 1 lines (see Fig. 7). In order to get the optimal

Figure 7. The optimal boundary β (x) of a 2-cell 2-write lattice-based WOM
code. The x and y axes represent the memory cells c1 and c2 respectively.
The cardinality of the first write Z1 is the area under β (x). The cardinality of
the second write Z2 is the area of the dotted rectangle.

sum-rate code, we need to find the boundary β (x) that brings
Z1 ·Z2 to a maximum. Given that each point on β̃ (x) can span a
rectangle with different area, Z2 is the minimum of the areas of
all possible rectangles. Therefore, the following optimization
problem [4] is solved

max
β̃(x)


xsup∫
0

β̃ (x) dx · min
∀x, β̃(x)

[
(q − 1 − x)

(
q − 1 − β̃ (x)

)] , (12)

where xsup is the maximal value of the support of β̃ (x).
The solution of (12) gives the hyperbola boundary β (x) of
Theorem 7.
After deriving the continuous boundaries between the writes,
the WOM code is constructed by discretization and a label
assignment algorithm.

Example 4. Let us consider the following WOM code [3]
C (n = 2, q = 8, t = 2, M = (24, 23)). This code is applied on a
pair of 8-level memory cells, enabling 2 guaranteed writes of in-
put sizes 24 and 23 for the first and second writes, respectively.
The decoding function of this code is presented in Fig. 8. The
boundary between the two writes is the following hyperbola:

β (x) = 7 −
13.948
7 − x

. (13)

B. Construction for lattice-based d-imbalance WOM codes
In this sub-section we present a construction of d-imbalance

WOM codes after applying the imbalance model (Definition 4)
to the continuous approximation of the lattice approach. Our
main result toward that is a closed-form characterization of the
optimal boundary for 2-cell 2-write d-imbalance WOM codes.

Theorem 8. When d 6 3
7 (q − 1), the optimal boundary for

a maximal sum-rate d-imbalance lattice-based WOM code
Cd-imb (2, q, 2, (Z1,Z2)) is given by βd (x), satisfying

(q − 1 − x) (q − 1 − βd (x))− (14)
(q − 1 − d − x)2

2
−

(q − 1 − d − βd (x))2

2
= d (q − 1) −

5d2

6
,

Figure 8. [3] Decoding function ψ for the code
C (2, 8, 2, (M1,M2) = (24, 23)). Logical states for the first write are the
labels of the circle physical states, and for the second write are the labels
of the triangle physical states. The boundary between the two writes is an
hyperbola.

and the optimal sum-rate is given by

Rsum = log2

[
d (q − 1) −

5d2

6

]
. (15)

It can be checked that (14) implies that the curve y = βd (x)
is a parabola.

Before proving this Theorem we present the following
lemmas. The first lemma finds the shape of the boundary
βd (x) that yields for the second write identical areas among
the points on the boundary. Note that with the d-imbalance
constraint the areas Z2 are bounded by the lines y = x ± d, in
addition to the bounding by the lines x = q − 1 and y = q − 1
in the unconstrained case (see Fig. 9.)

Lemma 9. Given a d-imbalance lattice-based WOM code
Cd-imb (2, q, 2, (Z1,Z2)) with d 6

√
2
3 Z2, the boundary βd (x) that

yields identical Z2 values for all points on βd (x) is given by

(q − 1 − x) (q − 1 − βd (x))− (16)
(q − 1 − d − x)2

2
−

(q − 1 − d − βd (x))2

2
= Z2.

Proof: The constraint induced by the d-imbalance model is
that all the valid physical states are bound by the lines y = x±d,
as can be seen in Fig. 9. Therefore, βd (x) is a function on
which every point spans an equal-area shape with the x = q−1,
y = q − 1 and y = x ± d lines. We now turn into calculating
this area. First we have the area of a rectangle (denoted by
dashed lines in Fig. 9) given by (q − 1 − x) (q − 1 − βd (x)).
From this rectangle we need to subtract the area of the two
triangles. It is easy to verify that the area of the top triangle
is given by (q − 1 − d − x)2 /2 and the area of the bottom
triangle is given by (q − 1 − d − βd (x))2 /2. Subtracting these
areas and equating to the cardinality of the second write Z2
yields (16). Note that for the two subtracted triangles to exist,
the x coordinate of the intersection point between βd (x) and
y = x−d must be at most q−1−d. Given that the intersection
point is

(
q − 1 − Z2

2d −
d
4 , q − 1 − Z2

2d −
5d
4

)
, we get that in order

for the triangles to exist we need

q − 1 −
Z2

2d
−

d
4
6 q − 1 − d. (17)
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Figure 9. Proof of Lemma 9: the boundary inside the y = x ± d lines is the
parabola (16), the other boundary is the rectangular hyperbola stated in (10).
The two triangles are the area that should be subtracted from the rectangle
(with dashed borders) in order to calculate Z2. The x and y axes represent the
memory cells c1 and c2 respectively.

After some manipulations we get that the condition (17) is
equivalent to d 6

√
2
3 Z2 given in the Lemma statement.

The second lemma finds the relation between the areas of the
first and second writes for boundaries βd (x) in the form given
in Lemma 9.

Lemma 10. For a βd (x) given in (16), the cardinality of the first
write is given by

Z1 = 2d (q − 1) − Z2 −
5d2

3
. (18)

Proof: The cardinality of the first write is the area bound
by the x and y axes, the y = x ± d lines, and βd (x)
from (16). Due to the xy symmetry of the problem, we first
calculate the area between βd (x) and the line y = x. Then
we subtract the area between βd (x) and y = x + d, and
finally we multiply the outcome by 2. In order to do so,
we first calculate the intersection points between βd (x) and
the lines y = x + d and y = x. It is easy to verify that the
intersection points are

(
q − 1 − Z2

2d −
5d
4 , q − 1 − Z2

2d −
d
4

)
and(

q − 1 − Z2
2d −

d
2 , q − 1 − Z2

2d −
d
2

)
, respectively. Therefore, the

desired area Z1 can be calculated by

Z1

2
=

q−1− Z2
2d −

d
2∫

0

[
βd (x) − x

]
dx −

q−1− Z2
2d −

5d
4∫

0

[
βd (x) − (x + d)

]
dx

(19)

=

q−1− Z2
2d −

d
2∫

q−1− Z2
2d −

5d
4

[
βd (x) − x

]
dx +

q−1− Z2
2d −

5d
4∫

0

d · dx.

From Lemma 9 it is not hard to see that for x 6 q−1− Z2
2d −

d
4 ,

βd (x) is given by

βd (x) =

√
4 (q − 1) d − d2 − 2Z2 − 4dx − d + x. (20)

Substituting this βd (x) in (19) gives the expression

Z1

2
= −

1
6d

(
4 (q − 1) d − d2 − 2Z2 − 4dx

) 3
2
∣∣∣∣q−1− Z2

2d −
d
2

q−1− Z2
2d −

5d
4

(21)

−
3d2

4
+ d

(
q − 1 −

Z2

2d
−

5d
4

)
= d (q − 1) −

Z2

2
−

5d2

6
.

With the help of Lemmas 9 and 10, we can now prove
Theorem 8.
Proof: In order to find the maximal sum-rate of
Cd-imb (2, q, 2, (Z1,Z2)) with imbalance parameter d, we
now need to adjust the optimization problem of (12) to the
d-imbalance model, and to find the values of Z1 and Z2
that maximize Z1 · Z2. By a similar argument to the one
proved in [4], the minimization in (12) implies that the
optimal sum-rate boundary must satisfy the identical-area
condition of Lemma 9. Then among the βd (x) curves of
Lemma 9 parametrized by Z2, the corresponding value of Z1
is determined by Lemma 10. This implies that

Z1 · Z2 =

[
2d (q − 1) − Z2 −

5d2

3

]
Z2. (22)

Taking the derivative of the right-hand side with respect to Z2
and equating to 0 gives

Z2 = d (q − 1) −
5d2

6
= Z1. (23)

This proves the right-hand sides of (14) and (15).
There are two interesting conclusions from Theorem 8. First
is that the introduction of the d-imbalance constraint changed
the shape of the curve from a hyperbola to another regular
shape: a parabola. Second is that for the d-imbalance case
the cardinalities that maximize the sum-rate turn out to be the
fixed-rate cardinalities. This favorable property does not exist
in the unconstrained case (for unconstrained WOM the fixed-
rate property costs sub-optimality in sum-rate). We next show
an example of a code constructed with the help of Theorem 8
followed by the discretization step.

Example 5. Let us consider the following 8-level 2-cell 2-write
d-imbalance WOM code with imbalance parameter of d = 3,
C3-imb (2, 8, 2, (Z1,Z2)). By Theorem 8, the optimal boundary is
given by

2 (7 − x) (7 − β3 (x)) − (4 − x)2 − (4 − β3 (x))2 = 27. (24)

The continuous cardinalities corresponding to the boundary
of (24) are (Z1,Z2) = (13.5, 13.5). But after discretiza-
tion we obtain in Fig. 10 discrete cardinalities (M1,M2) =
(18, 21) (it is possible to have Mi > Zi because a point
can be in the region without its entire unit square). In
particular, the resulting WOM code is not fixed-rate even
though the continuous boundary is fixed-area. The decod-
ing function of C3-imb (2, 8, 2, (M1,M2) = (18, 21)) is pre-
sented in Fig. 10. The sum-rate of the non-balanced code
C (2, 8, 2, (M1,M2) = (23, 24)) of Example 4 (with the same q,
n and t) is 4.55. By constraining the code with the d = 3 im-
balance parameter the sum-rate in Example 5 is reduced to 4.28
(6% reduction). Let us now compare the lattice-based results to
direct d-imbalance WOM codes constructed by Construction 1.
To obtain a t = 2 code from Construction 1 with q = 8, the
largest rate parameter is a = 4, corresponding to M = 15.
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Figure 10. Decoding function ψ for the code
C3-imb (2, 8, 2, (M1,M2) = (18, 21)). Logical states for the first write
are the labels of the circle physical states, and for the second write are the
labels of the triangle physical states. The boundary between the two writes
is a parabola.

This gives a codeC3-imb (2, 8, 2, (M1,M2) = (15, 15)), which has
a sum-rate of 3.91, lower than the lattice-based construction for
this example.

C. Performance Comparison
We now compare the unconstrained lattice-based WOM

codes of [3],[4] with the new lattice-based d-imbalance WOM
codes. We make the comparison over the continuous sum-
rate calculated from Z1,Z2 (before discretization). Table III
presents the sum-rate of the codes for different values of d
and q. The reader can notice that when the imbalance takes the
highest value allowed by Theorem 8: d =

⌊
3(q−1)

7

⌋
, the sum-

rate is compromised by approximately 5%. Naturally, when
d decreases the sum-rate decreases due to the more limiting
constraint imposed by the d-imbalance model.

TABLE III
Continuous sum-rate comparison of 2-cell lattice-basedWOM codes for

q = 8 and q = 16.

q d Rsum

8 - 3.97

8 3 3.75

8 2 3.42

16 - 6.17

16 6 5.91

16 5 5.76

16 4 5.54

16 3 5.29

V. Wordline ICI Reduction by d-imbalanceWOM Codes
To this point, we have presented code constructions that

bound the imbalance between two memory cells. In flash
practice, many more than two cells are updated together in
a memory page, also called a wordline. To match the write
granularity of the flash architecture, we will use a code

Cd-imb (2, q, t,M) on each pair of adjacent cells in a wordline.
Hence, a wordline includes concatenated pairs of WOM-coded
cells, as depicted in Fig. 11. In the sequel we say that a set

Figure 11. A memory block consisting of wordlines, where each wordline
includes concatenated pairs of d-imbalance codewords.

of cell levels is d-balanced if they satisfy the d-imbalance
constraint of (1).

A. Inter-codeword balancing

As can be seen in the following example, simple concate-
nation of codewords (of two memory cells each) does not
guarantee that the d-imbalance property is maintained between
any pair of adjacent cells.

Example 6. Let us assume we code two adjacent pairs of
cells in the same wordline by the d-imbalance WOM code
C3-imb (2, q, t, 8) presented in Fig. 3. Suppose the first pair holds
the logical state of ′1′ by the physical state (1, 0), and the second
pair holds the logical state of ′5′ by the physical state (2, 1). To
this end, all four cells (1, 0, 2, 1) are 3-balanced. Now, suppose
that in the next wordline update we wish to only update the
logical value of the second pair from ′5′ to ′2′. Therefore, the
physical state of the first pair remains at (1, 0) while the physical
state of the first pair is updated to (4, 2). Therefore, the four
cell levels (1, 0, 4, 2) are no longer 3-balanced because the two
center cell levels (0, 4) are 4 apart.

In order to keep the d-imbalance property among all the cells
in the wordline, it is possible to use WOM codes with the
synchronous property [5], which means that each of the t
writes has a disjoint set of physical states. This way, it is
guaranteed that none of the codewords remain in the same
physical state through the write sequence, and balance is
maintained across codewords as well. However, requiring the
synchronous property compromises the sum-rate relative to
non-synchronous WOM codes with the same code parameters.
Interestingly, as we show next, we can maintain the d-
imbalance property while using the (non-synchronous) Con-
struction 1 with a more clever wordline update process. We
start with some formal definitions and a proposition.

Definition 8. Given a code Cd-imb (2, q, t,M) applied to a word-
line with 2N cells,Mi is defined as the wordline data vector of
the i-th write, where the elements ofMi =

[
mi

1,m
i
2, . . . ,m

i
N

]
are

the logical states of the N codewords. We also define ci as the
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physical states vector of the i-th write, where the elements of
ci =

[
ci

1, c
i
2, . . . , c

i
N

]
are the physical states of the N codewords.

Definition 9. A physical state (c1, c2) is called a frontier state
of the i-th write if it can be reached after i writes, and no other
state (c′1, c

′
2) with c′1 > c1, c′2 > c2 can be reached after i writes.

Informally, frontier states are the “worst” states to be in after
i writes, and the only ones we need to consider for the code
correctness.

Definition 10. The frontier states of the i-th write are denoted
by the set Fi. The subset of frontier states that can be accessed
from the physical state (c1, c2) is denoted by Fi (c1, c2).

Example 7. Let us consider the d-imbalance WOM code
C3-imb (2, q, t, 8) whose decoding function is given in Fig. 3.
The frontier states of the first write are F1 = {(1, 2) , (2, 1)}.
The frontiers of the second and third writes are given by F2 =
{(2, 4) , (3, 3) , (4, 2)} and F3 = {(5, 5)}, respectively.

Our objective now is to present an update process that
guarantees that after each write all the cells in the wordline
are d-balanced. In particular, every pair of adjacent cells
– both within and across codewords – will be d-balanced.
The following proposition provides the basis for that update
process.

Proposition 11. Let us consider a d-imbalance WOM code
Cd-imb (2, q, t,M) constructed by Construction 1. If (c1, c2) is a
frontier state of the (i − 1)-th write, and (c3, c4) is a frontier
state of the i-th write, then all of c1, c2, c3, c4 satisfy the d = a-
imbalance constraint.

Proof: Due to the periodic nature of Cd-imb (2, q, t,M),
it is sufficient to prove the statement for the first three
writes only. From Fig. 2 we can see that the frontiers of
the first write are F1 = {(a − 1, a − 2) , (a − 2, a − 1)}. The
frontiers of the second and third writes are given by F2 =
{(2a − 2, 2a − 4) , (2a − 3, 2a − 3) , (2a − 4, 2a − 2)} and F3 =
{(3a − 4, 3a − 4)}, respectively. It can now be easily verified
that any pair of levels taken from Fi−1 ∪ Fi are at most d = a
apart.
The implication of Proposition 11 is that it is sufficient to
keep all the N physical states in a wordline between frontier
states of two adjacent writes i − 1 and i, inclusive of states of
both frontiers. This is achieved by the wordline update process
given in Algorithm 1.

Algorithm 1: WordlineUpdate

input : Mi,ci−1

output: ci

Mi−1 = ψ
(
ci−1

)
for j = 1 to N

choose c ∈Fi−1

(
ci−1

j

)
arbitrarily

ci
j = µ

(
c,mi

j

)
end

In simple words, Algorithm 1 guarantees that after i writes
every physical state in the wordline will be at least in a frontier
state of the (i − 1)-th write (and at most in a frontier state of
the i-th write). We now prove the correctness of the wordline
update process.

Theorem 12. If a WOM code Cd-imb (2, q, t,M) by Construc-
tion 1 is used in a full wordline with the update process of
Algorithm 1, then the d-imbalance property is maintained on
all the cells of the wordline.

Proof: We prove that after i writes every physical state is
bounded (element-wise) from above by an i frontier state and
from below by an i − 1 frontier state. This claim together
with Proposition 11 would establish the theorem statement. By
Algorithm 1, the update function µ is invoked with a physical-
state argument from Fi−1. So trivially by the WOM property
the output of the update function must be bounded from below
by a state in Fi−1. By the properties of the code, for any mi

j
the output of µ is bounded from below by a state in Fi.

Example 8. Let us now return to Example 6. The example
begins with two logical states ′1′ and ′5′ stored in two adja-
cent codewords of C3-imb (2, q, t, 8). After updating the second
logical state from ′5′ to ′2′, the physical states (1, 0, 4, 2) were
no longer 3-balanced. However, if we use Algorithm 1 for
update, the physical state of the first (not updated) logical state
becomes (3, 2), which is the nearest physical state representing
′1′ starting from a frontier state of the first write. The physical
states are now (3, 2, 4, 2), and they satisfy the 3-imbalance
constraint.

B. ICI analysis
We now analyze the ICI reduction by using a d-imbalance

WOM code. We start with some background concerning the
noise model and bit-error rate calculations.

1) Noise model: As was previously explained, different
memory levels are represented by different levels of electri-
cal charge or voltage. Due to many inherent physical lim-
itations [7],[22], these voltage values include noise. As a
consequence, each memory level is distributed over a range of
voltages around the desired voltage level. The most common
and simple model for flash voltage distributions is the Gaussian
model, whereby a cell voltage level is one of q discrete levels
plus an additive Gaussian noise ν ∼ N

(
0, σ2

)
.

During read operation, the memory level is determined
by a sequence of comparisons of the cell voltage level to
some reference voltage levels [13]. Therefore, the bit-error
rate (BER) is given by [15]

BER =
2 (q − 1)

q
Q

(
Vre f

σ

)
, (25)

where Vre f is some normalized reference level between two
adjacent voltage levels, and the Q (x) function is

Q (x) =
1
√

2π

∫ ∞

x
e−

t2
2 dt. (26)

2) ICI model: A recent work [8] combined a theoretic ICI
model with empirical measurements and presented a practical
model for ICI. According to this model, the threshold voltage
change of some victim cell is given by

∆Vvictim =
∑

x

∑
y

α (x, y) ∆Vneighbor (x, y) + α0Vbe f ore
victim , (27)

where α (x, y) and α0 are fitting coefficients, and Vbe f ore
victim is

the threshold voltage of the victim cell before interference.
It was shown in [8], that practically the α (x, y) coefficients
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are significant for up to three closest neighboring cells only.
Therefore, a cell is likely to suffer ICI if there is a significant
voltage change in one of its closest neighboring cells.
However, as was described in section II, the ISPP (incremental
step pulse program) write process is also a key feature in the
ICI mechanism. In the ISPP method each program level in-
duces a sequence of program pulses followed by a verification
process to assure proximity to the target level. Each program
step increases the voltage level of a cell by ∆Vpp, which is
significantly smaller than the actual voltage levels representing
memory values. The voltage raise due to a single program step
can be modeled [27] by adding a uniform random variable in
the range of

[
0,∆Vpp

]
. The program process that includes a

sequence of L program steps is thereby modeled by the sum
of L such uniform random variables, giving the well-known
Gaussian shaped voltage level distributions, when L � 1.

Proposition 13. The ICI noise νici of a victim cell, due to
L program steps in a nearby aggressor cell, is an Irwin-Hall
distributed random variable, with mean µici = α

L∆Vpp

2 and

variance σ2
ici = α2 L

2
(∆Vpp+1)2

−1
12 , where α is the capacitance ratio

between the two cells and ∆Vpp is the ISPP voltage step.

Proof: The ICI noise is the sum of L independent random
variables Ui uniformly distributed over

[
0,∆Vpp

]
multiplied

by the capacitance coupling α [27].

νici = α

L∑
i=0

Ui. (28)

The sum of uniformly distributed independent random vari-
ables is Irwin-Hall distributed random variable [17]. Its mean
is the sum of the Ui means and its variance is the sum of the
Ui variances.
As was described in [2], when cells are programmed by ISPP,
it is possible to compensate ICI errors in the cells that have
not reached their target values. If during the write sequence
the aggressor cell causes ICI in the victim cell, it can be
detected by the verification process of the victim cell leading
to canceling excess program steps. However, when a certain
cell reached its target level, updating its neighbor cell can still
cause ICI.

Proposition 14. Let us consider two adjacent q-ary cells with
additive Gaussian voltage noise N

(
0, σ2

)
read by the normal-

ized threshold voltage Vre f . Let us now assume that in some
ISPP operation, the target voltage levels of the two cells are V1
and V2 where V2 > V1 > 0. The BER of the victim cell, due to
ICI, at the end of the write operation is given by

BERici (∆V) '
2 (q − 1)

q
Q

(
Vre f − α∆V

σ

)
, (29)

where ∆V = V2−V1, and α is the capacitance coupling between
the two cells.

Proof: As was described, ICI effects can be compensated
during ISPP operation as long as both cells have not reached
their target voltage levels. Therefore, the number of program
steps with a potential ICI effect is L = 2∆V/∆Vpp. Assuming
L � 1, the ICI noise approaches the Gaussian distribution,
and substituting this L in Proposition 13 gives the mean and
variance of the distribution α∆V and α2∆V ∆Vpp+2

12 , respectively.

As a result, given an additive Gaussian noise ν ∼ N
(
0, σ2

)
,

the total noise νtotal = ν + νici is the sum of two independent
Gaussian random variables distributed as

νtotal ∼ N

(
α∆V, σ2 + α2∆V

∆Vpp + 2
12

)
. (30)

To simplify σtotal in (30), we recall that the distribution noise
ν is itself a result of the ISPP pulses raising the voltage level
from 0 to V1, taking L′ = 2V1/∆Vpp steps. This gives σ2 =

V1
∆Vpp+2

12 by an argument similar to Proposition 13. In addition,
we can take ∆V

V1
6 q, hence

σ2
total = σ2 + α2 ∆V

V1
σ2 6 σ2

(
1 + qα2

)
. (31)

Given that α � 1, we can approximate σtotal = σ. Applying
the BER calculation of (25) gives (29).
The main conclusion from this ICI model is that ICI errors
are more likely when the difference between voltage levels
of adjacent cells ∆V is high. Therefore, (29) motivates the
d-imbalance WOM codes we study here.

3) BER improvement: We now analyze the ICI reduction by
using a d-imbalance WOM code. We analyze the worst-case
ICI scenario, in which cells with guaranteed d-imbalance are
compared with the extreme ICI case: a victim cell in erased
state 0 with neighboring aggressor programmed to level q−1.

Theorem 15. Using a d-imbalance WOM code on a wordline
of q-ary memory cells reduces worst-case ICI BER by multi-
plicative factor

exp
{(

1 −
d

q − 1

)
α∆V
σ

(
2b2Vre f

σ
+ b1 −

(
1 +

d
q − 1

)
b2α∆V
σ

)}
,

(32)
where σ2 is the variance of the voltage distribution, Vre f is the
normalized reference level for read, α∆V is the voltage shift of
the victim cell for a worst-case scenario unconstrained write,
and b1, b2 are negative constants.

Proof: The maximal voltage shift of the victim cell of an
unconstrained write corresponding to updating level 0 to level
q−1 is given by α∆V . By using the d-imbalance WOM codes,
the maximal voltage shift is given by d

q−1 ∆V . Therefore, by
using (29) we get

BERd-imb

BERuncon.
=

Q
(

Vre f−α
d

q−1 ∆V
σ

)
Q

(Vre f−α∆V
σ

) . (33)

Let us now use the following approximation [1] for the Q (x)
function valid for x ⊂ [0, 8]

Q (x) ≈ eb2 x2+b1 x+b0 , (34)

where b0, b1 and b2 are given by −0.844,−0.502 and −0.469
respectively. By using this approximation and simplifying, (33)
becomes,

BERd-imb

BERuncon.
= exp

b1

α∆V
(
1 − d

q−1

)
σ

 ·
· exp

b2

2α∆VVre f

(
1 − d

q−1

)
− α2∆V2

(
1 − d2

(q−1)2

)
σ2

 . (35)
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Rearranging the terms in (35) gives (32).
By examining Theorem 15, we can first notice that the negative
term in the exponent −

(
1 + d

q−1

)
b2α∆V
σ

is negligible due to α
which is relatively small. Therefore, we can see that the the ICI
BER improvement due to using d-imbalance codes increases
exponentially when the imbalance parameter d decreases.

Example 9. The BER values for this example are taken
from [26], where we assume that these values are also valid for
q = 8. Initial raw BER of 2·10−5 yields vre f

σ
= 4.235. After 6000

P/E cycles, the BER becomes 5 · 10−3 due to ICI. That means
the normalized voltage shift due to ICI is α∆V

σ
= 1.472. Using a

the d-imbalance WOM code reduces the worst-case normalized
voltage shift to 1.472 d

q−1 = 0.631. Therefore, the new improved
BER is given by

BERd-imb =
2 (q − 1)

q
Q

Vre f −
d

q−1α∆V

σ

 = (36)

=
14
8

Q (4.235 − 0.631) = 2.74 · 10−4.

That means, the BER due to ICI was improved by factor 18
relative to the unconstrained write.

VI. Discussion and Conclusion
A. Bitline ICI

We have shown how d-imbalance codes hold a potnetial
to significantly reduce ICI within a wordline. This is likely
sufficient for the ICI seen in 3D vertical charge-trap flash
memories (described in the Introduction). However, standard
floating-gate flash memories also suffer from significant bitline
ICI. Therefore, in order to reduce ICI in floating-gate flash
memories, the d-imbalance WOM codewords must also be
balanced with WOM codewords in adjacent wordlines. We
leave this interesting problem as future work.

B. Application to wear leveling
The same d-imbalance properties suggested here for ICI

reduction turn out to be useful for another important problem
of flash storage: wear leveling. Due to limited lifetime of
flash cells, it is essential to avoid exceeding the recommended
write counts. In order to avoid a scenario in which some
pages are worn faster than others, a wear-leveling technique
is incorporated to the page mapping layer. This provides good
inter-page wear leveling [16]. However, within a page cells can
differ significantly in their wear (the total amount of charges
written to them so far). These differences may be detrimental
to the data reliability, as read/write procedures are commonly
tuned to the wear state of the page. Using a WOM code
with the d-imbalance property can help equalize the intra-
page wear, because no cell will be programmed to a level
much higher than the rest of the page.

C. Conclusion
In this work we presented d-imbalance WOM codes de-

signed to reduce inter-cell interference in multi-level NVMs.
Constructions that are simple to implement were given and
analyzed. We also derived an upper bound on the number of
guaranteed writes of a d-imbalance WOM code and showed
that our proposed construction is optimal for some parameters

of the code. Lattice-based constructions were also derived and
characterized in closed form for t = 2 writes. Future work
can include extending the presented two-cell WOM codes to
WOM codes for n > 3, and the lattice-based codes also to
t > 3.
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