Coding for Non-Volatile Memory Technologies:
Theoretical Advances and Practical Considerations

Lara Dolecek, Senior Member, IEEE, and Yuval Cassuto, Senior Member, IEEE

Abstract—Every bit of information in a storage or memory
device is bound by a multitude of performance specifications, and
is subject to a variety of reliability impediments. At the other
end, the physical processes tamed to remember our bits offer a
constant source of risk to their reliability. These include a variety
of noise sources, access restrictions, inter-cell interferences, cell
variabilities, and many more issues. Tying together this vector of
performance figures with that vector of reliability issues is a rich
matrix of emerging coding tools and techniques. Channel coding
schemes ensure target reliability and performance and have been
at the core of memory systems since their nascent age.

In this survey, we first overview the fundamentals of channel
coding and summarize well-known codes that have been used
in NVMs. Next, we demonstrate why the conventional coding
approaches ubiquitously based on symmetric channel models
and optimization for the Hamming metric fail to address the
needs of modern memories. We then discuss several recently
proposed innovative coding schemes. Behind each coding scheme
lies an interesting theoretical framework, building on deep ideas
from mathematics and the information sciences. We also survey
some of the most fascinating bridges between deep theory and
storage performance. While the focus of this survey is primarily
on the pervasive multi-level NAND Flash, we envision that
other benefiting memory technologies will include phase change
memory, resistive memories, and others.

Index Terms—Flash memories, ECC, algebraic codes, BCH
codes, graph codes, LDPC codes, re-write codes, WOM codes.

I. INTRODUCTION

On-volatile memories (NVMs) are a class of computer
memories that maintain the stored data even after being
disconnected from a power supply. NVMs have many desirable
properties that have made them frontrunners to replace con-
ventional hard-disk drives: they are faster, less power hungry,
more flexible in form factor, amenable to random access,
and not prone to heat-induced damages. As a result, NVMs
are now being actively considered and designed for use in
a diverse set of applications, including personal electronics
and smart devices, autonomous vehicles, enterprise storage,
and data-intensive high performance computing. This surge
in NVM development has not been without challenges; both
established and emerging NVMs come with a unique set
of operational issues that must be overcome before these
technologies can be broadly deployed at low cost.
Memories intrinsically suffer from various impairments,
which steeply get worse in the high-density, fast access regime.

L. Dolecek is with the Department of Electrical and Computer Engineering,
University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA,
e-mail: dolecek@ee.ucla.edu.

Y. Cassuto is with the Viterbi Department of Electrical Engineering,
Technion — Israel Institute of Technology, Technion City, Haifa 3200003,
Israel, email: ycassuto@ee.technion.ac.il.

Manuscript received November, 2016; revised xxx.

B
I

B ...

A B

Fig. 1. NAND Flash array organization with a zoomed-in single cell. Read
operation is performed by activating one word line (highlighted column).

It is indeed this stringent regime in which modern data-
intensive applications operate — NVMs will have to be robust,
fast, and affordable if they are to deliver on the promise of
new information technologies.

In this article, we demonstrate the essential role channel
coding techniques play in modern NVMs. We first summarize
the key operational characteristics of NVMs, using Flash as
the paragon. As we then show, understanding and appreciation
of physical properties is mandatory for the proper development
of new, mathematically deep yet practical coding solutions for
future memories, in which physical impairments are bound
to only get worse. By explicitly showcasing exciting recent
advancements in coding theory specifically geared for the
NVM applications, we highlight the enormous potential that
tools from coding theory and related mathematical disciplines
can have in the development of future, robust NVMs. These
results build upon rich mathematical fields of combinatorics,
abstract algebra, graph theory, and others, to offer rigorous yet
elegant repertoire of both algebraic and graph codes.

In the next section, we describe the basic operating princi-
ples of Flash memories and summarize the main sources of
physical impairments. The following Section III reviews the
fundamentals of channel coding necessary to explain the con-
cepts presented in subsequent sections. The next two sections
are devoted to coding techniques for reliability. Section IV
is devoted to algebraic coding techniques, both classical and
recent. Section V considers graph codes, including conven-
tional methods and recent Flash-tailored advances. Moving
beyond reliability, in Section VI we discuss re-write codes
for improved access. Section VII delivers conclusions.

II. FUNDAMENTALS OF OPERATIONS IN FLASH MEMORIES

An atomic unit of a Flash memory is one memory cell.
A memory cell corresponds to a transistor that has a control

gate and a floating gate, separated by insulating layers. The
value of data stored in a memory cell corresponds to the
amount of charge on the floating gate. Flash technologies
are classified as NAND Flash and NOR Flash, corresponding
to the logical NAND-like and NOR-like arrangement of the
device, respectively. In NOR Flash, cells can be accessed
individually. In contrast, in NAND Flash, cells are accessed at
the much coarser granularity of pages. However, NAND Flash
has a substantially lower cost than NOR Flash and is thus more
pervasive; we will henceforth primarily focus on NAND Flash.
See Figure 1 for a NAND cell illustration. In planar NAND
Flash architectures, memory cells are organized into two
dimensional arrays. Cells are organized into pages, which are
further combined into NAND-blocks!. Thousands of NAND-
blocks amount to one NAND device. For example, a 2Gb Flash
device may consist of 2048 NAND-blocks with 64 pages per
NAND-block, and 2112 bytes per page; other combinations
of pages/NAND-block sizes are also possible and they yield
different overall device capacities. More recently, 3D (vertical)
NAND Flash has been developed, which has a more complex
architecture due to the 3D structure.

Write and erase operations on the cells are performed by
applying a sufficiently high voltage to the control gate to alter
the amount of charge on the floating gate, which in turn sets
the cell’s threshold voltage. Depending on the direction in
which the electrons flow, the cell is programmed (electrons
flow towards the floating gate) or erased (electrons flow away
from the floating gate). This process is known as Fowler-
Nordheim tunneling [1]. The process of reading amounts to
determining the amount of charge stored on the floating gate.
During a read, an input voltage is applied to the control gate
and the drain current is measured. If the drain current is
below/above a certain threshold, as measured by a sense-amp
comparator, we conclude that the input voltage is below/above
the cell threshold voltage representing the information stored.
Therefore, a single threshold scheme tells us whether the
stored charge is below or above a certain level but does not
tell us the exact amount of stored charge. The input voltage is
applied to all cells in the page together, thus parallelizing the
read operation. Placement of the threshold voltage need not
be static; using tools from information and communications
theory, recent work has demonstrated clear benefits of dynam-
ically adjusted threshold voltages for improved lifetime [2].

Flash devices are commonly categorized by the number of
bits memory cells can store. Single-level cell (SLC) devices
store a single bit per cell; the SLC nomenclature comes from
the fact that a single threshold is needed to distinguish the
two ranges, corresponding to bit value ‘0’ and bit value ‘1°.
Multiple level cell (MLC) devices store multiple bits per cell,
and multiple thresholds are needed to distinguish different
levels. In the industry jargon, the MLC initials commonly refer
specifically to two bits per cell. As somewhat of a misnomer,
triple level cell (TLC) refers to a multilevel Flash device
storing three bits per cell — here seven thresholds, not three,
are needed to distinguish among eight ranges (one for each

The common terminology refers to NAND-blocks simply as ”blocks”, but
we reserve this term to denote a code block, the basic unit of coding.

SLC
1-bit

MLC
2-bits

00

TLC
3-bits

000 001

Fig. 2. SLC, MLC, and TLC cells, with digital information associated with the
charge amount. Gray coding is used to label different levels thus minimizing
the possibility of bit errors.

Sold vertical lines are the 3 hard reads.
Dashed vertical lines are 6 soft reads.

Probability density

v

Threshold voltage

Fig. 3. MLC level distribution, with different reads.

combination of a pair of adjacent binary triplets). The lowest
level is the fully erased state and the highest level is the fully
programmed state.

See Figure 2 for an illustration of SLC, MLC, and TLC
devices. Note that the differentiation amongst adjacent digital
values shrinks as the density increases making it harder to
distinguish amongst different values. The figure is also an
idealized representation of memory cells, since the cells do
not always behave in exactly the same way. The value of the
threshold voltage reached when writing a certain information
value varies across cells, due to variations in cell behavior. As
a result, we observe a distribution associated with different
cell levels. Modeling and parameterization of this difficult
distribution requires a careful study that has been a subject of
considerable recent research in industry and academia alike,
including notable works [3], [4], [5], [6], [7], [8], among
others. See Figure 3 for the illustration of the threshold voltage
distribution in the MLC case.

A critical property of NAND Flash is that the write oper-
ation by way of adding charge is executed at the page level,
but the erase operation is done at the much coarser NAND-
block level. Thus, in principle, if a value of a single cell is
to be decremented, the entire NAND-block of cells this cell
belongs to would also be erased and re-written. Unfortunately,
frequent erases wear out the device to the point that it can
no longer be used with confidence. The usable lifetime is
typically expressed in terms of the number of program and
erase (P/E) operations that can be executed before the device

is no longer considered reliable. It is well understood that
the denser the device is, the fewer P/E cycles it can sustain
before it is deemed unusable. For SLC devices, the expected
lifetime is around 10° P/E cycles. For MLC devices storing
two bits per cell, the lifetime drops to 10* P/E cycles, and
with three bits per cell TLC memory, it drops even further
to a mere 102 P/E cycles or even fewer [9], translating to
only months of usable lifetime for frequently written devices.
The P/E lifetime issue is further exacerbated by the reliability
requirements: the raw bit error rate (BER) can be quite
high, even as high as 1072 — 10~! [9], while the product
specification requires the device to operate at the undetected
BER (UBER) level of highly demanding 1076 and even
lower [10]. Wear leveling is employed in practice in order to
carefully balance the number of P/E cycles across the NAND-
blocks of the device to make the degradation more uniform.
As the densities increase, managing wearout and impairments
becomes an increasingly more daunting mission; fortunately,
when equipped with proper ECC schemes, the task becomes
much more manageable.

There are several intertwined causes of errors in read and
write operations, which we summarize as follows.

Writing into cells is done by way of so-called incremental
step pulse programming (ISPP) across a page of cells: a small
amount of charge is repeatedly being added to each cell, cell
values are read back to test if the target value is reached, and
the next charge increment is added to those cells that still do
not have the target values. ISPP is beneficial as it minimizes
the detrimental effects of overshooting (inadvertent addition of
too much charge) that would result in a costly NAND-block
erase. However, very small ISPP steps also significantly slow
down the write process, especially in the multi-level memories.
An additional issue with this write process is that adding
charge into one cell may unintentionally raise the charge on
the adjacent cell, with which the first cell shares a line. The
worst scenario of inter-cell interference with the ISPP is when
a cell with low target level has its two neighbors programmed
to high levels [11].

Even if a cell is correctly programmed, issues may arise
during the read step. As the time passes since the initial
programming, the electrons slowly leak out of the floating
gate, and when the cell is eventually read, the observed value
is lower than what had originally been written. Additionally, as
the device ages, the total amount of charge that can be stored
in cell gates gets reduced because of worsening defects.

An intriguing and design-critical observation is that these
write and read characteristics are highly asymmetric. For
instance, charge leakage only causes errors in the downward
direction, and overshooting and inter-cell disturbs only cause
errors in the upward direction. Additionally, inter-cell coupling
affects low levels more profoundly than high levels. Push for
smaller geometries and increased densities has progressively
worsened these impairments. Fortunately, new innovations in
coding hold promise to help reverse this negative trend. Before
we describe these advanced methods, we first review the basic
terminology of channel coding.

III. ERROR-CORRECTION CODES (ECC): INTRODUCTION

In this section we review some coding terminology neces-
sary to understand the approaches described later in the paper.
Error-correction codes (ECC) are widely used in memories.
ECC methods add a certain amount of redundancy to the input
data prior to storing it on the medium in order to combat
adverse effects of noise and other device impairments. These
methods can be broadly divided into algebraic and graph
methods, depending on the key mathematical principles that
underpin the given code construction.

The collection of possible codewords (stored words that bear
redundancy) is called a code. Practical coding methods used
in memories and storage devices store data in equally sized
blocks: input message of length k& symbols is mapped to a
codeword of length n symbols, with n > k. A code can
be binary or non-binary, depending on whether one symbol
corresponds to just one bit or to multiple bits. Non-binary
codes are defined over finite fields that have cardinality that
is a power of a prime. The representation with the number of
different symbols, say ¢, that is a power of 2 is particularly
useful for multi-level Flash devices that store multiple bits per
cell (and thus have the number of levels that are a power of
2).

The rate of a code is k/n. In NVMs, as is the case with
other storage devices, the rate should be close to 1 in order to
minimize the storage overhead associated with redundancy.

The codes are typically linear, so that the code forms a
k-dimensional linear subspace in this n-dimensional space,
where n is the codeword length. Linearity allows for a compact
representation of the code. A linear code can be represented
both via a generator matrix and via a parity-check matrix.
The former has rows that span the range space of the code
and the latter has rows that span the null space of the code.
Alternatively, the rows of the parity check matrix can be
viewed as parity-check equations that each codeword in the
code must satisfy. As we describe in more details later, the
parity-check matrix viewpoint is especially well suited for
graph codes. In the case of algebraic codes, depending on
the details of the construction, interpretation in terms of one
of the two matrices can be more convenient.

The product of a codeword with the parity-check matrix
always produces the all-zeros vector. The product of any
other word that is not a codeword with the parity check
matrix produces a vector which is strictly non-zero. We refer
to the output of the product of a word of length n and
the parity check matrix as the syndrome of the word. In
principle, exponentially many words have the same syndrome.
Syndromes are often used in the decoding of algebraic codes.

The minimum Hamming distance d;, of a code is the
smallest number of positions in which two distinct codewords
differ. In the canonical setting, the parameter ¢ = | (dpin —
1)/2] is the measure of how many errors can be corrected.
Classical coding techniques are typically characterized in
terms of how many errors ¢ can be corrected [12] — for given
code parameters k and n, one typically seeks to maximize the
minimum distance of a code. It is an oft-overlooked fact that
these well studied techniques implicitly assume that the errors

are equally likely and symmetric. As we described, modern
NVMs possess a large amount of asymmetry; shoe-horning
an existing channel code into the NVM model is bound to
be grossly inefficient. We discuss many of the recent coding
proposals that explicitly depart from this ineffective approach,
but first we summarize early coding solutions for older NVMs
wherein conventional coding tools were deemed adequate.

IV. ERROR CORRECTION WITH ALGEBRAIC CODES

A. Classical codes: from Hamming to BCH and Reed-
Solomon

Early NVM technologies only required mild error correction
capabilities for which Hamming codes were sufficient [13].
Hamming codes are one of the simplest coding methods, char-
acterized by a parity-check matrix whose columns are all the
non-zero binary tuples of a particular length. Hamming codes
are single-error correcting codes since any error pattern with
exactly one non-zero symbol can be corrected. However, as
the devices scaled down and area density increased, reliability
constraints became more stringent, and the need for more
sophisticated coding methods soon followed.

BCH (Bose-Chaudhuri-Hocquenghem) codes are a well-
known class of linear algebraic codes that emerged as the
coding solution of choice for early Flash memories [14]. BCH
codes — and Reed-Solomon codes as their special case —
were already popular in commercial data storage technologies
(e.g., hard-disk drives) and were well understood by memory
designers.

BCH codes can be viewed as a generalization of Hamming
codes. Like Hamming codes, they are linear block codes
with a well-defined structure. Unlike Hamming codes, they
can be constructed to correct multiple errors. This is done
by simply constructing a parity-check matrix of a code as
an array of elements from an appropriately chosen finite
field, using well established rules from conventional algebraic
coding theory [12]. BCH codes have the guaranteed error-
correction property that memory designers favor: one can
explicitly design a code capable of correcting all patterns with
up to a prescribed number of errors.

BCH code is also an instance of a cyclic code, wherein
a cyclic shift of a codeword produces another codeword.
This viewpoint is helpful for encoding, as each codeword is
then represented as a product of the message polynomial (a
polynomial with message symbols as coefficients) with the
generator polynomial defining the code. The coefficients of
the resulting polynomial are then symbols of the produced
codeword.

Decoding is a more difficult task as it amounts to several
non-trivial steps. First, one computes the syndrome associated
with the given retrieved word. Based on this syndrome, one
then seeks to find the most likely error pattern that has this
syndrome. Exhaustively searching for the most likely error
pattern with a given syndrome is completely impractical.
What is done instead for BCH codes is the construction
of an auxiliary polynomial, called error-locator polynomial,
whose coefficients are linearly related to the coefficients of the
symbol polynomial. The roots of this error-locator polynomial

are then precisely the locations of the erroneous symbols.
Construction of the polynomial is routinely done via the
Berlekamp-Massey algortihm, and computation of the roots
of the polynomial is done using Chien search [12].

Practical decoder implementations must always strike a
careful balance between additional coding gain enabled by
more powerful codes and the increased resource consump-
tion caused by additional decoding circuitry. In the common
regime of using high-rate codes, the complexity is in general
manageable because the number of corrected errors is not
too large. Several recent works have specifically addressed
this question in the context of BCH decoders for Flash
memories, relying on the techniques of partial parallelization
and pipelining, e.g., [15]. In general, the slowest step in
BCH decoding is the Chien search, which is typically done
in parallel to improve the decoding throughput. However, a
parallelized solution also incurs additional hardware complex-
ity and energy consumption — recent architectural approaches
geared towards NVM applications have been developed to
reduce the area consumption of the parallel Chien search by
removing redundant operations [16], further combined with
more informative scheduling [17], and by formulating Chien
search as a matrix multiplication for faster search [18], [19].

We also remark that an additional benefit of BCH codes
in the context of NVMs is that they intrinsically have a rate-
compatibility feature: a parity-check matrix of a BCH code
correcting ¢ errors is a sub-matrix of a BCH code correcting
to errors, for t; < t9, In other words, for the same code
length n, a te-error correcting BCH code Cs is a subcode of
a ti-error correcting BCH code C;. Alternatively, from the
encoder’s perspective, since BCH codes are cyclic codes, Cy
can be constructed from C; by adding monomial terms to the
generator polynomial of C;. (For theoretical details, see [12].)
As discussed in Section II, NVMs are highly susceptible
to wear out. The noise worsens over time, requiring more
redundancy in the code to deal with higher rate of errors. One
way of addressing this issue is by using rate-compatible codes,
with a high-rate code deployed in the early part of the lifetime,
and a lower-rate code in the latter part. Seamlessly switching
to progressively more powerful codes is relatively easy with
the BCH set-up because it simply amounts to introducing
additional parity-check symbols over what had already been
stored with respect to a codeword of the initial code.

BCH codes are a prime exemplar of what the conventional
coding theory offers: powerful error-correction schemes intrin-
sically designed to deal with symmetric errors wherein the abil-
ity to correct an error pattern only depends on the number of
symbol errors in it, and not on how the symbols change by the
errors. However, as we discussed in the previous section, error
patterns arising in modern NVMs are far from symmetric!
This observation has motivated intense recent research activity
that explicitly departs from the conventional code design
for symmetric errors. We now discuss how several recently
proposed coding approaches have addressed the operational
properties of NVMs, and have also led to a new chapter of
fundamental advances in coding theory.

We choose to survey two algebraic coding schemes that are
the most convenient to deploy, because they can use existing

coding modules (e.g., from BCH codes) as their main building
block complexity-wise.

B. Algebraic codes for NVM error models

A central characteristic of multi-level NVM channels is that
the incident errors are structured rather than symmetric. The
structure of the errors stems from the electric and algorithmic
features of the write and read processes. For example, the
representation of data as ¢ discrete charge levels makes an
error more likely between adjacent levels than between far-
apart levels. Such error structure is not addressed by classical
codes like BCH and Reed-Solomon, which are designed for
symmetric errors. It is still possible to use symmetric error
correcting codes for non-symmetric errors, but this use is
highly sub-optimal because the codes need to cover error
events strictly worse than actually needed at likely operation.
For example, a common technique in practice is to implement
a gray mapping between g-ary charge levels and tuples of
log, ¢ bits (cf. Figure 2). With this mapping, a g-ary error
between nearby levels translates to a binary error in a small
number of bits. But even with this desired property, a binary
code correcting the resulting bit errors is required to correct
more errors than really needed, thus unjustly adding to the
redundancy cost. For example, consider the simple binary
reflected gray code on 3 bits, corresponding to ¢ = 8 levels.
In this mapping we map the levels (0,1,2,3,4,5,6,7) to the
bit tuples (000, 001,011,010,110,111,110,100). To see that
this is a sub-optimal mapping, we observe that the transitions
0 <> 3 are single-bit errors exactly like the transitions 0 <> 1,
even though the former are much less likely in a realistic
memory channel. In the rest of this section we describe two
coding schemes that better capture the structure of multi-level
NVM channels. In these promising alternatives we still use
known symmetric error-correcting algebraic codes, but in a
clever way to maximize the coverage of the error patterns of
interest. The schemes rely on the celebrated concept of code
concatenation [20] developed for communication applications,
while specializing and refining to best match deployment in
Flash and other NVMs. Code concatenation is a powerful
technique that combines two codes, wherein codewords of the
inner code are symbols in the alphabet over which the outer
code is defined. The two schemes in discussion are distinct
and complementary: the first one is especially tailored to
NVMs where coding is done directly over the non-binary cells;
the second one better fits gray-mapped memories composing
a cell level as multiple bits.

1) Codes for errors with magnitude limit: Suppose that our
memory has ¢ = 8§ levels, and that a common error mechanism
changes a desired level = to level * — 1. This error type
is called asymmetric errors with magnitude 1. One possible
source for such errors is retention errors [21], whereby charges
gradually escape the cells when they are not re-written or
refreshed for a long period of time. A complete analog of
this error model takes effect when level = changes to = + 1,
which can happen for example when the programmed level
(irreversibly) overshoots above the level requested in a cell
write, or due to disturbs from other cells’ writes. We note

that it is not required that all errors will be asymmetric errors
with magnitude 1; treating this error model is beneficial even
when other secondary error sources are active alongside of it.
Moreover, codes similar to what we next describe can also be
constructed for two-directional errors xz & 1, and with error
magnitudes greater than 1.

To start the discussion on coding for asymmetric errors of
magnitude 1, it will be instructive to consider the extreme case
where all cells in the word may experience an x + 1 error. It
is clear that the best solution to this case is to “give up” one
of the three bits in each cell, and use only half of the ¢ = 8
levels, for example all the even levels {0, 2,4, 6}, [22]. When
the errors are less intensive we do not want to lose an entire
bit per cell, and instead do the following [23]. We write a
page of n cells as 3n bits with the restriction that the n bits
of the lower significance belong to the binary code BCH1 that
corrects t bit errors. This procedure is depicted in Figure 4a,
where the shaded area represents the parity bits of BCH1. Note
that the other two rows in the n cells of Figure 4a are stored
uncoded. At read time, we obtain the bits of the coded n-bit
row, and use the decoder of BCHI1 to locate the errors, but not
to correct them as bit errors. Instead, in each error location we
reverse the error by subtracting 1 from the read 8-ary level. It
is clear that this scheme can correct up to ¢ asymmetric errors
of magnitude 1. It borrows all the good properties of BCH
codes for symmetric errors, while exhibiting several optimality
features for the target error model [23].

(@)

\ € BCH1

‘ € BCH2

3n

Fig. 4. Encoding strategies for correcting asymmetric magnitude-1 errors in a
memory with ¢ = 8 levels. (a) a code designed for asymmetric magnitude-1
errors, and (b) a binary gray-mapped code. Both codes are based on BCH
codes, but (a) requires fewer parity bits than (b).

In contrast, an alternative scheme for the same error model
maps to each 8-ary cell level 3 bits using a gray code.
Applying a t-error binary code BCH2 to the 3n bits, shown in
Figure 4b, also guarantees correction of ¢ asymmetric errors of
magnitude 1. However, the number of parity bits required for
this alternative scheme is larger by roughly ¢ log,(3) ~ 1.58t,
which amounts to significantly increased redundancy when ¢ is
moderate to high. Beyond this specific example, the presented
scheme can use any code for symmetric errors, not necessarily
a BCH code. In addition, it can be extended to any g, any error
magnitude [, and other error models with structure [23], [24],
[25], [26].

As the memory technology scales in density, we expect the
low-magnitude errors to become more frequent and dominant.
In the regime of moderate to high rates of low-magnitude
errors, the scheme detailed previously in the section may not
be the most efficient, because symmetric-error codes for large

t are expensive to implement. We show that in this case the
best approach works quite differently than previous coding
schemes for such errors. Given a block of n cells with ¢
levels, where n may be smaller than the memory page size,
we encode the data such that the block does not contain cells
with consecutive levels in {0,...,q — 1}. For example, if the
block has a cell with level 3, then it cannot have any cell
with levels 2 or 4. Another block may have a cell with level
4, but then it cannot have cells with 3 or 5. The key in this
encoding is that its knowledge by the decoder can help to
efficiently correct a large number of asymmetric errors with
magnitude 1. Not less importantly, for finite block lengths n
this encoding is much less redundant than the encoding that
uses only half of the levels {0,2,4,...}. A coding scheme
based on this idea was suggested with the name NCC (non-
consecutive constraint) [27], and was shown to have the best
error correction given the expended redundancy. This can be
seen in Figure 5 showing the output symbol-error rate (output
SER) as a function of the input symbol-error rate (input SER).
It is seen that other coding alternatives with the same code rate
have inferior performance. The plot with 4+ markers shows the
performance of the coding scheme depicted in Figure 4a using
a constituent BCH code, and the one with ¢ markers shows
it for the even/odd code that restricts the n levels to be all
even or all odd. Conveniently, the NCC can control the trade-

Codes comparison R = 0.777

0.9 <%
921
08f [no ECC P
A
—e—NCC 2 p
07F | —+- BCH(155,7) &
2 - € - even/odd K
5 0.6 p 1
o
8 osf 1
Q
3
© 041 b
©
o o3l J
o 03
»
0.2 J
0.1 1
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Input SER
Fig. 5. Correcting many asymmetric errors of magnitude 1: comparison

between three coding schemes with equal code rate, set to 0.77.

off of rate vs. correction capability by merely changing the
codeword length n: a small n gives high rate and weak error
correction, and as n grows the error correction improves and
the rate decreases. Overall the significant reduction in SER
from input to output by the NCC code allows cleaning up
the remaining symbol errors (together with errors from other
types) by a reasonable-strength outer code, e.g. a binary LDPC
code.

2) Tensor-product codes (TPC) for heterogeneous errors:
Another promising example of carefully exploiting BCH-like
codes for errors of special characteristics reported in the
literature [28], [29] is given by the tensor-product codes [30],
which have the intrinsic capability of incorporating fine-

grained knowledge of the error patterns.

To motivate this discussion, let us consider the following
example for ¢ = 8 levels representing 3 bits (TLC Flash): Data
is stored in triplets (each triplet corresponds to one triple-level
cell.) For 5 TLC cells, let us say that (100, 110, 000, 000, 010)
is stored. We read back the block (100,100,000,011,011).
The binary difference (XOR) is (000, 010,000,011,001).

We could consider each triplet a symbol, observe that there
are 3 symbol errors, and thus seek a code correcting at least
3 symbol errors. However, this is not a sufficiently refined
definition: note that the majority of the erroneous triplets
only contain 1 bit in error (as indeed would be the case in
Flash). This observation is not considered by symmetric error-
correcting codes, such as non-binary BCH codes. A more
efficient code must exploit this notion, correcting a certain
number of erroneous triplets with few bits in error and a much
smaller number of erroneous triplets with many bits in error.
TPC codes offer precisely this added efficiency.

Mathematically speaking, the baseline TPCs (from [30]) are
expressed as a particular type of concatenation: their parity-
check matrix H is itself a tensor product (hence the name)
of a parity-check matrix A of a non-binary code C4 with a
parity-check matrix B of a binary code Cp, denoted H =
[A ® BJ]. In the context of multilevel Flash memories, the
code length of C 4 corresponds to the number of memory cells
and the code length of Cp corresponds to the number of bits
per each cell. This construction then allows for controlling the
error-correction capability simultaneously over cells and over
bits per each cell, that is, we aim to correct a certain number
of erroneous cells, and for each erroneous cell, we correct a
certain (small) number of erroneous bits.

Flash-motivated extension of this construction was devel-
oped in [31], where the parity-check matrix H was built
out of 4 constituent binary/non-binary parity-check matrices,
in order to also accommodate rarer, larger weight errors,
which the original construction is too rigid to handle. The
A®B
C®D
matrices B and D control the number of correctable erroneous
bits per erroneous cell, and non-binary matrices A and C'
(over appropriately defined finite fields) control the number
of correctable symbol errors that have a prescribed number
of bit errors; for example we can construct a code that
corrects t; symbol errors each flipping at most ¢; bits and
to symbol errors each flipping at most ¢ bits; the regime
with t; >> 9 and ¢ < {5 is of interest in Flash. Observe
that this specification defines the error-correction capability of
a code in a much more precise way than what is allowed by
the conventional t-error correcting moniker. In the context of
the example above, we could parameterize the error pattern
(000,010,000,011,001) via t; = 2,ts = 1,43 = 1, and
ly = 3.

It was shown in [31] on real experimental data, that this
tensor-product construction with 4 constituent matrices chosen
in a way that mimics the Flash behavior, leads to lifetime
increase of at least 40%. Even further, the resultant tensor-
product code has two highly desirable features from the
implementation standpoint: the guaranteed error correction

resultant parity check matrix is then H =] . Binary

(with respect to the more finely specified error patterns), and
low-complexity encoding and decoding algorithms. The latter
property is a consequence of the fact that the proposed tensor-
product codes are built from simple symmetric error correcting
codes. Figure 6 shows performance results of applying TPC
codes from [31] to TLC Flash. The codes are all of length
4096 and have rate 0.86. It is especially interesting to point
out that the TPC construction outperforms not only good non-
binary and binary BCH codes, the latter derived by using the
same code over the three pages, but that it also outperforms
the best combination of three BCH codes, one for each page,
where BCH codes with different error correction capabilities
are assigned to different pages — while the other three codes
hit error rates of 1076 and higher much earlier, TPC codes
offers excellent reliability the longest (i.e., no errors were
observed). This is precisely because TPC code can correct
certain error patterns spanning multiple bits per cell with less
redundancy than three parallel codes can. Tensor-product con-
structions can be further customized for Flash. For example, a
simple transformation of the tensor-product operation allows
for limited programming into certain cells [32]. This operation
is particularly beneficial for Flash memories that have a small
number of defective cells, which can needlessly consume a
disproportionate amount of error correction.

The codes we showed for limited-magnitude errors earlier in
this section can actually be combined into the flexible tensor-
product construction of the latter part. A similar graded error-
correction profile can be obtained where ¢; and /5 represent
other types of errors besides symmetric bit errors.

Error Rates of Codes Applied to TLC Flash

=+ Non-Binary BCH Code Over GF(8)
=©~Binary BCH Code i
—e— Different Binary BCH Code Applied to LSB, CSB, MSB |
1 —— Graded-Bit Error-Correcting Code

10 T

[0) =4
— -]
& *____-l-” : 1
< Prag -)
S 10k 4 L - : .
I 7/ - i
o P : B
> e e]
‘< ; : P 1

O 4 +—-—-e-———¢f T ———
10 "¢ : ’," =

-
~————e

No errors observed until 4200 P/E Cycles!

3600 3800 4000 4200

P/E Cycles

1 1 1
3000 3200 3400 4400

Fig. 6. Simulation results showing the benefits of using graded-bit error
correcting codes in Flash. MSB/CSB/LSB refers to most significant/center
significant/least significant bits. Figure derived based on results from [31].

C. Additional promising algebraic-coding schemes

We now briefly comment on other algebraic methods that
have shown promise over the baseline BCH codes. The ma-
jority of these works are on the exploration of appropriate
combinations of known coding tools, using to a large extent
idealized channel assumptions, and not explicitly focusing on
the code design tailored specifically for asymmetric Flash.

Code concatenation is a powerful technique exploited in the
two memory codes we previously described. Other approaches
of a related flavor include the following. Product code refers to

a construction based on two constituent codes C; and Cy such
that each row of the resultant code is a codeword of C; and
each column of the resultant code is a codeword of C». An at-
tractive feature of a product code is that its minimum distance
is the product of the minimum distances of the two constituent
codes, and that it has an efficient iterative row/column decoder
that can correct with high probability many more errors than
half the minimum distance [12]. One of the first results on the
product codes for Flash is the work in [33], which demon-
strated via simulations on a synthetic channel the potential
gains over a plain BCH-coded scheme when a 2-step coding
is employed: a BCH code is used across rows and a simple
Hamming code is used across columns in a way that more error
patterns of interest can be corrected relative to the uninformed
BCH code. The architecture proposed in [33] also allows
for parallel processing of multiple codewords, thus reducing
the overall latency. Additional progress on concatenated BCH
codes was made in [34], which also exploited the property
that a combination of weaker, shorter (and hence cheaper)
BCH codes codes is competitive with one stronger, longer (and
thus more expensive) BCH code. Another interesting twist on
product codes was recently explored in [35], where it was
shown that so-called half product codes have better minimum
distance properties than their (full) product counterparts.

Complementing theoretical investigations on BCH-
enhanced designs, several recent works and industry patents
have explored performance benefits and implementation issues
of concatenated/product codes in the context of Flash [36],
[37], [38], although likely primarily in the idealized settings.

Intra-cell variability can also be exploited by trellis coded
modulation (TCM) [39], another idea from classical commu-
nications theory — TCM limits the magnitude of errors in a
way that is relevant in Flash [40]. Benefits of the BCH-TCM
concatenated schemes over the baseline Reed-Solomon/BCH-
coded system was demonstrated in [41], [42], [43], [44]. Since
TCM requires some amount of redundancy, concatenated
schemes with a TCOM component could be of interest in
Flash architectures that permit additional threshold levels and
can tolerate rate loss incurred by the TCM component.

Even with the implicit emphasis on the symmetric noise
model, these coding techniques already demonstrate potential
in NVM applications; a compelling open research question is
how to best utilize them in the channel-aware way.

Building upon the results presented in this Section, we
summarize the properties of classical and modern algebraic
codes in Figure 7.

V. ERROR CORRECTION WITH GRAPH CODES
A. Classical graph codes: LDPC codes and iterative decoding

Like previously discussed algebraic codes, low-density
parity-check (LDPC) codes are also linear block codes. They
can also be binary or non-binary, depending on whether the
information is organized in bits or in symbols. LDPC codes
are described by a sparse parity-check matrix, hence the “low-
density” adjective. It is especially convenient to view an LDPC
code as a bipartite graph where one set of nodes, called
variable nodes, corresponds to the columns of the parity-
check matrix, and the other set of nodes, called check nodes,

Algebraic Codes for NVMs

Excellent for low-latency, hard read applications

Fig. 7. Summary of main algebraic codes and their key properties in the context of NVMs. Advantages are highlighted in green and disadvantages in red.

corresponds to the rows of the parity-check matrix. An edge
between a variable node and a check node exists if and only
if the corresponding entry in the parity-check matrix is non
zero. Concretely, an edge between variable-node ¢ and check-
node 7 marks that the ¢-th code symbol participates in the j-th
linear check equation of the code.

In the binary case, the parity-check matrix is the adjacency
matrix of this bipartite graph. In the non-binary (or g-ary)
case, each non-zero entry in the parity-check matrix is a
non-zero element of a Galois finite field GF(q), and the
corresponding edge in the bipartite representation of the code
has this non-zero value as its label. The sparse graphical
representation of the code enables low-complexity iterative
decoding algorithms, executed as a series of message-passing
steps alternating between the set of variable and the set of
check nodes. The exchanged messages are proxies of the
likelihoods of the values of the variable nodes; in practice,
computations are performed in a transformed domain and
the messages represent log likelihood ratios (LLRs). Message
exchange terminates when all the checks are satisfied in the
sense that the linear equations associated with them hold.
NVM channels are especially natural for representing the code
symbols as g-ary symbols, which calls for the use of g-ary
LDPC codes. It is generally understood that g-ary LDPC
codes offer significant performance benefits over their binary
counterparts, at the expense of substantially increased decoder
complexity.

Owing to their excellent performance, LDPC codes have
already found phenomenal success in many modern data
transmission applications. It is thus not a surprise that LDPC
codes are actively being considered in modern NVMs as well,
with a number of industry-based patents recently issued on
this topic, see e.g., [45], [46], [47], [48], [49], wherein the
focus has mostly been on binary LDPC codes.

LDPC codes offer most benefits when decoded using real-
valued LLRs, i.e., with the initialization and the messages

o S
© <
o '
S ;
wo
¢ i| Error floor
o :
Reliability :
requirement\!"§
EH
o
low high
RBER

Fig. 8. Typical performance plot of unoptimized LDPC codes.

expressed in full precision. However, read information about
Flash channels is obtained through a sense amp that can only
report whether the threshold voltage of a cell is below or above
some value, information that is intrinsically discrete (see also
Section II). As a result, the channel that the LDPC decoder
sees is inevitably discrete. A non-trivial question then is where
to place threshold voltages as a function of the number of
available reads in order to maximize the utility of memory
devices, see also Figure 3. One mathematically precise yet
intuitive idea is to assign threshold voltages exactly in the
way that would maximize mutual information between the
input and the output of the induced discretized channel [50].
Placement of threshold voltages is also important for the code
design. As we discuss next, code design and optimization
critically depends on proper channel modeling.

B. Graph codes for NVM error models

LDPC codes are very powerful error-correcting codes be-
cause they mimic Shannon-optimal random codes, with the

added feature of low-complexity decoding. They have also
been around for sufficient time so that their design for classical
channels has been nicely perfected by a massive body of
research. Despite this favorable state of matters, the application
of LDPC codes to NVMs motivates interesting new funda-
mental research. NVM distinctive error models and unique
operation modes necessitate the enrichment of the constructive
toolbox for LDPC codes, and also their analysis. Non-binary
LDPC codes are ideally suited for multi-level memories. We
thus focus in this sub-section on two promising directions
for NVM LDPC codes: one is their finite-length design of
non-binary codes optimized for common error types, and
another is the design of non-binary codes optimized to the
multi-bit structure of the Flash MLC/TLC architectures. Other
interesting avenues are discussed in the next sub-section.

1) Finite-length code design for NVM errors: Tt is well
known that practical LDPC codes, both binary and non-
binary, suffer from the so-called “error floor”, manifested as
a failure of the code to lower the output error rate sufficiently
when the input error rate is very low [51]. This undesirable
behavior is especially problematic for modern Flash devices
as the flooring effect prevents the system from meeting tar-
get reliability constraints, see the schematic Figure 8. Here
RBER denotes raw bit error rate and Dec. Error Rate denotes
residual errors after LDPC decoding. The unwanted error-
floor effect is due to the fact that the low-complexity iterative
decoding algorithm operates on the LDPC bipartite graph
which inevitably has cycles. (We quickly remark that this
issue vanishes in the infinite block-length regime where one
assumes that the bipartite graph is essentially cycle-free. In
this regime, the elegant theory of density evolution offers crisp
code performance characterization [52]. This theory critically
depends on the cycle-free assumption and is not directly useful
in the finite-length setting.)

The issue of the error floor is particularly problematic for
applications that need to operate under stringent constraints on
reliability, including modern NVMs. Extensive prior work was
performed on the analysis of the LDPC error floor, implicitly
assuming the transmission over a symmetric channel. Trap-
ping/absorbing sets is the terminology (e.g., [51], [53], [54],
[55]) adopted in the coding literature used to refer to combi-
natorial objects that exist in the bipartite representation of the
code that trick the iterative decoder into making decoding er-
rors. Trapping sets encompass convergence to non-codewords
and oscillations among different configurations [51]. Typically,
oscillation errors can be suppressed with a more informed
quantization scheme [56]. The definition of the absorbing sets
[55] is purely combinatorial and it refers to objects that are
fixed points of certain practical decoders, notably including
detrimental non-codewords. These configurations are locally
consistent (from a vantage point of an individual node) but are
not necessarily globally consistent in the sense that they need
not produce a codeword. As a result, during the decoding,
some of the checks remain unsatisfied despite repeated itera-
tions of the message-passing decoder. The configurations are
typically characterized by a certain number of variable nodes
a connected to a certain number b of unsatisfied checks; a
codeword is a special case of such a configuration with b = 0.

S

//7/
7
=

0.0004

=w-Unoptimized
=== AWGN-optimized code
=o-Flash-optimized code

10" /[

{ £

0.0006
RBER

0.0008 0.001

Fig. 9. Benefits of channel-aware LDPC code optimization on a realistic
MLC Flash channel model.

Intriguingly, it is often the case that absorbing sets with
small a and with b # 0 cause decoding errors in iteratively-
decoded LDPC codes — that is, there exist problematic config-
urations with weight less than the code minimum distance. In
other words, in contrast to traditional coding theory principles,
quantifying the goodness of a code in terms of distances
between codewords is insufficient in the case of iteratively-
decoded graph codes.

As argued before, NVM channels fundamentally differ from
their oft-utilized symmetric counterparts, further complicat-
ing LDPC code optimization techniques. Despite a common
practice of using AWGN-optimized LDPC codes on a Flash
channel, the approach is grossly inadequate. The reason for
this rests with a closer investigation of problematic objects for
the two types of channels. The type of absorbing sets causing
decoding errors and in turn the pesky error floor is significantly
different for the two channels. For example, for AWGN:-like
channels, due to noise symmetry, dominant absorbing sets
are those that have a small number of variable nodes a, and
for each such variable node, there are more satisfied than
unsatisfied neighboring check nodes. In contrast, for Flash-
like channels, due to asymmetry, categorization of absorbing
sets into problematic and non-problematic is topologically
more subtle, [57]. As a result, code optimization focused on
the removal of AWGN-detrimental structures is essentially
useless if the code is to be used over the highly asymmetric
Flash channel. Fortunately, as in the case of algebraic codes,
substantial gains can be made once the code is designed in
a way that is cognizant of the channel characteristics, as we
illustrate in Figure 9, where we plot raw BER (RBER) against
“decoded” BER (DBER); the latter is the error rate after the
decoding step.

In this example, as an instance of widely popular quasi-
cyclic designs, codes are designed according to [58], which
offers implementation-friendly, circulant-based structure of the
parity check matrix. Since the target application is MLC Flash,
the codes are non-binary and are defined over the finite field of
size 4. Additionally, they have rate 0.9, length 4000 bits, and
variable-node degree equal to 3. Without any further channel-
aware optimization, the performance is as shown by the top

curve (in blue).

A promising technique for non-binary code optimization
consists of two steps. First, choose the ordering of the con-
stituent circulants in the parity-check matrix to minimize the
number of possible detrimental configurations in the bipartite
representation of the code. Second, assign edge labels (from
the finite field of size 4 in this example) to ensure the
non-existence of detrimental configurations. This technique is
attractive as it results in a design that preserves all desirable
code properties (length, rate, circulant organization of the
parity check matrix, node degree regularity), and moreover
can be described in crisp combinatorial terms — recently
developed frameworks [59] and [57] are based on succinct
linear-algebraic description of the absorbing set, so that the
provable elimination of possibly numerous instances of the
detrimental structure can be achieved by controlling the null
space of one simple matrix. As a result, the optimization
protocol is highly computationally efficient, systematic, and
can at once produce a whole family of parity check matrices
with the desired properties. In fact, mathematical characteriza-
tion of absorbing set/trapping set topologies is more tractable
for codes with lower variable node degree [60], [61]. The
codes that have high rate — the rate regime in which NVMs
need to operate — imply low variable node degree, thereby
making combinatorial optimization of graph codes aimed at
handling bad configurations especially well suited for NVM
applications.

Even with a fast optimization algorithm in place, the key
question to answer is what configurations one should opti-
mize for. The answer is highly channel-dependent and the
more the channel differs from the AWGN setting, the more
diverse the problematic objects are relative to their AWGN
counterparts. In the context of our example, optimizing this
code by only removing absorbing sets that are problematic
in the AWGN setting results in the middle curve of Figure 9
(in black), which roughly corresponds to the elimination of
sets with (a,b) parameters being (4,2) or (4,4). This offers
only modest improvements on the Flash channel (modeling
akin to [4]), whereas optimization that removes a broader
collection of objects that are truly problematic in the Flash
domain gives the lowest curve (in red), which reflects order of
magnitude improvement while maintaining all other structural
code properties. This optimization targets absorbing sets with
(a,b) parameters with 4 < ¢ < 7and 1 < b < 4. Combinatorial
strategies for the removal of problematic configurations in the
non-binary domain are substantially more involved than in the
binary case; they are discussed in [57].

Beyond effective performance-improvement tools for ac-
cepted code constructions, NVM coding performance can
greatly benefit from tools that illuminate the underlying con-
structive considerations. We next show, using a new theoretical
framework, how g-ary LDPC codes should be designed when
the multi-bit structure of a g-ary channel is explicitly taken
into account.

2) Non-binary codes with multi-bit structure: Deeply in-
grained in the Flash architecture is the duality of binary logical
pages stored on g-ary physical pages. A common choice by
SSD vendors is to map log, ¢ binary logical pages — for

example 3 pages in ¢ = 8 TLC - to a single page of ¢-
ary cells. The main motivation is access benefits: allowing
lower-latency access to a logical page before the physical
cells are fully read. This is possible because the unit of bit
is naturally expressed in the physical processes, for example
a read primitive that returns a bit of information comparing
a cell threshold level to a reference value. However, even in
the presence of smart gray-like mappings, we lose in error-
correction efficiency when employing a binary code for each
logical page individually. As was the case in Section IV-B for
algebraic codes, ignoring the features of the g-ary channel in
code design is sub-optimal and inefficient. We instead want to
deploy the code on the g-ary physical page, but in a way that
considers the underlying bit structure of the physical processes.
In other words, we want to design LDPC codes that are defined
over g-ary alphabets, but designed for channels preserving
the bit-structure of the read/write processes. This will offer
improvement over the known approaches of either 1) use a
g-ary LDPC code designed for symmetric errors, or 2) use a
hierarchy of binary LDPC codes through the concept of multi-
level coding [62]. The key is that the new approach gets the
best of both worlds: it enjoys the inherent advantage of ¢-
ary LDPC codes, and it optimizes the code design to the true
underlying channel.

Making progress with design of LDPC codes for NVM
channel models is most promising by first defining new
erasure models corresponding to the channel errors. This has
been the case with binary LDPC codes, for which performance
analysis over the binary erasure channel (BEC) contributed
most insights and design practices [63]. The analog of an
erasure in our case is a partial erasure, which represents a
read where the cell level is not fully resolved but also not
completely unknown [64]. Given that a cell level can be any
symbol in the set Q = {0,1,...,q — 1}, a partial erasure is
a subset of Q whose contents are the possible levels for that
cell after the read. A subset of size ¢ represents the standard
g-ary (full) erasure, and a subset of size 1 represents the no-
erasure case where the cell level is perfectly known. All subset
sizes in between those two extremes are the partial erasures
we find useful in our code design. Note that a partial erasure
is a useful proxy for a structured g-ary error, similarly to a
full g-ary erasure being a good proxy for symmetric g-ary
errors. To model error channels with a multi-bit structure, we
consider the following definition of a partial-erasure channel,
which we call here g-ary multi-bit erasure channel [65]. Let
q = 2°, where s is the number of bits mapped to each
cell level. For convenience, let us take the special case of
g = 8 and s = 3 (TLC). Suppose that a cell has the level
x = 0 stored in it. Then the channel output y is either {0}
representing perfect readout, or {0, 1} representing a partial
erasure missing the least-significant bit of z, or {0,1,2,3}
representing a partial erasure missing the two lower bits, or
{0,1,...,7} representing a full erasure missing all three bits.
We get {0, 1} with probability €;, {0, 1, 2,3} with probability
€2, {0,1,...,7} with probability €3, and {0} with probability
1 — €1 — €2 — €3. Note that this is a generalization of the
symmetric case that can accommodate the variable reliabilities
among the three bits. In particular, it captures the property of

the g-ary channel that a given error magnitude affects all bits
from some significance level and downward. To combat real
NVM errors we will set values of €, €2, €3 according to the
media properties, and design a code that corrects such error
events with high probability.

Some ingredients need to be developed to enable code
design for g-ary multi-bit channels. The first is an iterative
decoder that extends the efficient message-passing algorithms
of symmetric channels to the new channels. For g-ary partial-
erasure channels such an extension is provided in [64]. Sec-
ondly, we need an efficient analysis framework that can tell the
performance of code ensembles over the new channels. In [65]
such an analysis is developed based on density evolution [63],
with a careful exploitation of the channel structure to reduce
the analysis complexity that otherwise blows up quickly with
q. Lastly, and most importantly, we need to find ways by which
the analysis framework can be used to design better codes
for the new channels. An interesting example for this is the
following crisp design rule from [65]: for ¢ = 4 (s = 2,MLC),
if the multi-bit erasure channel has a dominant occurrence of
single-bit erasures (e; >> €2), then the edge labels of the g-ary
LDPC code must not be selected uniformly from the non-zero
field elements {1,2, 3}, but rather uniformly over two of the
elements, e.g. {1, 2}, with no labels selected as the remaining
element 3. It is not clear a priori why this rule should apply,
but it is provably correct given the analysis framework. A
more comprehensive design tool building on the new analysis
framework optimizes the code degree distributions taking into
account the parameters of the partial-erasure channel. It has
been shown [64] that degree distributions obtained through
this dedicated optimization have superior decoding thresholds
and error rates compared to codes that were designed for the
standard erasure channel.

Moving to finite block-length optimization of LDPC codes
for multi-bit channels, we seek algorithms that improve the
code specifically for the more common error types. In this
part we build upon the erasure interpretation of the channel,
and study how the well-defined configurations called stopping
sets [66] can be mitigated in the case where we have additional
knowledge on the erasure types.

A stopping set is defined as a subset of the variable nodes
that collectively connect to a set of check nodes each of
which has degree more than 1 to the variable-node subset.
Stopping sets are detrimental for iterative decoding, because
if all variable nodes in them are erased, the decoder cannot
continue iteratively. Examining an iterative decoder operating
over a g-ary partial-erasure channel, we observe that a stopping
set existing in the graph can be neutralized by carefully setting
the edge labels to not halt the iterative decoder. This is true
only for partial erasures, and does not apply to codes for the
g-ary (full) erasure channel (any stopping set for the binary
erasure channel is also a stopping set for the g-ary erasure
channel, for any edge-label combination). Following a detailed
characterization of the label sets that resolve stopping sets for
the multi-bit channel, we have developed an algorithm that
sets edge labels in a specific code graph to remove stopping
sets of small sizes. Note that this label optimization can be
done on top and beyond other known stopping-set reduction

10°

T T

—-CGF(2), n = 3024
=0 GF(8), n = 1008, Uniform
=m= GF(8), n = 1008, Optimized

10°

SER

107

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
€1

Fig. 10. Performance of 8-ary LDPC codes before (dashed) and after (dash-
dotted) removal of stopping sets affecting the multi-bit erasure channel. In
comparison, a binary LDPC code that is 3 times longer (solid) has much
worse correction performance.

techniques applied to the code graph (e.g. [67]). In Figure 10
we show sample results showing the potential advantage of this
coding scheme. We take a regular LDPC code with check-
node degree 18 and variable-node degree 2 (rate 8/9), and
run our labeling algorithm removing partial-erasure stopping
sets for ¢ = 8. We plot the symbol-erasure rate (SER) at the
decoder output as a function of the probability €; that a symbol
undergoes a 1-bit erasure. The performance after the label
optimization improves significantly in most of the ¢; range. We
also compare the performance to a binary code drawn from the
same ensemble, but with triple length (to get the same number
of bits), and third the erasure rate (to get the same expected
number of bit erasures). It is shown that the binary code is
not competitive to the g-ary option, even though the errors we
considered here are single-bit errors. This motivates further
research constructing stronger and more practical LDPC codes
that perform well over multi-bit channels. An interesting open
research question is how to best combine the combinatorial
framework and the new bit-level interpretation introduced in
the last two subsections, respectively, for the ultimate LDPC
solutions.

C. Additional considerations and future directions for graph
codes

Complementing proper channel code design is the imple-
mentation of associated decoders. In the unoptimized case,
excellent LDPC code performance comes at the prohibitively
high implementation complexity of the decoder that exceeds
latency, hardware footprint, and power consumption allowed
in modern NVM applications. One way to reap the benefits
of LDPC codes while maintaining target latency is by use of
coarse decoding and lookahead computations when channel
conditions permit, as recently proposed in [68]. The idea is that
since the hard-decision decoder is successful most of the time,
one would only invoke additional soft-information LLRs when

the hard-decision decoder fails to decode. To minimize the
latency, this additional information is computed concurrently
with the baseline decoder, and used only as necessary. The
work in [68] also quantifies the impact of progressive sensing
on the overall power consumption of the LDPC decoder.
A recently proposed technique for reducing decoder latency
in TLC Flash operates directly on the soft decisions: soft
information is generated by only using center read references.
By interleaving the three pages, errors are effectively evenly
spread across the pages [69].

Further architectural solutions for LDPC decoders in
NVMs include a circumspect combination of throughput-
enhancing techniques, such as strategic message update, dy-
namic scheduling, use of lookup tables, code structure-aware
parallelized structure, and local error correlations, among
others, [70], [71], [72], [73]. Additionally, new formulations
of iterative decoders that are well suited for limited precision
implementations, such as finite precision decoders proposed
in [74], [75], will further help in the broader adoption
of LDPC-coded systems. Another fruitful research direction
would be to optimize LDPC decoders specifically from the
point of view of recovery from non-codeword errors dominant
in the NVM error models analyzed in the previous section [57].
This could be done, for example, by opportunistically prun-
ing computations in high-performance but costly non-binary
LDPC decoders [76], or by using the intra-cell variations in
the LLR scalings [77].

Spatially-coupled (SC) codes (also known as LDPC con-
volutional codes) are the newest exemplar of graph designs;
they offer excellent performance in a variety of settings. These
codes are obtained by chaining together bipartite graphs each
corresponding to a smaller LDPC code. This concatenation
results in structured irregularity that has led to capacity-
approaching performance in the asymptotic setting [78]. More-
over, SC codes are amenable to low complexity window
decoding with message passing decoder operating on the
block constituents [79]. Initial results on the optimization
of SC codes in NVM and related applications already show
promise [80], [81], and a thorough study will likely lead to
significant results.

Additionally, the power of recently invented polar codes
has not yet been fully explored in the context of NVMs.
Another recent work has proposed the use of non-linear
polar codes for asymmetric channels potentially suitable for
Flash memories [82] and the work in [83] offered the first
study on using polar codes as the error correction technique
in Flash memories. Comprehensive analysis of polar codes
and polarization principles in the context of NVMs could be
another interesting open research direction, provided issues
stemming from the higher complexity and decoding latency
of polar codes can be adequately addressed.

As an analog to the summary of the algebraic codes given
in Figure 7 and based on the discussion in this section, we
sum up the key features of graph codes for NVM applications
in Figure 11.

VI. RE-WRITE CODES FOR THE IN-PLACE UPDATE
FEATURE

Since the early days of data storage, density scaling has
always meant challenges to data reliability. But in modern
storage media starting from Flash, competitive density also
means significant compromise to access performance. The
best known access-performance issue in Flash storage is the
inability to perform erase operations (remove charges from
cells) at the same small granularity of the program operation
(add charges to cells). While helpful for storage density,
this restriction is extremely limiting for access performance,
because data cannot be updated in-place. In fact, a vast
amount of research in the storage-systems field is devoted to
circumventing this restriction in applications where it prohibits
adequate performance. Coding enables a more direct solution
for this restriction, through the use of re-write codes.

A. Re-write and WOM codes

To solve the write-access problem stemming from restricted
erase operations, coding needs to bridge between the restricted
physical media and the unrestricted user data written to the
storage. The user may want to update data arbitrarily by re-
writing a data unit, and the code provides a representation for
the data that adheres to the restriction to only add charges
to the physical cells. It turns out that a model known since
the 1980’s called write-once memory (WOM) [84] coding is
highly applicable to the problem of update-restricted Flash
storage. In the WOM model, information can be written ¢
times on a block of n binary physical cells, such that physical
cell levels change from 0 to 1, but not from 1 to 0. By applying
the WOM model to Flash?, the user can write ¢ times to the
same physical cells without requiring a slow and costly erase
operation. Thus such codes hold great potential to improve
the performance and life span of storage devices. The design
objective for a t-write WOM code is to maximize the sum
rate, which is the total amount of information (in bits) written
to the n cells in ¢ writes, divided by the number of cells n.
Toward this objective, several new theoretical constructions
with good sum rates have been proposed. For example, recent
works in [85], [86], [87], [88], [89] provided high sum-rate
WOM codes based on careful adaptation of powerful coding
theoretic constructions, and by clever compositions of simple
WOM codes into stronger ones, e.g., constructing multiple-
write WOM codes from two-write WOM codes, constructing
non-binary WOM codes from binary WOM codes, and others.

For application in multi-level memories, g-ary WOM codes
are of interest. The g-ary generalization of WOM? was defined
in [90], where cell levels are restricted to only change in
the upward direction. Note that when ¢ is a power of 2, for
example ¢ = 8 in the TLC technology, it is possible to use
the g-ary cell as multiple bits in a binary WOM code (3 bits
in TLC) without violating the update restrictions. However,

2We adopt the convention that an erase operation decreases the cell
level, which may be different from the convention in the memory-devices
community (but fully equivalent to it).

3Note that WOM is a misnomer for non-binary codes, because the physical
cells are no longer limited to be written only once.

Graph-Based Codes for NVMs

Excellent for high reliability, soft read-enabled applications

/ li i

e LDPC codes

S

A

P

e Optimized non-binary LDPC codes
* Multi-bitLDPC codes

Possible advantages:

» Elimination of error floor through
channel-aware designs;

» Reduced complexity and latency at
high performance;

» Added design flexibility

\

* Optimized spatially coupled codes
K- Exploratory polar codes

4

Fig. 11. Summary of main graph codes and their key properties in the context of NVMs. We highlight advantages in green and disadvantages in red. We
reserve “light green” for the possible advantages of emerging LDPC designs as these theoretical constructs need to also be validated in practice.

this is inefficient because it is well known that using larger
alphabet sizes improves the re-write sum rate for a given
amount of physical storage [91]. Coding results for the g¢-
ary model appeared in [91], and later in [92], [93]. A theory
based on lattices aiding the construction of g-ary codes was
developed in [94]. In addition to g-ary WOM, there are other
re-write coding models applicable to multi-level memories. In
the model of floating codes [95], the code supports ¢ writes,
but in each write only a single bit out of k information bits is
updated. Other re-write models for multi-level memories were
studied in [96], [97], [98]. Most recently, [99] developed codes
based on the coset coding idea to improve memory lifetime.

A re-write code in the g-ary WOM model is defined by the
parameters g, n, t and M = [M;, ..., M;]. Parameter n is the
number of physical g-ary cells in the memory word used by
the code. Parameter ¢ is number of times the memory word
can be written to, and the vector M specifies for each of the ¢
writes the number of possible values of the input information.
In the sequel we focus on the practical case where in all ¢
writes we have the same input size, that is, M; = My =
--- = M; = M. With this restriction the code is called fixed
rate, and its parameters are denoted with the tuple (g, n, ¢, M),
where M is a scalar integer. We also define k£ = log, M and
say that k is the number of input information bits. In practical
use, once a (q,n,t, M) code exhausts its ¢ writes, the n cells
may not be further reused without an external erase operation,
which is not an explicit part of the model (but does happen in
practical use in Flash).

The motives to use WOM codes in Flash are compelling:
it has been demonstrated in the literature that with a clever
use of WOM codes in an SSD, the write amplification can be
reduced significantly [100]. In addition, implementing WOM
codes in an SSD simulator has shown significant advantage
in write throughput [101]. With this promise come some non-

trivial challenges. Probably the greatest concern in deploying
WOM codes is the impact on data reliability. Operating a
WOM code implies re-writing data in place and no longer
in a pure sequential order, and this may introduce new issues
of disturbs and inter-cell interference. Adding to that concern
is the fact that constructing error-tolerant WOM codes is not
an easy task. Coding schemes that combine re-write and error-
correction capabilities exist in the theoretical literature [102],
but are not practical enough for implementation. Combining
the two features by concatenating a WOM code and an ECC
is also problematic: an outer WOM code means that ECC
parity bits computed from the WOM codeword will violate
the WOM constraints; an inner WOM code means that small
channel errors can propagate to massive error events by the
WOM decoder. A good potential solution around these issues
is to use short g-ary WOM codes. If we use a short inner
WOM code, then channel errors cannot propagate beyond the
small WOM block length, and concatenation with a long outer
ECC can work well. It turns out that g-ary WOM codes can
have attractive re-write capabilities even if they use as few as
n = 2 cells. We demonstrate this next.

To specify a WOM code, one needs to provide a pair of
functions: the decoding and update functions. We define the
decoding function as ¢ : {0,...,¢q —1}" = {0,...,M — 1},
which maps the current levels of the n cells to one of the M
possible information values. The update function is defined as
w:{0,...,q—1}"x{0,....,.M — 1} — {0,...,q — 1}™,
specifying how the cell levels need to change as a function
of the current cell levels and the new information value at
the input (here again the input is taken from a set of M
possible values). The update function needs to satisfy the
WOM constraints of not moving a cell to a lower level.
Let us consider the special case of ¢ = 8 (TLC), n = 2
(2 cells), and M = 8 (k = 3 information bits per write).

27 Talelol2]5]1]3
6l5(1|3|7]4]6|0]2
5/6|0|2|5]1]3]|7]4
413 |7[a]6]0]2 5|1
3l2|5|1|3|7]4a]6]0
2l4|6]o|2 51|37
1f1]3|7]4]6]|0]2]|5
Oloj2|5|1]3|7]4]6
01234567

C1

Fig. 12. Decoding function of a (¢ = 8,n = 2,t = 4, M = 8) code. 4
guaranteed writes is optimal for the code parameters.

Note that n is the block length for coding purposes only,
and a page with N > n cells can be used with multiple
WOM blocks in parallel. A convenient way to represent a
decoding function v : {0,...,7}%> — {0,...,7} is by a
two-dimensional matrix where a position (c1,c2) represents
the physical levels of the two cells, and the numbers in the
matrix are the information values returned by the decoding
function. For example, Figure 12 shows a decoding function
obtained by tiling the ¢ X ¢ = 8 x 8 matrix with a polygonal
shape with area M = 8. To make it a decoding function of
a WOM code, we need to define on it an update function
that only moves upward and to the right in the matrix. Given
a current matrix position, the encoding function takes an
input value and needs to find it in a position neither below
nor to the left of its current position. In [103] an update
function was given for the decoding function in Figure 12 that
guarantees ¢ = 4 writes with any sequence of input values.
For example, a sequence of 4 writes with the input values
6 -4 — 7 — 3 will be written by updating the cell levels
with the sequence (1,2) — (2,4) — (3,6) — (7,7). Hence
this is a (¢ = 8,n = 2,t = 4, M = 8) code. It was also
shown in [103] that ¢ = 4 is the maximum possible number
of writes given the other code parameters, hence this is an
optimal code. Despite the extremely short length of this code,
the 6 bits that it consumes (2 cells, 3 bits each) are within
0.65 bit from the information-theoretic fundamental limit of
binary fixed-rate WOM codes [104], which is only attainable
with very long and high complexity codes.

Interestingly, the code shown in Figure 12 is not the only op-
tion for getting a (¢ = 8,n = 2,t =4, M = 8) code. Without
losing anything in the number of writes, we can construct other
codes that offer additional useful features. As two examples
we take the codes depicted in Figure 13. The code on the left
guarantees in addition that the two cells will be balanced to
be at most 3 levels apart throughout the write sequence [105].
This feature reduces inter-cell interference (ICI) between the
cells, which is known to be more significant when the two
cells have large level differences [11]. The code on the right
is designed with the feature that increasing the number of
cell levels to ¢ = 9 can add a fifth guaranteed write (the
previous two codes cannot add a write with one more level).
This shows that the use of WOM codes opens the way to using

7 6 |7 7 71356

6 3|05 6 210|614
5 7153|412 5 47 (30|27
4 5/6[(2]0|1 4 2|6 (1|0 |5]|7]3
3 2|3 [4|6|7 3 1342|605
26 |7lof1]2]5 2(316f0|5|7]|4a]|1]6
134|567 1l1]a|7|1]2
Olo|1]2 Ofo |25

0123 4567 012 3 45167

Fig. 13. Decoding functions of two more (¢ = 8,n = 2,t = 4, M = 8)
codes. The left code is designed to reduce ICI, and the right one can give
t =5 if g grows to 9.

cells with numbers of levels that are not necessarily powers of
two, and such uses can actually give good performance with
a simple implementation. Moreover, this example motivates
considering WOM codes with additional features, for example
maximizing the data reliability when an outer error-correcting
code is employed.

We end this section with the remark that a related technique
called “flip-N-write” was successfully proposed for phase
change memories [106]. In this simple but powerful scheme,
either a desired word is written or its complement, depending
on which one would be faster to write. One bit of redundancy
is used to indicate whether the intended word or its comple-
ment are being written.

B. Other coding schemes to watch for the future

We now briefly discuss two additional coding mechanisms
that are of interest in NVMs: constrained coding and rank
modulation. Constrained coding for NVMs is strongly mo-
tivated by the pronounced amount of ICI. ICI is caused
by parasitic capacitances between physically adjacent cells
in the Flash chip. As a result, when charge is added to a
cell (during programming), the charge levels of neighboring
cells may inadvertently increase as well. The amount of this
unintended charge is a function of device parameters and
design but has a roughly inversely proportional relationship to
the physical distances between the cells [107]. As a result, as
Flash technology is scaled down, the ICI becomes increasingly
more pronounced. One way to overcome the adverse effects of
ICI is by preemptively preventing certain patterns to be written
in the first place. Constrained coding is a branch of information
theory that precisely answers the question of maximizing data
transmission/storage while ensuring that undesirable subse-
quences are never stored. Constrained coding techniques have
already been successfully deployed in other more conventional
data storage technologies, such as HDDs [108], and as with
other existing methods mentioned before the challenge is to
design constrained coding methods that accurately address
technology-specific particularities. In the context of Flash, one
seeks to avoid “High-Low-High” patterns. This has led to the
development of elegant mathematical theory of constrained
systems, as in [109], where the focus was on characterizing
the set of sequences that are free of detrimental patterns.
Recent results on construction of constrained codes for NVMs

are presented in [110], [111], [112]. A challenging open
question is to transfer the results from the asymptotic domain
to the practical finite-length setting while offering codes with
minimal rate penalty and easy encoding/decoding.

The special physical properties of the Flash channel have
recently motivated an exploration of a different type of data
representation: rank modulation [113]. The idea in rank mod-
ulation is to represent information as the relative ranking of
a cell with respect to the entire block, rather than as the
absolute amount of charge in a particular cell. Information
is stored in permutations, and is read by comparing the values
of different cells in blocks. Ordering-based representation has
many advantages including the fact that charge leakage, which
affects all cells at roughly equal rates, will not change the
relative ranks of cells, only their absolute values. One distinct
concern regarding the implementation of rank modulation
techniques is the need to have very finely grained comparators,
which are currently impractical. If this key issue is resolved,
many fascinating recent theoretical results on rank-modulation
codes [114], [115], [116] could then be used in practice.

VII. CONCLUSION AND PERSPECTIVES

In this survey paper, we reviewed several recent exciting
developments in coding methods for non-volatile memories.
The need for novel coding schemes is by now clear to the
memory industry, which has already advanced research and
development in this area considerably, including commer-
cialization of BCH codes, LDPC codes, constrained codes,
and various concatenated codes. While specific details of
code constructions remain carefully guarded trade secrets,
numerous industry patents on this topic offer a glimpse into
practical deployment and importance of various ECC methods:
for LDPC, among many others, these patents include [45]
(LST corp.), [46] (Intel Corp.), [47] Marvell Ltd., [48] sTec
Inc. (acquired by Western Digital Corp.); for algebraic and
concatenated codes, these include [38], [37], [117] (Marvell
Ltd.), [118] (Qualcomm Inc.), and [119] (SK Hynix Inc.), and
for constrained codes these include [120] (IBM Corp.), [121],
[122] (Marvell Ltd.), [123] (Intel Corp.). Our goal in this
survey is to present the mathematical concepts underpinning
these trends in industry, and show how the same concepts lead
to more advanced coding schemes that were recently proposed
in the literature.

We advocate that the departure from channel codes previ-
ously made popular in traditional data communications and
storage systems is fundamental for the future advances in
NVM reliability and performance: a flourishing mathematical
repertoire exists beyond the conventional coding that implicitly
assumes symmetric errors. What is more, several of these
techniques are also amenable to code combining in the sense
that the most dominant error patterns could be first cleaned
up by customized codes, followed by another perhaps more
generic code for the remaining errors, which would be done
in a way that is more efficient than directly applying a code
that is agnostic to error patterns. As evidenced by presented
examples, NVM channel-aware code design offers significant
opportunities for deep theoretical explorations while simulta-
neously furthering the reach of memory technologies.

We presented in detail two representative classes of codes:
algebraic codes and graph codes. As discussed earlier, the two
approaches by design offer fundamentally different tradeoffs in
terms of performance guarantee and error correction capability.
Which one is ultimately chosen for deployment is a function of
system-architecture considerations and the demands of the end
applications — for larger page sizes, in terms of performance
alone, LDPC codes are bound to be superior to BCH codes.
On the other hand, well-designed code concatenation and
associated algebraic codes can correct a very refined set of
error patterns and can also offer backward compatibility with
legacy BCH codes.

At the same time, a large body of work on coding for NVMs
has still largely remained of solely theoretical interest. Moving
forward, we envision that the best advancements and facilitated
efforts in practice and theory alike will be achieved through a
more open dialogue between industry leaders and academia.
Towards that goal, in the context of different coding tools,
we have outlined several (what we believe are promising)
research directions. For example, best utilization of these new
powerful algebraic and graph codes may require multi-page
read architectures, which is in contrast to current practice of
single page reads. This new approach may already be feasible
as recent evidence suggests the benefits of multi-page reads
when used in conjunction with simple code interleaving [69].
How to best balance read operations and coding benefits is an
interesting system design problem.

We envision that several of the code design principles
developed for multi-level Flash will also have a positive
impact on alternative NVM technologies, including phase
change memories (PCM) and resistive RAM (RRAM). These
technologies also possess certain domain-specific asymmetries
e.g., in PCM thermal cross-talk and thermal accumulation
cause significant spatio-temporal variations in cell reliability,
and in RRAM errors are data-dependent and with strong
spatial correlations. New innovative coding schemes that are
appropriately device-aware could play a critical role in transi-
tioning these and other technologies into the mainstream. As
the non-volatile technologies further evolve and diversify, it
is not unforeseeable that different NVMs will have different
types of dominant error patterns. In each case, appropriately
chosen coding methods (stand alone or a combination of
multiple pattern-specific methods) would yield a winning
combination. Building on the fundamental coding concepts
covered in this survey will help tailor the best solution to the
specific design setup. Moving beyond coding for reliability
lies an interesting trade-off between coding performance (that
needs long blocks) and access performance (that prefers short
blocks). Developing codes that operate at the desirable points
of this trade-off is another fruitful avenue of future research.

ACKNOWLEDGMENT

The authors would like to thank A. Hareedy, F. Sala, C.
Schoeny, R. Cohen, and E. Hemo for preparing and helping
with some figures. Work of L. Dolecek is supported in part
by NSF grants CAREER CCF 1150212 and CCF 1029030.
Work of Y. Cassuto is supported in part by the Israel Science
Foundation and by the Intel Center for Computing Intelligence.

(1]

[2]

(3]

(4]

[5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
flash memory,” Proceedings of IEEE, vol. 91, no. 4, pp. 489-502, Apr.
2003.

H. Wang, N. Wong, T.-Y. Chen, and R. D. Wesel, “Using dynamic
allocation of write voltage to extend flash memory lifetime,” IEEE
Transactions on Communications, vol. 64, no. 11, pp. 4474-4486, Nov.
2016.

T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Mod-
elling of the threshold voltage distributions of sub-20nm NAND flash
memory,” in IEEE Global Communications Conference (GLOBECOM),
London, UK, December 2014.

Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage
distribution in MLC NAND flash memory: Characterization, analysis,
and modeling,” in Design Automation and Test in Europe (DATE),
Grenoble, France, March 2013.

H. Wang, T.-Y. Chen, and R. D. Wesel, “Histogram-based flash channel
estimation,” in IEEE International Conference on Communications,
London, UK, June 2015.

D. H. Lee and W. Sung, “Estimation of NAND flash memory threshold
voltage distribution for optimum soft-decision error correction,” IEEE
Transactions on Signal Processing, vol. 61, no. 1, pp. 440449, Jan.
2013.

V. Taranalli, H. Uchikawa, and P. H. Siegel, “Channel models for multi-
level cell flash memories based on empirical error analysis,” IEEE
Transactions on Communications, vol. 64, no. 8, pp. 3169-3181, Aug.
2016.

——, “On the capacity of the beta-binomial channel model for multi-
level cell flash memories,” IEEE Journal on Selected Areas in Com-
munications, vol. 34, no. 9, pp. 2312-2324, Sep. 2016.

L. Grupp, J. Davis, and S. Swanson, “The bleak future of NAND flash
memory,” in USENIX Conference on File and Storage Technologies
(FAST), San Jose, CA, February 2012.

“Solid state drive (SSD) requirements and endurance test method,”
http://www.jedec.org/standards-documents/results/jesd218b01, June
2016, accessed: 2016-11-01.

A. Berman and Y. Birk, “Constrained flash memory programming,”
in IEEE International Symposium on Information Theory (ISIT), St.
Petersburg, Russia, July 2011.

S. Lin and D. Costello, Error Control Coding. Prentice Hall, 2004.

“TN-29-63: Error correction code (ECC) in Micron single-level cell
(SLC) NAND,” Micron Technologies, Tech. Rep., 2011.

“TN-29-71: Enabling software BCH ECC on a linux platform,” Micron
Technologies, Tech. Rep., 2012.

K. Lee, S. Lim, and J. Kim, “Low-cost, low-power and high-throughput
BCH decoder for NAND flash memory,” in IEEE International Sym-
posium on Circuits and Systems, Seoul, Korea, August 2012.

M. Zhang, F. Wu, Y. Zhou, and K. Zou, “A novel optimization algo-
rithm for Chien search of BCH codes in NAND flash memory devices,”
in 2015 IEEE International Conference on Networking, Architecture
and Storage, Boston, MA, August 2015.

C.-H. Yang, Y.-H. Chen, and H.-C. Chang, “An area-efficient BCH
codec with echelon scheduling for NAND flash applications,” in IEEE
International Conference on Communications, Budapest, Hungary,
June 2013.

Y. Lee, H. Yoo, I. Yoo, and I.-C. Park, “6.4Gb/s multi-threaded
BCH encoder and decoder for multi-channel SSD controllers,” in
IEEE International Solid-State Circuits Conference, San Francisco,
CA, February 2012.

——, “High-throughput and low-complexity BCH decoding architec-
ture for solid-state drives,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 5, pp. 1183-1187, May 2014.
G. Forney, “Concatenated codes,” Ph.D. dissertation, Massachusetts
Institute of Technology, 1965.

Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC
NAND flash memory: Measurement, characterization, and analysis,”
in Design Automation and Test in Europe (DATE), Dresden, Germany,
March 2012.

R. Ahlswede, H. Aydinian, and L. Khachatrian, “Unidirectional error
control codes and related combinatorial problems,” in Eighth Interna-
tional Workshop on Algebraic and Combinatorial Coding Theory, St.
Petersburg, Russia, September 2002.

Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel
flash memories,” IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1582-1595, Apr. 2010.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38

—_

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

T. Klove, J. Luo, I. Naydenova, and S. Yari, “Some codes correct-
ing asymmetric errors of limited magnitude,” IEEE Transactions on
Information Theory, vol. 57, no. 11, pp. 7459-7472, Nov. 2011.

M. Schwartz, “Quasi-cross lattice tilings with applications to flash
memory,” I[EEE Transactions on Information Theory, vol. 58, no. 4,
pp. 2397-2405, Apr. 2012.

L. Tallini and B. Bose, “On L1-distance error control codes,” in IEEE
International Symposium on Information Theory (ISIT), St. Petersburg,
Russia, July 2011.

E. Hemo and Y. Cassuto, “A constraint scheme for correcting massive
asymmetric magnitude-1 errors in multi-level NVMs,” in IEEE Inter-
national Symposium on Information Theory (ISIT), Hong Kong, HK,
June 2015.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing flash memory: Anomalies,
observations, and applications,” in JEEE/ACM MICRO, New York, NY,
December 2009.

E. Yaakobi, L. Grupp, P. H. Siegel, S. Swanson, and J. Wolf, “Char-
acterization and error-correcting codes for TLC flash memories,” in
ICNC, Maui, HI, January 2012.

J. K. Wolf, “On codes derivable from the tensor product of check
matrices,” IEEE Transactions on Information Theory, vol. 11, no. 2,
pp. 281-284, Apr. 1965.

R. Gabrys, E. Yaakobi, and L. Dolecek, “Graded bit error correcting
codes with applications to flash memory,” IEEE Transactions on
Information theory, vol. 59, no. 4, pp. 2315-2327, Apr. 2013.

R. Gabrys, F. Sala, and L. Dolecek, “Coding for unreliable flash
memory cells,” IEEE Communication Letters, vol. 18, no. 9, pp. 1491—
1494, Sep. 2014.

C. Yang, Y. Emre, and C. Chakrabarti, “Product code schemes for
error correction in MLC NAND flash memories,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 12, pp.
2302-2314, Dec. 2012.

S. Cho, D. Kim, J. Choi, and J. Ha, “Block-wise concatenated BCH
codes for NAND flash memories,” IEEE Transactions on Communica-
tions, vol. 62, no. 4, pp. 1164-1177, Apr. 2014.

S. Emmadi, K. R. Narayanan, and H. Pfister, “Half-product codes
for flash memory,” in Non-Volatile Memories Workshop (NVMW), San
Diego, CA, March 2015.

D. Kim and J. Ha, “Quasi-primitive block-wise concatenated BCH
codes with collaborative decoding for NAND flash memories,” IEEE
Transactions on Communications, vol. 63, no. 10, pp. 3482-3496, Oct.
2015.

J. Xu, P. Chaichanavong, G. Burd, and Z. Wu, Marvell International
Ltd., “Tensor product codes containing an iterative code,” Patent US
7861131 B1, December, 2010.

X. Yang, Marvell International Ltd., “Tensor product codes for flash,”
Patent US 8732543 BI1, May, 2014.

G. Ungerboeck, “Tellis-coded modulation with redundant signal sets,
part I: introduction, and part II: state of the art,” IEEE Communications
Magazine, vol. 25, no. 2, pp. 5-21, Feb. 1987.

A. Ramamoorthy, A. Wu, and P. Sutardja, Marvell International Ltd.,
“Method and system for error correction in flash memory,” Patent US
7844 879 B2, November, 2010.

S. Li and T. Zhang, “Improving multi-level NAND flash memory
storage reliability using concatenated BCH-TCM coding,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 10,
pp. 1412-1420, Oct. 2010.

J. Oh, J. Ha, J. Moon, and G. Ungerboeck, “RS-enhanced TCM for
multilevel flash memories,” IEEE Transactions on Communications,
vol. 61, no. 5, pp. 1674-1683, May 2013.

T. Luo and B. Peleato, “Spreading modulation for multilevel nonvolatile
memories,” IEEE Transactions on Communications, vol. 64, no. 3, pp.
1110-1119, Mar. 2016.

B. Kurkoski, “Coded modulation using lattices and Reed-Solomon
codes, with applications to flash memories,” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 5, pp. 900-908, May 2014.
H. Zhong, Y. Li, R. Danilak, and E. T. Cohen, LSI Corp., “LDPC
erasure decoding for flash memories,” Patent US 8 935595 B2, January,
2015.

R. Motwani, Intel Corp., “Storage drive with LDPC coding,” Patent
US 8549382 B2, October, 2013.

A. Ramamoorthy, Marvell International Ltd., “Multi-level signal mem-
ory with LDPC and interleaving,” Patent US 7971 130 B2, June, 2011.
A. D. Weathers, R. D. Barndt, and X. Hu, sTec, Inc., “Optimal
programming levels for LDPC,” Patent US 8484519 B2, July, 2013.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

E. Sharon, I. Alrod, A. Navon, and O. Lieber, Sandisk Ltd., “Low
density parity code (LDPC) decoding for memory with multiple log
likelihood ratio (LLR) decoders,” Patent US 8301979 B2, October,
2012.

J. Wang, K. Vakilinia, T.-Y. Chen, T. A. Courtade, G. Dong, T. Zhang,
H. Shankar, and R. D. Wesel, “Enhanced precision through multiple
reads for LDPC decoding in flash memories,” IEEE Journal on Selected
Areas of Communications, vol. 32, no. 5, pp. 880-891, May 2014.

T. Richardson, “Error floors of LDPC codes,” in Allerton Conference
on Communication, Control, and Computing, Monticello, IL, October
2003.

T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 599-618, Feb. 2001.

B. Vasic, S. K. Chilappagari, D. V. Nguyen, and D. Declercq, “Trapping
set ontology,” in Allerton Conference on Communication, Control, and
Computing, Monticello, IL, October 2009.

S. Landner and O. Milenkovic, “Algorithmic and combinatorial analysis
of trapping sets in structured LDPC codes,” in IEEE International Con-
ference on Wireless Networks, Communications and Mobile Computing,
Honolulu, HI, June 2005.

L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets for array-based
LDPC codes,” IEEE Transactions on Information Theory, vol. 56, no. 1,
pp. 181-201, Jan. 2010.

Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright,
“Design of LDPC decoders for low bit error rate performance: Quanti-
zation and algorithm choices,” IEEE Transactions on Communications,
vol. 57, no. 11, pp. 3258-3268, November 2009.

A. Hareedy, C. Lanka, and L. Dolecek, “A general non-binary LDPC
code optimization framework suitable for dense flash memory and
magnetic storage,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 9, pp. 2402-2415, Sep. 2016.

A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-
cyclic LDPC codes by ACE optimization,” in /EEE Information Theory
Workshop (ITW), Sevilla, Spain, September 2013.

J. Wang, L. Dolecek, and R. Wesel, “The cycle consistency matrix
approach to absorbing sets in separable circulant-based LDPC codes,”
IEEE Transactions on Information Theory, vol. 59, no. 4, pp. 2293 —
2314, Apr. 2013.

B.Vasic, S.K.Chilappagari, D.V.Nguyen, and S.K.Planjery, “Trapping
set ontology,” in Allerton Conference on Communication, Control, and
Computing, Monticello, IL, Sep.-Oct. 2009.

L. Dolecek, “On absorbing sets of structured sparse graph codes,”
in Information Theory and Applications Workshop, San Diego, CA,
February 2010.

H. Imai and S. Hirakawa, “A new multilevel coding method using error-
correcting codes,” IEEE Transactions on Information Theory, vol. 23,
no. 3, pp. 371-377, Mar. 1977.

T. Richardson and R. Urbanke, Modern Coding Theory.
University Press, 2008.

R. Cohen and Y. Cassuto, “Iterative decoding of LDPC codes over
the g-ary partial erasure channel,” IEEE Transactions on Information
Theory, vol. 62, no. 5, pp. 2658-2672, May 2016.

——, “LDPC codes for the g-ary bit-measurement channel,” in 9th
International Symposium on Turbo Codes & lIterative Information
Processing, Brest, France, August 2016.

C. Di, D. Proietti, I. Telatar, T. Richardson, and R. Urbanke, ‘Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp.
1570-1579, Jun. 2002.

C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, d.)-
LDPC codes over GF(q) using their binary images,” IEEE Transactions
on Communications, vol. 56, no. 10, pp. 1626-1635, Oct. 2008.

K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng, “LDPC-
in-SSD: Making advanced error correction codes work effectively
in solid state drives,” in USENIX Conference on File and Storage
Technologies (FAST), San Jose, CA, February 2013.

S.-H. Song, K. Gunnam, M. Qin, L. Franca-Neto, R. Mateescu,
C. Zhang, R. Barndt, and Z. Bandic, “High speed soft decision
decoding architecture for triple level cell NAND Flash memory,” in
Nonvolatile Memories Workshop, San Diego, CA, March 2016.

Y. Zhang, C. Zhang, Z. Yan, S. Chen, and H. Jiang, “A high-throughput
multi-rate LDPC decoder for error correction of solid-state drives,”
in IEEE Workshop on Signal Processing Systems, Hangzhou, China,
October 2015.

Cambridge

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

J. Kim and W. Sung, “Rate-0.96 LDPC decoding VLSI for soft-decision
error correction of NAND flash memory,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 5, pp. 1004-1015,
May 2014.

W. Zhao, G. Dong, H. Sun, N. Zheng, and T. Zhang, “Reducing latency
overhead caused by using LDPC codes in NAND flash memory,”
EURASIP Journal on Advances in Signal Processing, Special Issue on
Coding and Signal Processing for Non-Volatile Memories, vol. 203,
pp. 1-9, Sep. 2012.

R.-S. Liu, M.-Y. Chuang, C.-L. Yang, C.-H. Li, K.-C. Ho, and H.-P.
Li, “Improving read performance of NAND flash SSDs by exploiting
error locality,” IEEE Transactions on Computers, vol. 65, no. 4, pp.
1090-1102, Apr. 2016.

F. Cai, X. Zhang, D. Declercq, B. Vasic, and S. K. Planjery, “Finite
alphabet iterative decoders for LDPC codes: Optimization, architecture
and analysis,” IEEE Transactions on Circuits and Systems - Part I:
Regular Papers, vol. 61, no. 5, pp. 1366-1375, May 2014.

S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic, “Finite alphabet
iterative decoders, part I: Decoding beyond belief propagation on the
binary symmetric channel,” IEEE Transactions on Communications,
vol. 61, no. 10, pp. 4033-4045, Oct. 2013.

Y. Toriyama, B. Amiri, L. Dolecek, and D. Markovic, “Logarithmic
quantization scheme for reduced hardware cost and improved error
floor in non-binary LDPC decoders,” in IEEE Global Communications
Conference (GLOBECOM), London, UK, December 2014.

H. Sun, W. Zhao, M. Lv, G. Dong, N. Zheng, and T. Zhang, “Exploiting
intracell bit-error characteristics to improve min-sum LDPC decoding
for MLC NAND flash-based storage in mobile device,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 8,
pp. 2654-2664, Aug. 2016.

M. Lentmaier, A. Sridharan, D. J. Costello Jr., and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 5274—
5289, Oct. 2010.

A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed
decoding of spatially coupled codes,” IEEE Transactions on Informa-
tion Theory, vol. 59, no. 4, pp. 2277-2292, Apr. 2013.

B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and
L. Dolecek, “Optimized design of finite-length separable circulant-
based spatially-coupled codes: An absorbing set-based analysis,” IEEE
Transactions on Communications, vol. 64, no. 10, pp. 4029-4043, Oct.
2016.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Optimized graph-
based codes for Flash memories,” in Flash Memory Summit, San Jose,
CA, August 2016.

E. En Gad, Y. Li, J. Kliewer, M. Langberg, A. Jiang, and J. Bruck,
“Asymmetric error correction and flash-memory rewriting using polar
codes,” IEEE Transactions on Information Theory (submitted), 2014.
Y. Li, H. Alhussien, E. F. Haratsch, and A. Jiang, “A study of polar
codes for MLC NAND flash memories,” in IEEE International Confer-
ence on Computing, Networking and Communications, Anaheim, CA,
February 2015.

R. L. Rivest and A. Shamir, “How to reuse a write-once memory,’
Information and Control, vol. 55, no. 1, pp. 1-19, Dec. 1982.

D. Burshtein and A. Strugatski, “Polar write once memory codes,”
IEEE Transactions on Information Theory, vol. 59, no. 8, pp. 5088—
5101, Aug. 2013.

E. Yaakobi and A. Shpilka, “High sum-rate three-write and non binary
WOM codes,” IEEE Transactions on Information Theory, vol. 60,
no. 11, pp. 70067015, Nov. 2014.

A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,” IEEE Transactions on Information Theory, vol. 59, no. 7,
pp. 4520-4529, Jul. 2013.

E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Transactions on Information Theory,
vol. 58, no. 9, pp. 5985-5999, Sep. 2012.

R. Gabrys and L. Dolecek, “Constructions of non-binary WOM codes
for multilevel flash memories,” IEEE Transactions on Information
Theory, vol. 61, no. 4, pp. 1905-1919, Apr. 2015.

A. Fiat and A. Shamir, “Generalized “write-once” memories,” IEEE
Transactions on Information Theory, vol. 30, no. 3, pp. 470-480, May
1984.

F. Fu and A. J. H. Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Transactions on Information Theory, vol. 45, no. 9, pp.
308-313, Sep. 1999.

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

R. Gabrys and L. Dolecek, “Characterizing capacity achieving write
once memory codes for multilevel flash memories,” in IEEE Interna-
tional Symposium on Information Theory (ISIT), St. Petersburg, Russia,
July 2011.

K. Haymaker and C. Kelley, “Geometric wom codes and coding strate-
gies for multilevel flash memories,” Designs, Codes, and Cryptography,
vol. 70, no. 1-2, pp. 91-104, May 2012.

A. Bhatia, M. Qin, A. Iyengar, B. M. Kurkoski, and P. H. Siegel,
“Lattice-based WOM codes for multilevel flash memories,” IEEE
Journal on Selected Areas on Communications, vol. 32, no. 5, pp.
933-945, May 2014.

A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint infor-
mation storage in flash memories,” IEEE Transactions on Information
Theory, vol. 56, no. 10, pp. 5300-5313, Oct. 2010.

E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multidimensional
flash codes,” in Allerton Conference on Communication, Control, and
Computing, Monticello, IL, October 2008.

H. Finucane, Z. Liu, and M. Mitzenmaher, “Designing floating codes
for expected performance,” in Allerton Conference on Communication,
Control, and Computing, Monticello, IL, October 2008.

A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Trajectory codes
for flash memory,” IEEE Transactions on Information Theory, vol. 59,
no. 7, pp. 4530-4541, Jul. 2013.

G. Mappouras, A. Vahid, A. R. Calderbank, and D. J. Sorin, “Methuse-
lah Flash: Rewriting codes for extra long storage lifetime,” in /EEE
International Conference on Dependable Systems and Networks (DSN),
Toulouse, France, June 2016.

S. Odeh and Y. Cassuto, “NAND flash architectures reducing write
amplification through multi-write codes,” in IEEE International Con-

ference on Massive Storage Systems and Technology (MSST), Santa

Clara, CA, June 2014.

G. Yadgar, E. Yaakobi, and A. Schuster, “Write once, get 50% free:
Saving SSD erase costs using WOM codes.” in USENIX Conference
on File and Storage Technologies (FAST), Santa Clara, CA, February
2015.

A. Jiang, Y. Li, E. E. Gad, M. Langberg, and J. Bruck, “Joint rewriting
and error correction in write-once memories,” in IEEE International
Symposium on Information Theory (ISIT), Istanbul, Turkey, July 2013.
Y. Cassuto and E. Yaakobi, “Short g-ary fixed-rate WOM codes for
guaranteed rewrites and with hot/cold write differentiation,” IEEE
Transactions on Information Theory, vol. 60, no. 7, pp. 3942-3958,
Jul. 2014.

C. Heegard, “On the capacity of permanent memory,” IEEE Transac-
tions on Information Theory, vol. 31, no. 1, pp. 3442, Jan. 1985.

E. Hemo and Y. Cassuto, “d-imbalance WOM codes for reduced inter-
cell interference in multi-level NVMSs,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 9, pp. 2378-2390, Sep. 2016.

S. Cho and H. Lee, “Flip-N-write: a simple deterministic technique to
improve PRAM write performance, energy and endurance,” in 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
New York, NY, Dec. 2009.

J. D. Lee, S. H. Hur, and J. D. Choi, “Effects of floating-gate

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

interference on NAND flash memory cell operation,” IEEE Electron
Device Letters, vol. 23, no. 5, pp. 264-266, May 2002.

B. H. Marcus, R. M. Roth, and P. H. Siegel, Constrained Systems and
Coding for Recording Channels,Handbook of Coding Theory, V.S. Pless
and W.C. Huffiman (Editors). Elsevier, Amsterdam, 1998.

M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 836—
846, May 2014.

S. Buzaglo, E. Yaakobi, and P. H. Siegel, “Coding schemes for inter-
cell interference in flash memory,” in IEEE International Symposium
on Information Theory (ISIT), Hong Kong, HK, June 2015.

V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” in
IEEE International Conference on Communications (ICC), London,
UK, June 2015.

Y. Kim, R. Mateescu, S.-H. Song, Z. Bandic, and B. V. K. V. Kumar,
“Coding scheme for 3D vertical flash memory,” in IEEE International
Conference on Communications (ICC), London, UK, June 2015.

A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Transactions on Information Theory, vol. 55,
no. 6, pp. 2659-2673, Jun. 2009.

A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Transactions on Information Theory,
vol. 56, no. 7, pp. 3158-3165, Jul. 2010.

A. Mazumdar, A. Barg, and G. Zemor, “Constructions of rank modula-
tion codes,” IEEE Transactions on Information Theory, vol. 59, no. 2,
pp- 1018-1029, Feb. 2013.

E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-
weight Gray codes for local rank modulation,” IEEE Transactions on
Information Theory, vol. 57, no. 11, pp. 7431-7442, Nov. 2011.

N. Varnica, G. Burd, S. Low, L. Sun, and Z. Wu, Marvell World
Trade Ltd., “Concatenated codes for holographic storage,” Patent US
8583981 B2, November, 2013.

J. K. Wolf, Qualcomm Incorporated, “Method and apparatus for trans-
mitting and receiving concatenated code data,” Patent US 5983383,
November, 1999.

M. Marrow, SK Hynix Memory Solutions Inc., “Coding architecture for
multi-level NAND flash memory with stuck cells,” Patent US 8 719 670
B1, May, 2014.

M. M. Franceschini, A. Jagmohan, L. A. Lastras-Montafio, and
M. Sharma, International Business Machines Corporation, “Con-
strained coding to reduce floating gate coupling in non-volatile mem-
ories,” Patent US 8463985 B2, June, 2013.

P. Sutardja and Z. Wu, Marvell World Trade Ltd, “Flash memory
with coding and signal processing,” Patent WO 2007 084 751 A2, July,
2007.

P. Chaichanavong, Marvell International Ltd., “Systems and methods
for constructing high-rate constrained codes,” Patent US 7714 748 B1,
May, 2010.

R. Motwani, Intel Corp., “Maximum-likelihood decoder in a memory
controller for synchronization,” Patent WO 2013048385 Al, April,
2013.

