
Not Just for Errors: Codes for Fast and Secure
Flash Storage

Yuval Cassuto
School of Computer & Communication Sciences - ALGO Laboratory

EPFL, Lausanne, Switzerland
yuval.cassuto@epfl.ch

Abstract— Error-correcting codes are normally employed in
storage devices to guarantee the integrity of data in the pres-
ence of errors. This paper presents two schemes where error-
correcting codes are used for entirely different purposes.In the
first part of the paper, a new coding paradigm is proposed to
improve the write performance of multi-level flash devices.By
slightly relaxing the accuracy of cell programming, significant
speed-up can be achieved. The resulting write inaccuraciesare
then corrected by codes that are tailored for the appropriately
restricted error model. In the second part, new low-complexity
codes are proposed to protect the security of sensitive datain
the presence of imperfect physical erasure processes. Codes that
have optimal encoding and decoding complexities are constructed
to allow fast storing and retrieval of secret data, and guarantee
unconditional security of data against an adversary with access
to parts of the secret that failed to erase.

I. I NTRODUCTION

The impact of error-correcting codes on communication
systems has transcended into the data storage domain, where
coding methods are shaping the way storage devices are
designed and operated. At the individual-device level, error-
correcting codes allow dense storage of information on phys-
ical media that are impaired by a multitude of phenomena
like noise, jitter, inter-bit interference and defects. Atthe
storage-system level, codes are used to protect the survivability
and availability of data against failures of individual devices.
Per their title, error-correcting codes are primarily applied to
combat errors that are incident on the data read from the
storage device. In these applications, the impairments from the
read and write processes are combined and modeled through a
storage channel, for which codes with appropriate parameters
are chosen. Code design for storage channels arguably has
substantial similarities to code design for communication
channels.

Beyond the parallels between data storage and
communication, storage devices exhibit unique propertiesand
requirements that provide opportunities for rich applications
of combinatorial structures in general, and error-correcting
codes in particular. In addition to reliability and data integrity,
other qualities of storage devices can be the targets of new
coding frameworks. Two such important qualities are the
subjects of this paper: write performance of flash devices,
and data security of devices with imperfect physical erasure.
In Part 1 of the paper, accurate programming of cells is

This paper surveys work that was partly done while the authorwas at the
California Institute of Technology, and at Hitachi Global Storage Technolo-
gies. Research was supported in part by the ERC Advanced Researcher Grant
of A. Shokrollahi entitled ECCSciEng.

identified as a bottleneck for high write performance in
multi-level flash devices (section II). A scheme is proposed
to relax the programming accuracy and correct the residual
inaccuracies by codes that are specialized for the resulting
error model (section III). Code design for this restricted
error model allows to keep the required code redundancy
low, and at the same time offer significant speed-up of the
flash programming sequence. The potential time savings of
this scheme are quantitatively evaluated using an analytical
model for the programming sequence (section IV). In Part 2
of the paper (sections V and VI), new codes are proposed
to improve the security of storage devices. Storage devices
often contain sensitive customer data, such as financial,
medical and personal items. The user usually chooses to
erase these data upon disposal or transfer of the device,
frequently following government regulations to do so. In
these cases, the erasure of data must be secure, and shall
not leave behind any trace of the data. Unfortunately, perfect
physical erasure of data is either not possible, or very costly.
The challenge of removing the data from the device is both
due the imperfections of the physical erasure processes and,
at a higher level, due to address-translation layers that may
make it non-trivial to track all traces of sensitive data for
erasure. The scheme proposed here addresses the imperfect
erasure problem by using error-correcting codes to encode
the secret data in a way that will guarantee its confidentiality,
even if an adversary has access to a large number of
physical bits. The new codes belong to a class of codes
called wire-tap II codes[5], and they provide unconditional,
information-theoretic (in contrast to schemes that assumean
adversary that is computationally limited) security, so long
as the number of bits accessible by the adversary is not
greater than the code’s security parameter. The key novelty
of the presented code constructions is that they offer optimal
encoding and decoding complexities given the security that
they provide. Low encoding/decoding complexities allow
fast writing/reading of dynamic sensitive data, and may
consequently improve the write/read performance of the
device. The codes are provided as infinite families of codes,
allowing a system designer to choose the code parameters
based on the specific architecture and security requirements
of the target device.

Part 1: Codes for Speed-up of Flash Programming

II. T HE CHALLENGE OF FAST AND ACCURATE FLASH

PROGRAMMING

Flash storage devices are well known to exhibit a significant
asymmetry between read speed (fast) and write speed (slower).
The inferior write performance is attributed to the challenge
of programming a flash cell to an accurate threshold level, as
well as to the slow block erase operations. Programming flash
cells is carried out by stochastic physical processes, hence
accurate programming requires an iterative process of write-
pulse applications and current measurements that comprise
a program sequence approaching the desired target level.
The sequence of write pulses applied to the cell during this
iterative process needs to be carefully designed to avoid over-
programming the cell beyond the target level. Such over-
programming instance would result in a necessity for block
erase, with the consequence of slowing down the write even
further. Flash-programming optimization is studied in [4], and
in many other published and unpublished works. A distinctive
characteristic of a typical flash programming sequence is that
most of the progress in changing the cell’s threshold level is
achieved by the few initial pulses, while many more pulses are
needed to set the cell on an accurate final level. This property
can be viewed graphically in Figure 1, showing an optimized
floating-gate program sequence taken from [1]. Each of the
curves in Figure 1 describes a program sequence with a
different target level. Toward the end of each program curve,
the vertical separation of adjacent sequence points becomes
smaller, contributing to overall long program sequences that
approach the target level asymptotically.

Figure 1. Performance of a Flash adaptive program sequence [1]. The
circles on each curve describe the results of an iterative programming
algorithm for a given target value.

If, as shown above, high-accuracy programming requires
numerous program cycles, then a potential speed-up technique
may be to alleviate the stringent accuracy requirement. By
doing so, we would obviously introduce errors to the stored
values, hence these errors need to be treated using an error-
correcting code that is designed for the characteristics ofthe
introduced errors. From the shape of the curves in Figure 1, it
is clear that even if the program sequence is terminated very
early, the resulting deficiency in the level of the programmed

cell is relatively small. Therefore, an error-correcting code
that corrects errors oflow magnitudesmay be sufficient for
noticeable write speed-up. In addition, early terminationof
the program sequence results in values that are belowthe
target value, thus the code may be designed for errors that
are asymmetric. By the core wisdom of information theory,
restricting the error model to asymmetric errors with limited
magnitudes can provide codes that are more efficient, in
both redundancy and complexity, than common codes for
symmetric errors. The design and analysis of codes for this
error model is the subject of the remainder of Part 1 of this
paper.

III. C ODES FORASYMMETRIC L IMITED -MAGNITUDE

ERRORS

A. Error model and code parameters

Suppose we have a flash device with cells that are pro-
grammed to one ofq levels. For a particular technology and
device architecture, we choose a parameter` that defines
the maximal difference (in discrete levels) between the target
level and the programmed level. So if the target level is
x ∈ {0, . . . , q − 1}, the programming outcome can be one of
the levels in{x − `, x − ` + 1, . . . , x − 1, x} (if x < ` we
consider only the non-negative elements in the set). The case
with the program outcome equals the targetx is the no-error
case. In addition, we define a code block ofn cells, out of
which at mostt cells have asymmetric errors of magnitude
limit `. A general coding scheme to allow programming
inaccuracies in a variety of scenarios thus consists of four
integer parameters:

• q the code alphabet size
• n the code block size
• ` the maximum tolerated error magnitude
• t the maximum number of symbols in a code block with

non-zero error values

A coding-theoretic framework to address asymmetric limited-
magnitude errors with the parameters above has been proposed
in [3]. Next we provide a brief summary of the construction,
encoding and decoding of such codes.

B. Construction, encoding and decoding

The most favorable property of the codes from [3] is that
they are obtained by reducing the problem of asymmetric
limited-magnitude error correction, to the well-studied prob-
lem of coding for symmetric errors (with different parameters).
In Construction 1 below, a codeC that correctst asymmetric
limited-magnitude errors is obtained by employing a codeΣ,
defined over a smaller alphabet, that correctst symmetric
errors.

Construction 1. Let Σ be a code over the alphabetQ′ of size
`+ 1. The codeC over the alphabetQ of sizeq (q > `+ 1) is
defined as

C = {x = (x1, . . . , xn)∈ Qn : x mod (`+ 1)∈Σ} .

In other words, the codewords ofC are the subset of the length
n vectors overQ that are mapped to codewords ofΣ when their
symbols are reduced modulo`+ 1.

The way codes for asymmetric limited-magnitude errors are
constructed, encoded and decoded is best explained with an
example.

Example 1.LetΣH be the binary Hamming code of lengthn =
2m − 1, for some integerm. First we define the codeCH in the
way of Construction1.

CH = {x = (x1, . . . , xn)∈ Qn : x mod 2 ∈ΣH} .

By the properties ofΣH, the codeCH corrects a single (t = 1)
asymmetric̀ = 1 limited-magnitude error. As for encoding,
when the code alphabet size isq = 2b, for some integerb,
Figure2 below describes a simple encoding function fromnb−
m information bits to codewords ofCH overQ. In Figure2 (a),
nb − m information bits are input to the encoder. The encoder
then uses a binary Hamming encoder to encoden − m of the
information bits into a lengthn Hamming codeword (Figure2
(b)). Finally, in Figure2 (c), eachq-ary symbol of the codeword
x ∈CH is constructed fromb bits using the usual binary-to-
integer conversion, the top row being the least-significantbits
of xi ∈ Q.

(a) (b)

(c)

n n

m

b b
n(b − 1) info n(b − 1) info

n − m info n − m infom parity ∈ ΣH

xi ∈ Q =
{

0, 1, . . . , 2b − 1
}

lsb

msb

Figure 2. Encoding Procedure forCH

Decoding is carried out by using a Hamming decoder on the
top row to find the limited-magnitude error location and mag-
nitude (for binary Hamming codes the magnitude is always1).
The top-row word is notcorrected by the Hamming decoder, but
rather the error magnitude is subtracted from theQ-ary wordy

to obtain a decoded codeword. To recover the information bits
after decoding, theQ symbols are converted back to bits with
the standard mapping, and them parity bits are discarded.

Despite its simplicity, Construction 1 was shown to provide
the specified correction capability with small amounts of
redundancy. In particular, the redundancy is smaller than any
known code for related error models (includingq-ary codes
for symmetric errors), and the resulting code rate is asymp-
totically optimal for most useful parameter combinations [3].
Implementing the new codes in a multi-level flash device does
not require significant hardware resources. In fact, given that
asymmetric limited-magnitude codes use standard symmetric-
error correcting codes as building blocks, their implementation
will be very similar to the way error-correcting codes are

already used in flash controllers. In Figure 3, a block sketchof
implementation is included. The readings from the flash cells
are passed modulò+ 1 to the decoder of an error-correcting
code for symmetric errors over an alphabet of size`+ 1. The
error estimates from the decoder are then subtracted from the
original symbols over the size-q alphabet.

A/D

ECC

DECODER

MODULO

User

Bits

Alphabet

Converter

Figure 3. Proposed flash architecture with asymmetric limited-
magnitude error-correcting codes.

IV. FLASH PROGRAM MODEL AND SPEED-UP ESTIMATES

To actually utilize the proposed asymmetric limited-
magnitude codes for write speed-up, a way to appropriately
choose the code parameters is needed. Foremostly, given the
number of levelsq, how large should̀ be for significant
reduction in program time? An attempt to answer that question
is made with the aid of an analytic model of flash program
sequences. A program sequence is applied to move a cell from
initial level I0 to target level IF. According to the model,
starting fromi = 0, each program iterationi starts from level
Ii, and targets levelIF. The level change due to the pulse
applied at iterationi is an exponentially distributed random
variable with aλ parameter that depends on the difference
IF − Ii. The sequence terminates when it reaches a level that
is higher than IF − ∆, where ∆ is a prescribed accuracy
parameter. The way the distribution parameterλ is chosen (for
a given target incrementIF − Ii) is to fix the probability of
over-programming (shooting overIF) to some small constant
ε. This criterion mimics a major consideration of real program-
sequence designs to minimize the probability of the undesired
over-shoot event. This model can now be used to compare the
expected program time with and without codes for asymmetric
limited-magnitude errors. When such codes are employed, the
accuracy parameter∆ becomes larger, proportionally to the
magnitude parameter̀. So by comparing the expected times
for different` values (including the casè= 0 when no code
is used), one can obtain an estimate on the time required to
program the cell to a level that will guarantee correct reading.
The median1 savings in program time, according to the model,
is given by

log(`+ 1)

log(q/2)
,

1The median is taken over all possible values ofIF

and are plotted in Figure 4 for cells withq = 32 levels for
various values of̀ .

1 2 3 4

20%

40%

`

% Savings

Figure 4. Percentage of program-time savings as a function of the
code’s magnitude limit parameter`, with q = 32.

As seen in Figure 4, even small` values (compared toq)
suggest significant savings. On the other hand, increasing`
beyond some point exhibits diminishing returns and does not
significantly contribute to increased savings in programming
time. A similar conclusion can be reached experimentally from
the shape of the curves in Figure 1. Thus both analytical and
experimental evidence motivate the application of asymmetric
limited-magnitude error-correcting codes (with small`), as
clearly codes for symmetric errors would consume much
more redundancy, without significant return in write speed-up.

Part 2: Codes for Secure Erasure of Storage Devices

V. CODES FORDATA SECURITY

When the stored data is very sensitive, leakage of even a few
bits of information may be detrimental. In such cases, failure
to physically erase secret bits must not reveal any information
on the data to an adversary with access to the device after
erasure. The task of storing data with resiliency to leakage
of physical bits can be addressed with a coding-theoretic
framework. In the ”normal” use of error-correcting codes,
redundancy is added to information such that restrictions on
the stored code vectors can aid in detecting and correcting
errors. When codes are used for security, their redundancy
is used torandomizethe data, such that an adversary with
partial access to the code vector learns nothing about the secret
data. The latter framework is called codes for wire-tap channel
II [5], studied mainly in the context of secure communication
in the presence of a wire-tapper. The general framework of [5]
is now presented by an example.

Example 2.Suppose we have a single bit of information, and
we want to store it asn physical bits, such that an adversary
with access to anyn − 1 or fewer bits can gain no information
on the bit. Then the following coding system is shown to be the
solution.
Encoding
We draw at random a lengthn vector with even parity (or
alternatively, a random codeword from the lengthn parity
code). Then, the secret data bit is added modulo2 to the first
coordinate of the random vector.

Decoding
The legitimate reader of the data sums the elements of the stored
vector modulo2 (alternatively, computes the syndrome of the
read vector with respect to the parity code) and recovers the
secret.
Wire-Tapping
The wire-tapper observesn − 1 bits of the stored vector. The
number of ones out of thesen − 1 bits may be either even or
odd. However, in both cases, the unavailable bit may be either
a zero or a one, and each case reflects a different value of the
secret bit. Hence with seeingn − 1 bits the adversary cannot
distinguish the two possibilities of the secret.

In the problem of secure storage erasure considered here, the
wire-tapper is an adversary with access to bits that remain after
physical erasure. Different parameters (number of information
bits, block length, number of bits accessible by the adversary)
are obtained by replacing the parity code in Example 2 with
a different error-correcting code with different parameters. In
such a case for encoding we take a random codeword from the
chosen code, to which we add thek information bits at thek
left positions. For decoding we simply compute the syndrome
with respect to the chosen code.

VI. W IRE-TAP CODES AND DATA STORAGE

Wire-tap codes that protect against adversaries with partial
access have the usual parametersn and k to denote the code
block length and dimension, respectively. In addition, thelevel
of security of the codes is expressed in the parameterµ: the
number of symbols accessible by the adversary for which the
code guarantees complete equivocation. Characterizing a code
as an[n, k,µ] wire-tap codes thus provides security guarantees
that are most useful for evaluating security when the properties
of the physical erasure process are known.

A. Design objectives

To generalize the scheme described in Example 2 to get an
[n, k,µ] wire-tap code with different choices of parameters,
one needs to employ an[n, n− k] error-correcting code whose
dual code has minimum Hamming distance ofµ + 1 [6]
(In Example 2, fork = 1 the [n, n − 1] parity code was
used. The dual of the parity code is the repetition code with
minimum Hamming distancen that providesµ = n − 1
wire-tap security.). The intuition behind the duality of error-
correcting and wire-tap codes is as follows. Error-correcting
codes requireparity-checkmatrices having column indepen-
dence to achieve high-weight codewords. Wire-tap codes, on
the other hand, require column independence in theirgenerator
matrices, such that the code is unrestricted on the coordinates
visible to the adversary. Hence in general the problem of
finding good wire-tap codes can be reduced to finding good
error-correcting codes. Nevertheless, to allow fast readsand
writes of secret data, the wire-tap code needs to minimize the
encoding and decoding complexities, while achieving highµ

security guarantees. In a typical secure storage device thewire-
tap code will only be used to protect a small (but dynamic)
fraction of the storage that contains encryption keys, therefore
the benefit of reducing the encoding and decoding complex-
ities prevails over the natural coding-theoretic emphasison
minimizing the code redundancy. This sets the design objective
to be infinite families of wire-tap codes that have optimal

(lowest possible) encoding and decoding complexities given
their security parameterµ.

B. Low complexity wire-tap codes

In wire-tap coding, both the encoding and decoding com-
plexities are directly related to the density of the code parity-
check matrix. This is in contrast to error-correcting codes,
where low-density parity-check matrices do not readily trans-
late to low encoding and decoding complexities. Therow-
densityof a systematic binary parity-check matrixH is defined
to be the total number of ones divided by the number of rows
in H. The row-density is interpreted as the average number
of encoding/decoding operations per information bit. It isnot
hard to see [2] thatµ+ 1 is a lower bound on the row-density
of H with wire-tap security ofµ. Wire-tap code constructions
with optimal row-densities ofµ+ 1 are next presented, based
on the work of [2].

The first code family, specified in Construction 2 below,
gives [k(k + 1)/2, k, k − 1] wire-tap codes, for anyk. The
construction is best understood through the example that
follows.

Construction 2. Let Ak = {1, 2, . . . , k, k + 1} be the set of
integers between1 andk + 1 (inclusive), andSk = {{i, j} :
i ∈ Ak, j∈ Ak, i 6= j} be the set of unordered pairs fromAk,
with |Sk| = k(k + 1)/2. Let P(k) be the(k + 1)× k(k + 1)/2
matrix whose columns correspond to the elements ofSk: each
column has exactly two ones, at locationsi, j specified by the
pair of the given column (the otherk − 1 elements are zeros).
The parity check matrixH(k) of the wire-tap code is obtained
from P(k) by erasing any single row.

Example 3.For k = 4 we haveAk = {1, 2, 3, 4, 5} and

Sk = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},

{3, 4}, {3, 5}, {4, 5}}

Then the matrixP(4) is given by

P(4) =

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

which after erasing the top row results in

H(4) =

1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

(1)

The matrixH(4) in (1) defines a[10, 4, 3] wire-tap code. The
row-density of the code is4.

The matrix H(k) resulting from Construction 2 hask ones
in each row. Therefore, the row-density ofH(k) is k. Any row
combination ofH(k) has Hamming weight at leastk (proof
omitted), hence Construction 2 yields wire-tap codes withµ =
k − 1 and optimal encoding and decoding complexities.

For better security with a slightly higher (but still optimal)
density, we include the following Construction 3 for[k(k +
1)(k+ 2)/6, k, k(k+ 1)/2− 1] wire-tap codes, for anyk > 4.

Construction 3. Let Bk = {1, 2, . . . , k, k + 1, k + 2} be the
set of integers between1 and k + 2 (inclusive), andTk =
{{i, j, l} : i ∈ Bk, j∈ Bk, l ∈ Bk, i 6= j, j 6= l, l 6= i, } be the set
of unordered triples fromBk, with |Tk| = k(k + 1)(k + 2)/6.
Let Q(k) be the(k + 2) × k(k + 1)(k + 2)/6 matrix whose
columns correspond to the elements ofTk: each column has
exactly three ones, at locationsi, j, l specified by the triple of
the given column (the otherk − 1 elements are zeros). The
parity check matrixH(k) of the wire-tap code is obtained from
Q(k) by erasing any two rows.

To show that using triples in Construction 3 gives similarly
optimal security given the row-density, we need to prove
that any row linear combination ofH(k) has weight at least
k(k + 1)/2, the weight of a row ofH(k). Obtaining parity-
check matrices combinatorially by taking all possible pairor
triple combinations endows the nice property that the weight
of each row linear combination depends only on the number
s of summed rows. Moreover, this weight can be derived in
closed form, and then simple calculus allows to prove that all
possible row combinations give weights at least as large as the
weight of an individual row. This property is formally stated in
Lemma 1 below, which is the main tool to prove the security
properties of Construction 3 (refer to [2] for more details).
Lemma 1.Let x be a linear combination ofs rows fromH(k),
where1 6 s 6 k. Then the Hamming weight ofx is given by

wH(x) = fk(s) , s(k+2−s
2) + (s

3) (2)

The weight of a linear combination of rows ofH(k) depends
only ons, the number of rows in the combination, and is given
by the functionfk(s) in (2).

The same construction technique can be applied beyond pairs
and triples to higher order combinations, using Lemma 1 to
find the values ofk for which the resulting codes give optimal-
complexity wire-tap codes.

VII. C ONCLUSION

In the two parts of the paper, new coding frameworks were
developed to promote important storage features beyond data
integrity and reliability. The codes are tailored to fast storage
devices, flash based and potentially others, by optimizing
the code designs to meet specific properties and constraints
of such storage devices. Presented here through relatively
simplified models, additional work is needed to adapt the new
frameworks to more realistic implementation scenarios.

REFERENCES

[1] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades using
a predictive method,” inproc. of the IEEE International Symposium on
Circuits and Systems, 2005, pp. 2148–2151.

[2] Y. Cassuto and Z. Bandic, “Low-complexity wire-tap codes with security
and error-correction guarantees,” inProc. of the IEEE Information Theory
Workshop, Dublin, Ireland, 2010.

[3] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multi-level flash
memories,”IEEE Transactions on Information Theory, vol. 56, no. 4, pp.
1582–1595, 2010.

[4] M. Grossi, M. Lanzoni, and B. Ricco, “Program schemes formultilevel
Flash memories,”Proceedings of the IEEE, vol. 91, no. 4, pp. 594–601,
2003.

[5] L. Ozarow and A. D. Wyner, “Wire-tap channel II,”At&T Bell Labora-
tories Technical Journal, vol. 63, no. 10, pp. 2135–2157, Dec. 1984.

[6] V. Wei, “Generalized Hamming weights for linear codes,”IEEE Trans-
actions on Information Theory, vol. 37, no. 5, pp. 1412–1418, 1991.

