
1

Switch Codes: Codes for Fully Parallel
Reconstruction

Zhiying Wang, Member, IEEE, Han Mao Kiah, Yuval Cassuto, Senior Member, IEEE, and
Jehoshua Bruck, Fellow, IEEE

Abstract— Network switches and routers scale in rate by
distributing the packet read/write operations across multiple
memory banks. Rate scaling is achieved so long as suffi-
ciently many packets can be written and read in parallel.
However, due to the non-determinism of the read process,
parallel pending read requests may contend on memory
banks, and thus significantly lower the switching rate. In this
paper we provide a constructive study of codes that guar-
antee fully parallel data reconstruction without contention.
We call these codes “switch codes”, and construct three
optimal switch-code families with different parameters. All
the constructions use only simple XOR-based encoding
and decoding operations, an important advantage when
operated in ultra-high speeds. Switch codes achieve their
good performance by spanning simultaneous disjoint local-
decoding sets for all their information symbols. Switch codes
may be regarded as an extreme version of the previously
studied batch codes, where the switch version requires
parallel reconstruction of all the information symbols.

Index Terms— Distributed-storage codes, network
switches, batch codes, combinatorial designs.

I. INTRODUCTION

Consider a shared memory system required to serve
write and read requests at a certain rate. In the write path,
k fixed-size packets arrive each time unit, and need to be
stored in the memory system. In the read path, each time
unit the memory system needs to output a requested set of
k previously written packets. To meet these requirements,
the system uses n banks of physical memory, where each
memory bank works at a rate of one packet write and
one packet read each time unit. The design objective

Zhiying Wang is with the Center for Pervasive Communications and
Computing, University of California Irvine, Irvine CA, USA (email:
zhiying@uci.edu).

Han Mao Kiah is with the School of Physical and Mathemat-
ical Sciences, Nanyang Technological University, Singapore (email:
hmkiah@ntu.edu.sg).

Yuval Cassuto is with the Department of Electrical Engineering,
Technion – Israel Institute of Technology, Haifa Israel (email: ycas-
suto@ee.technion.ac.il).

Jehoshua Bruck is with the Department of Electrical Engineer-
ing, California Institute of Technology, Pasadena CA USA (email:
bruck@caltech.edu).

The work of Z. Wang was partially supported by NSF grant CCF-
1566587. Part of this work was done when H. M. Kiah was a
postdoctoral research associate at the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign. The work for H. M. Kiah
has been supported in part by Singapore Ministry of Education (MOE)
Tier 1 grant 2016-T1-001-156. The work of Y. Cassuto was supported
in part by the Israel Science Foundation joint ISF-UGC program.
The authors wish to thank Omer Shaked for his contributions to the
development of the switch-code model. Part of the results in the paper
were presented at the 2013 and 2015 IEEE International Symposia on
Information Theory held in Istanbul and Hong Kong, respectively.

of the system is to minimize the number of banks n
that are needed to fulfill the above mentioned read/write
specifications. Figure 1 gives a pictorial description of
such a memory system.

The main application for such a memory system is
within network switches (and similarly routers), wherein
the memory system is used as a switching fabric writing
packets upon their inbound arrival, and later reading
them for their outbound transmission. Two features of the
abstract system model are especially fitting for switching
applications: 1) the symmetry between read and write
rates – each at k packets per time unit, and 2) flexibility
to choose the k read packets from the currently stored
packets. The first feature is required for flow conservation
in the switch, and the second provides flexibility to
accommodate priorities, congestion, blocking, and other
factors affecting the packet read schedule.

Write Controller

Read Controller

input packets

banks

output packets

Fig. 1. A memory system supporting write and read of k packets per
time unit, and employing n physical memory banks.

The main challenge faced by the switch memory
system is contention between the requested packets on
the bandwidth of the memory banks. Simply put: if a
bank is used to output one of its packets in a time unit,
then it cannot output another packet in the same time
unit. For example, consider the simple case of k = 2
packets used with n = 2 banks. This scenario is depicted
in Figure 2. Packets are marked by letters progressing
lexicographically with arrival time. Packets arrived in the
same time unit are called a generation. Each generation
contains k = 2 packets and are stored in the n = 2
banks. So for the write path n = 2 banks are sufficient.
However, it is clear that in the read path the system of
Figure 2 does not work, because requests like (A,E) or
(D,F) cannot be served at a single time unit. From the

2

A B
C D

E F

Write Controller

Read Controller

G H

Fig. 2. Packet placement in a memory system for k = 2 input/output
packets, with n = 2 memory banks. 2 banks are not sufficient to allow
reading any 2 packets without contention.

example of Figure 2 it is clear that supporting arbitrary
packet requests in the read path necessitates using n > k
banks, while introducing redundancy to the write path in
the form of writing more than k packets each time unit.

Minimizing the redundancy to meet the requirements
for the system in Figure 1 is best done with a precise
coding model. Under such a model, the packets written
to memory are computed by some encoder function, in a
way that the packets requested for read can be computed
by some decoder accessing at most one packet per bank.
Such codes are the topic of this paper, and we refer to
them as switch codes. In the coding formulation of the
switch memory problem we use the terms packet and
symbol interchangeably. In that respect, writing a packet
to the i-th memory bank is synonymous to placing a
symbol at the i-th coordinate of the codeword. To specify
switch codes, it is useful to first discuss the desired
features we seek in our codes.

1) Redundancy measure. We choose the most natural
measure of redundancy, which is n− k.

2) Domain of encoding function. Each packet writ-
ten to the memory is obtained in general as the
output of some encoding function. In the paper
we restrict ourselves to encoding functions that are
intra-generation and fixed. Intra-generation means
that only the k incoming packets are used as input
arguments to the encoding function. Fixed means
that we use the same encoding function for every
generation of k packets. We note that more general
encoding functions may in addition use the packets
already stored in the system, and may vary the
encoding according to the instantaneous state of the
system.

3) Request flexibility. Specification of which sets of
k packets must be decoded in a single time unit. In
the paper we consider two such specifications: one
is the strongest model guaranteeing any k of the
stored packets; another is a model we call the one-
burst request model, which finds natural motivation
when the memory system is used in a network
switch. More details on the one-burst model are

given in Section IV.
4) Complexity metrics. The high packet read/write

rates considerably limit the complexity afforded by
the encoder and decoder. In the paper we seek
codes that minimize three types of complexity: 1)
encoding degree, the number of input packets used
to compute a written packet, 2) decoding degree,
the number of stored packets used to reconstruct
a requested packet, and 3) arithmetic complexity,
where we restrict the codes to perform only simple
binary exclusive OR (XOR) operations.

The switch codes we construct in the rest of the paper are
ones embodying the above features. In particular, consider
the case where k requested symbols are from k different
generations. Since the encoder is intra-generation, decod-
ing one requested symbol involves accessing a set of
helper symbols from the corresponding generation. By the
constraint of accessing at most one symbol per memory
bank, the helper symbols for the k requested symbols
should all be disjoint. It is clear that for fixed encoding
functions, if requests from k generations can be decoded
by disjoint helper symbols, so can those from less than
k generations. Therefore, we define a switch code as a
code where the requested k symbols are decoded from
disjoint sets of codeword symbols.

A. Known work and the contributions of the paper

A previously studied coding model called batch codes
is especially useful for this paper’s interest in switch
codes. First proposed by Ishai et. al [1], batch codes seek
low-redundancy storage that allows flexible simultaneous
data reconstruction. The batch-code model is very broad,
so we focus here on the particular cases that can give
switch codes. Intra-generation switch codes for the any-k
read flexibility model can be readily obtained from a sub-
class of batch codes called primitive multiset batch codes,
PMBC for short. The primitive feature means that the
write path is also limited to one packet per bank (like the
read), and the multiset feature allows requesting the same
symbol index from different write generations. It is clear
that both of these features are necessary to obtain any-
k switch codes. In addition, batch codes specify distinct
numbers of packets for the write and read paths, that is
kin packets to write and kout packets to read each time
unit1. So altogether a PMBC with kin = kout = k gives
a switch code for the any-k read flexibility model. As a
result, our construction in the first part of the paper in
Section III is indeed a PMBC with kin = kout = k.

The principal contribution of Section III is in fact not
the construction itself, which is a simple concatenation of
the well-known simplex code. Rather, our contribution is
an explicit deterministic decoding algorithm that achieves
guaranteed success with strictly optimal (not just in the
limit) redundancy given the average encoding degree.

1In [1] kin is denoted n and kout is denoted k.

3

Moreover, the algorithm has decoding degree only 2.
Previously a randomized decoder was only known2 [1]
to achieve the same decoding capability in the limit and
its success is promised only with high probability. Two
more PMBCs are proposed by Ishai et. al in [1]: a non-
binary Reed Muller code and one called subcube code.
These constructions, however, suffer from much higher
complexity: high encoding and decoding degrees, and
high arithmetic complexity in the case of the non-binary
Reed Muller code. A complete comparison is provided in
the closing of Section III. More recent work on PMBCs
includes [2], [3], which offer new constructions but not
for the case kin = kout.

In Section IV we move away from known PMBCs
to construct switch codes with constant encoding and
decoding degrees. That is, for any k we restrict each
coded packet to be computed from at most 3 incoming
packets, and each output packet to be computed from
at most 3 stored packets. These restrictions come from
the practical difficulty to XOR together many packets
at the extremely high read/write rates found in network
switches. We choose the constant to be 3 because the case
of degree 2 has a trivial optimal solution of storing the
XORs between every pair of the k incoming packets. Low
encoding degrees imply a lower bound on redundancy,
so even though our codes in Section IV have optimal
redundancy for their encoding degrees, the redundancy
is high compared to our codes in Section III. We note
here that the codes in Section IV are constructed for a
weaker read-flexibility model we call one-burst requests.
One-burst requests are requests for k arbitrary packets
with the only restriction that at most one packet index is
requested from multiple generations. As constant-degree
all-k switch codes seem hard to come by, one-burst
codes provide similar utility in natural realizations of
the memory system in switches. In normal use, the read
requests to the switch memory are queued, and then one-
burst requests allow shortening the longest queue at each
time unit, which minimizes the worst-case read delay.
The model of one-burst requests is further justified in
Section IV using a simple quantitative model of a queued
switch memory.

In a broader sense switch codes are related to lo-
cally decodable codes (e.g., [4]), because the need to
simultaneously reconstruct k symbols from disjoint code
indices generally implies that each information symbol
can be recovered locally from few code symbols. Locally
decodable codes in general do not qualify as switch codes,
but they go in this direction if they satisfy the smoothness
property: for any information symbol, all the local queries
used to decode that symbol cover the n codeword symbols
uniformly. With that property local recoverability can
be extended from individual symbols to a sequence of
multiple requested symbols. A probabilistic decoder only
needs to leave sufficiently many codeword symbols to

2The algorithm in [1] is given for a code more general than simplex
code, called subset code.

recover the latter information symbols, and thanks to
uniformity, success with high probability can be proved
without care to which symbols are chosen for each recov-
ered symbol [1]. However, the smoothness property is not
tight enough to compete with the parameters we achieve
here. Moreover, probabilistic decoding is considered for
such codes, while for switch codes deterministic decoding
is required.

Finally switch codes are related to local codes with
multiple repair alternatives (e.g. [5]–[8]), which were
proposed for distributed storage, but known codes for
that model have a big gap between the number of input
symbols kin and the number of requested symbols kout.

II. DEFINITIONS AND NOTATIONS

In the rest of the paper, we use [i] to denote the set
{1, 2, . . . , i} for i ∈ N+, and [i, j] to denote the set {i, i+
1, . . . , j} for i 6 j ∈ Z. We use boldface to represent a
vector. For a vector x = (x0, . . . , xn−1), we represent by
w(x) =

∑n−1
i=0 xi. For a set S, its cardinality is denoted

by |S|. For a vector x = (x0, . . . , xn−1) and a subset
S = {s1, . . . , s|S|} ⊆ [0, n − 1], where 0 6 s1 < · · · <
s|S| 6 n − 1, we denote by xS = (xs1 , . . . , xs|S|) the
vector of elements with coordinates in S. We use log to
denote logarithm of base 2.

This paper’s definition of a switch code strongly builds
on a previously defined object called primitive multiset
batch code (PMBC) [1], which we now define using
terminologies related to the switch code problem. Infor-
mally, an (n, k,R) PMBC over the alphabet X encodes
an information vector u = (u0, . . . , uk−1) of length k
into a codeword vector x = (x0, . . . , xn−1) of length n.
Let L = (l0, . . . , lk−1) be the request vector, where the i-
th information symbol is requested li times, i ∈ [0, k−1].
Denote by w(L) =

∑k−1
i=0 li the request weight. Note that

the ordering of the k requested symbols does not matter,
hence we assume wlog that the first l0 requested symbols
are u0, the next l1 requested symbols are u1, and so on.
For any request of weight w(L) = R, there exist disjoint
sets S1, . . . , SR ⊆ [0, n−1], such that ui can be recovered
from the codeword symbols indexed by Sj , namely, xSj ,
for any i ∈ [0, k − 1], j ∈ [

∑i−1
t=0 lt + 1,

∑i
t=0 lt]. More

formally, a PMBC can be defined as follows.

Definition 1 (PMBC) An (n, k,R) PMBC on the alpha-
bet X consists of

1) an encoding function

ϕ : X k → Xn,

2) a decoding set function

ξ : L → S,

where L = {(l0, . . . , lk−1) :
∑k−1
i=0 li = R}

is the set of requests of weight R, and S =
{(S1, S2, . . . , SR) : Sj ⊆ [0, n − 1], Sj ∩ Sj′ =

4

∅, for all 1 6 j 6= j′ 6 R} is the collection of R
disjoint sets, and

3) decoding recovery functions

ψS,i : X |S| → X .

The functions satisfy the following: for all inputs u ∈ X k
and request vectors L = (l0, . . . , lk−1) ∈ L, if ϕ(u) = x
and ξ(L) = (S1, . . . , SR), then for all i ∈ [0, k− 1], li 6=
0, and all j ∈ [

∑i−1
t=0 lt + 1,

∑i
t=0 lt],

ψSj ,i(xSj) = ui.

We call k the input size or the code dimension, and R
the request weight. Now we define switch codes as the
following special case of PMBC.

Definition 2 (switch code) An (n, k) switch code is an
(n, k,R = k) PMBC.

Note that a PMBC with R = k is sufficient to
guarantee read success for the abstract model of Fig-
ure 1. This is because any k packets previously stored
in the memory system can be specified as k (information
symbol, generation) pairs, and the disjointedness of the
decoding sets allows recovering symbols from differ-
ent generations independently without contention. More
specifically, when multiple requested packets have the
same information symbol index i but different generation
index g1, g2, . . . , gli , they correspond to li times request
for ui in PMBC. For any 1 6 x 6 li, one can recover the
i-th symbol in generation gx using symbols in Sj from the
same generation, where j can be set as j =

∑i−1
t=0 lt +x.

As the sets S1, . . . , Sk are disjoint, no read contention
occurs.

Even though there may be other codes that also achieve
read success for the model in Figure 1 (e.g., one may
code across generations), for the scope of this paper,
we only consider PMBC as our switch codes. Other
coding schemes are left as an interesting further research
direction.

In addition to the restriction R = k, the switch codes
we present here are defined over binary alphabets, and
all encoding and decoding operations are simple bit-wise
XOR operations. For simplicity we denote the binary
XOR operation by “+”. Accordingly, we later refer to the
information and codeword symbols as bits, while having
in mind that the constructions can be trivially extended
to packets with an arbitrary number of bits.

For a linear code, if a codeword symbol is a linear
combination of d information symbols, then its encoding
degree is d. A codeword symbol is called systematic or
a singleton if it equals to an information symbol, hence
having d = 1. For some code and a request, if there
exist disjoint sets to recover the requested symbols, then
we say there is a solution to the request, or the request
is solvable. The set of codeword symbols indexed by
Si is called helpers or a helper set for the requested

information symbol. The largest helper set among the
requested symbols is called the decoding degree.

Example 3 Consider the simple (n = 3, k = 2) switch
code defined by the encoding function (x0, x1, x2) =
(u0, u1, u0 + u1). For the request vector (l0, l1) = (1, 1)
the decoding sets are S1 = {0} and S2 = {1}. The
decoding functions are u0 = x0, u1 = x1. The last
symbol x2 is not used for this decoding instance. Consider
a second request vector (l0, l1) = (2, 0), and then the
decoding sets are S1 = {0} and S2 = {1, 2}. The
decoding functions are u0 = x0, u0 = x1 + x2.

A. Redundancy lower bound given encoding degree

Consider a linear switch code. Suppose the encoding
degree of codeword symbol indexed i is denoted di.
The average encoding degree is d̄ = 1

n

∑n−1
i=0 di. To

reduce the implementation complexity of the codes, it
is desirable that the code symbols have low encoding
degrees. However, this reduction of complexity comes
with an inherent cost of higher code redundancy. The
following proposition gives a precise formulation of this
fact.

Proposition 4 An (n, k) switch code with average en-
coding degree d satisfies

n >
k2

d
.

Proof: Consider a request where an information
symbol is requested k times. Since we have k disjoint
solutions for this information symbol, it has to appear
in k codeword symbols. Summing over all k different
information symbols results in a total of k2 appearances.
Therefore, the sum of degrees satisfies

∑n−1
i=0 di > k2.

And the statement holds for the average degree.

Our focus in the paper is linear switch that are
systematic, that is, the k information symbols appear
as codeword symbols. Suppose that the non-systematic
symbols have a constant encoding degree d. Therefore,
we have k systematic symbols with degree 1, and n− k
non-systematic symbols with degree d. Then we have the
following redundancy bound.

Corollary 5 A systematic linear switch code with con-
stant encoding degree d for non-systematic symbols sat-
isfies

n− k >
k(k − 1)

d
.

The codes we present in the sequel are shown to be
optimal with respect to the bound of Proposition 4 or
Corollary 5.

5

III. OPTIMAL ALL-k READ SWITCH CODES

In this section we construct the first family of switch
codes with optimal redundancy given the average encod-
ing degree, which is O(log k). The code is binary, and
the decoding degree is r = 2. The key component in the
construction is an optimal guaranteed-decoding PMBC
constructed from the well-known simplex code [9], and
concatenated to obtain a switch code satisfying R = k.
The (optimal) codeword length is n = O(k2/ log k).

We first construct binary PMBC from simplex codes,
and get codes with length 2k − 1, dimension k, and
decoding degree 2. We then show that this construc-
tion solves arbitrary requests of weight 2k−1. From this
construction we obtain an R = k switch code through
simple concatenation. Lastly, we prove the optimality of
our construction and compare to previously known ones.

An (N,K) simplex code is constructed as follows. For
every non-empty subset of [0,K − 1], form a bit in the
codeword that is the XOR of the elements in the subset.
Hence, a simplex code of dimension K, K > 1, has
codeword length N = 2K − 1.

Construction 0 (PMBC from simplex code) Fix R such
that logR is an integer. A (2R−1, 1+logR,R) PMBC is
obtained from the (N = 2R− 1,K = 1 + logR) simplex
code.

Before proving that Construction 0 indeed gives a PMBC
with request weight R, we note that in itself this con-
struction is not very useful because the code length is
exponential in the input size. What does turn out to be
useful is the following concatenation of Construction 0.

Construction 1 (switch code from simplex concatena-
tion) Let K > 2. Define m = b2K−1/Kc and k =
mK. Consider m groups of K information symbols. A
(m(2K − 1), k) switch code can obtained by concatenat-
ing m codewords of the (2K − 1,K) simplex code.

Suppose the generator matrix of the (N = 2K − 1,K)
simplex code is given by (IK , G), where IK is the K×K
identity matrix, and G is a K × (N −K) matrix. Then
the code given by Construction 1 has generator matrix

IK 0 · · · 0 G 0 · · · 0
0 IK · · · 0 0 G · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · IK 0 0 · · · G

 .

We next show that the (N,K) simplex code in Con-
struction 0 solves an arbitrary request of weight R =
2K−1 = N+1

2 and has decoding degree 2. For example,
the code (u0, u1, u0+u1) in Example 3 is a simplex code
with K = 2, and any request of weight 2K−1 = 2 can
be solved.

In the following, we use the non-empty subset T ⊆
[0,K − 1] to represent the corresponding bit in the

ø0 ø1 ø2 {0,1} {0,2} {1,2}

{0} {1} {2} {0,1,2}
Odd Partition

Even Partition

Fig. 3. A bipartite graph on K = 3 input bits. Every edge corresponds
to a possible helper pair. The set of solid-line edges is a solution to the
request L = (4, 0, 0), or four times the input bit {0}.

codeword of the simplex code. (The sets here pertaining
to the simplex code should not be confused with the
decoding sets in Definition 1.) The systematic bits are
the sets of size one, namely, {j} for any j ∈ [0,K − 1].
By abuse of notation, we write “+” to denote the XOR of
two bits, or equivalently, the symmetric difference of two
sets. It is clear that any codeword bit T can be recovered
from the XOR of the two bits T+T ′ and T ′, for arbitrary
T ′. Therefore, the simplex code can recover any code bit
from up to 2 other code bits. In particular, any information
bit can be computed from 2 codeword bits.

We observe from the following graphical view that
2K−1 is an upper bound on the request weight for the
simplex code. Consider a graph where every non-empty
subset T is a vertex, and every edge (T, T ′) corresponds
to a solution to an information bit, namely, |T +T ′| = 1.
Also add to this graph K dummy vertices corresponding
to the empty set, denoted by φi, i ∈ [0,K−1], along with
K edges ({i}, φi). See Figure 3 for an example. First,
notice that this graph represents all possible solutions
of information bits with decoding degree no more than
2. Next, notice that this is a bipartite graph where the
partition of the vertices is determined by the parity of |T |.
The even partition is of size 2K−1 + K − 1 (including
K copies of the empty set), while the odd partition is of
size 2K−1. A disjoint solution for some request vector can
be viewed as a matching in the graph, and apparently the
size of the matching, or the request weight, cannot exceed
2K−1.

The following definitions are useful to describe the
decoder of the simplex code.

Definition 6 A request vector L on K input bits is said
to be short if its weight satisfies

w(L) 6 f(K)
4
=

K

K + 1
2K−1.

Definition 7 A solution to a request vector is said to be
type I if singletons are not used in the solution, and the
decoding degree is 2.

For example, let K = 4, and consider a short request
L = (1, 1, 1, 1) of weight no more than f(K) =
32/5. Namely, every information bit is requested once.
It can be solved by the helper pairs ({0, 1, 2}, {1, 2}),
({1, 2, 3}, {2, 3}), ({2, 3, 0}, {3, 0}), ({3, 0, 1}, {0, 1}),
which is a type I solution, since no singletons are used.

6

ø

{0,1}

{0,2}

{1,2}

{0}

{1}

{2}

{0,1,2}

Fig. 4. Partitions on K = 3 input bits labeled I = {0, 1, 2}. Every
two parallel faces form a partition. For example, the face on the right
is A0 = {{0}, {0, 1}, {0, 2}, {0, 1, 2}} containing element “0”, and
the face on the left is A0. One can see that any edge connecting
the left and the right faces corresponds to a solution to the bit {0}.
Moreover, since the pair {∅, {1}} solves the bit {1}, we have that the
pair {δ−1

0 (∅), δ−1
0 ({1})} = {{0}, {0, 1}} also solves the same bit.

We later show in Lemma 12 that if K > 7, then a
short request has a type I solution. One important idea
in our decoder is that, we decompose a request vector as
the sum of short requests and the remaining request. We
solve the short requests by non-singletons, and solve the
remaining possibly with singletons. For K 6 7, we then
employed a computer search to determine the solutions
for this finite set of requests.

Definition 8 Let I be a set of integers of size K. For
each nonempty subset X of I , there is a corresponding
codeword bit in the simplex code on K inputs. For any
i ∈ I , we partition the collection of all subsets of I into
two classes:

Ai = {T ⊆ I : i ∈ T}, and Ai = {T ⊆ I : i /∈ T}.
(1)

Also define a mapping between them:

δi : Ai → Ai, T 7→ T \ {i}.

This mapping can be shown to be 1-1.

Figure 4 shows an example of the partitions on K = 3
inputs. The above partition forms a recursive structure
of the codeword bits. Furthermore, any solution to the
information bit {i} with decoding degree 2 must be a
pair

{T, δi(T)}, for some T ∈ Ai. (2)

Besides, if the information bit {j}, j 6= i, can be solved
by a pair {U, T} where U, T ∈ Ai, then it can also be
solved by the pair

{δ−1i (U), δ−1i (T)} = {U ∪ {i}, T ∪ {i}}.

We outline how to solve a request of weight 2K−1 in
a simplex code with an example.

Example 9 Consider a request vector

L = (42, 39, 36, 33, 31, 28, 27, 10, 10)

for K = 9, w(L) = 2K−1 = 256. Crucial to the proof is
that the entries in the request vector are in non-increasing

order. We write L as L = L1 + 2L2 + L3 with

L1 = (42, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0),
L2 = (0 , 19, 18, 16, 15, 14, 13, 5 , 5),
L3 = (0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0).

Lemma 12 below shows that L2 can be solved by type
I solution on K − 1 = 8 inputs, which we explain in
the next paragraph. This solution can then be duplicated
in the two partitions of A0 and A0, respectively. Thus
we can solve 2L2, while we use the singletons to solve
L3. Finally, we demonstrate in Theorem 13 that there are
sufficiently many pairs as in (2) still available for the
information bit {0} in the request vector L1.

To show that L2 has a type I solution, we view
L2 as a short request on K − 1 inputs and write
L2 = (19, 18, 16, 15, 14, 13, 5, 5). Again this is in non-
increasing order. Now consider

L′2 = (19, 18, 16, 16, 14, 14, 6, 6),

and write L′2 = L4 + 2L5, where

L4 = (19, 0 , 0 , 0 , 0 , 0 , 0 , 0),
L5 = (0 , 9 , 8 , 8 , 7 , 7 , 3 , 3).

Notice that if L′2 is type-I solvable, so is L2. We show L5

is type-I solvable using the induction base case in Lemma
12 on K − 2 = 7 inputs. In general if K − 2 > 7, L5

can be shown to be a short request on K− 2 inputs, and
thus has a type I solution using the induction hypothesis
in Lemma 12. Similar to the argument in the previous
paragraph, consider all codeword bits on the K−1 inputs
labeled I = {1, 2, . . . ,K−1}. The solution to L5 can be
duplicated in the two partitions A1 and A1, respectively.
Finally, we solve L4 using the remaining pairs as in (2),
which is proved in Lemma 10.

Our first lemma is a recursive construction of type I
solutions.

Lemma 10 Let L = (l0, l1, . . . , lK−1) be a request.
Set L′ = (0, dl1/2e, . . . , dlK−1/2e). If there is a type
I solution to L′ in A0, and 2w(L′) 6 2K−1 − l0 − K,
then there is a type I solution to L.

Proof: L′ has a type I solution. For every helper
pair {U, T} in this solution on K−1 inputs, we generate
two helper pairs on K inputs labeled [0,K−1], that solve
the same information bit: the first pair is

{U ∪ {0}, T ∪ {0}}, (3)

and both helpers belong to A0; the second is {U, T} and
both helpers belong to A0. Since U, T belong to a type I
solution, they are not singletons. Then {U∪{0}, T ∪{0}}
are not singletons either. Moreover, all the helper pairs are
disjoint. So we have a type I solution to the request 2L′.

Let B,C be the set of helpers for 2L′ generated in
A0, A0, respectively, which are both of size 2w(L′). No-
tice that the function δ0 defines a 1-1 mapping from B to

7

C, and accordingly from A0\B to A0\C. In other words,
if we pick any unused element T ∈ A0\B, then we have
T\{0} ∈ A0\C, and they can form the helper pair for
{0}. As a result, there are |A0\B| = 2K−1 − 2w(L′)
remaining ways to solve {0}, and K of them involve
singletons in either A0\B or A0\C. Hence the number
of helper pairs for {0} that do not use singletons is

|A0\B| −K = 2K−1 − 2w(L′)−K > l0, (4)

where the last inequality follows from the lemma assump-
tion. So we have a type I solution to L.

The following is a lemma on a small input size, and
forms the base case of our proof.

Lemma 11 Consider a simplex code with K input bits.

(i) There is a type I solution to any request of weight
2K−1 −K, for all 3 6 K 6 7.

(ii) There is a solution of decoding degree 2 to any
request of weight 2K−1, for all 2 6 K 6 7.

Proof: For any request vector L = (l0, . . . , lK−1),
assume l0 > l1 > . . . > lK−1 without loss of generality.
It suffices to demonstrate the claims in (i) and (ii)
for requests of weight exactly 2K−1 − K and 2K−1,
respectively.

(i) is proved by using Lemma 10 and computer search
(see details in the Appendix). When K = 3, it is
straightforward to verify that there is a type I solution
to any request of weight one.

When 4 6 K 6 7, we assume that there is a type I
solution to any request of weight 2K−2 − K + 1 for a
simplex code with K − 1 input bits. For a request L of
weight 2K−1−K, whenever L and its corresponding L′

satisfy (4), we apply Lemma 10 to obtain a type I solution
for L. However, there are cases where (4) is not satisfied.
Specifically, via a computer, we found there are 3, 30,
638, and 32715 such requests for K = 4, 5, 6, and 7,
respectively. For these requests, we conducted a computer
search and the results are available at the second author’s
website3.

We prove (ii) by induction. Again, it is straightforward
to verify (ii) for K = 2.

When 3 6 K 6 7, we assume (ii) for a simplex code
with K − 1 input bits. We consider two cases.

If lK−1 > 1, let L′ = (l0 − 1, . . . , lK−1 − 1), and
L′′ = (1, . . . , 1). Notice that L′ can be solved by (i)
and L′′ can be solved by singletons, and the two sets of
helpers for L′ and L′′ are disjoint. Since L = L′ + L′′,
the request L is solvable.

When lK−1 = 0, let L = L′ + L′′ such that w(L′) =
w(L′′) = 2K−2. By induction hypothesis, we have
solutions in AK−1 for L′ and L′′ for a simplex code with
K − 1 input bits. For any pair {U, T} in the solution for

3www.ntu.edu.sg/home/hmkiah/simplexSwitch.html

L′′, we create the helper pair {U∪{K−1}, T ∪{K−1}}
and we see that the latter collection of pairs is a solution
for L′′. Furthermore, the new helper pairs belong to
AK−1, while the helper pairs for L′ belong to AK−1.
Therefore, all helper pairs are pairwise disjoint and we
have a solution for L.

Lemma 12 For a simplex code on K input bits, there is
a type I solution to any short request for K > 7.

Proof: We prove by induction on K. When K = 7,
this is proven in Lemma 11 (i), by observing that f(K) <
2K−1 −K when K = 7.

When K > 8, assume that there is a type I solution to
any short request for the simplex code on K − 1 input
symbols. We consider a short request L = (l0, . . . , lK−1)
with l0 > . . . > lK−1. Partition all codeword bits on K
inputs labeled [0,K−1] into two parts: A0, A0 as defined
by (1).

Let L′ = (0, dl1/2e, . . . , dlK−1/2e), and we invoke the
recursive construction given by Lemma 10. To this end,
we first show that L′ is short and hence, type I-solvable
by the induction hypothesis. Indeed, since l0 > 2K−1/K,
we have that

w(L′) 6
1

2

(
K−1∑
i=1

li +K − 1

)

6
1

2

(
K − 1

K
f(K) +K − 1

)
6 f(K − 1) for K > 7.

Next, we check that (4) holds for L and L′. We separate
into two cases:

When K > 9, observe that

|A0\B| −K = 2K−1 − 2w(L′)−K
> 2K−1 − (w(L)− l0 +K − 1)−K
> 2K−1 − (f(K)− l0 +K − 1)−K
> l0.

When K = 8, the first two inequalities imply |A0\B| −
K > l0−0.78, and due to integrailty of both |A0\B|−K
and l0, we get the last inequality |A0\B| −K > l0.

Therefore, the conditions for Lemma 10 are met and
there exists a type I solution to the short request L,
completing the induction.

Theorem 13 Let L be a request of weight 2K−1 for the
simplex code on K input bits. Then L is solvable with
decoding degree 2.

Proof: When K 6 7, this is true by Lemma 11(ii).

When K > 8, let L = (l0, . . . , lK−1) with l0 > . . . >
lK−1. Then rewrite L as L = (l0, 0, . . . , 0) + 2L2 +
L3, where L2 = (0, bl1/2c, . . . , blK−1/2c), and L3 =
(0, l1 mod 2, . . . , lK−1 mod 2). We check that L2 is a

8

short request on K−1 inputs, namely w(L2) 6 f(K−1),
and has a type I solution by Lemma 12 for K > 8. Then,
with singletons, we can solve L3. Finally, using a similar
argument as in Lemma 10, we have l0 pairs to solve {0}
(using possibly some singletons), since

|A0\B| − w(L3) = 2K−1 − 2w(L2)− w(L3) = l0,

where A0 is the collection of subsets of [0,K − 1]
containing “0”, and B is the set of helpers for L2

belonging to A0, defined similar to (3).

Having proved Theorem 13, we can conclude that Con-
struction 0 indeed provides a PMBC with the specified
parameters.

Remark: The proofs of Theorem 13 and the preceding
lemmas provide us with a recursive algorithm to find a
solution for an arbitrary request of weight at most 2K−1.
The recursion ends at the base case of 7 input bits, and
the complexity of the algorithm is linear in K. We also
comment that the solutions for the case where K 6 7 are
stored online, and the compressed file has a size of less
than 2MB.

Corollary 14 Let K > 2. Define m = b2K−1/Kc
and k = mK. Construction 1 gives a (m(2K − 1) ≈
(2k−1)k
1+log k ,mK = k) switch code with decoding degree 2.

Proof: Consider m groups of K information sym-
bols. Consider any request of weight k = mK 6 2K−1. If
it only contains information bits belonging to one group,
then the statement holds by Theorem 13. If it contains
information bits from different groups, then for every
group we get a request of weight less than R = 2K−1,
and can solve it by Theorem 13 considering codeword
bits from the respective group.

Next, we show the optimality of our construction using
Proposition 4.

Proposition 15 When 2K−1/K is an integer, Construc-
tion 1 is optimal in terms of codeword length with respect
to its average encoding degree.

Proof: For Construction 1, the average degree is
also the average degree of the (N,K) simplex code:

d̄ =

∑K
i=1 i

(
K
i

)
2K − 1

=
K2K−1

2K − 1
=

(1 + log k)k

2k − 1
.

Given this value of d̄, the upper bound from Proposition 4
is given by

n >
k2

(1 + log k)k/(2k − 1)
=

(2k − 1)k

1 + log k
,

establishing the optimality of Construction 1.

A. Comparison with known PMBCs

We now provide a comparison between our new
construction and known PMBC constructions from [1].
Specifically, we focus on the two classes of binary PMBC:
subcube codes and subset codes.

1) Subcube codes [1]: Fix parameters l and t to be
positive integers. Let Gl be the l × (l + 1) matrix given
by (Il,1), where Il is the l × l identity matrix, and 1
is the all-one column vector. In other words, Gl is the
generator matrix of a code with a single parity bit.

A subcube code with parameters l and t is then the
linear code generated by the matrix G(l, t) , G⊗tl , where
A⊗t denotes the Kronecker product of t A’s. Hence, we
check easily that n = (l + 1)t, k = lt. Ishai et. al [1]
demonstrated that the subcube code can solve requests of
weight 2t, and hence is a ((l+ 1)t, lt, 2t) PMBC. To get
a switch code with R = k we set l = 2, and get a (3t, 2t)
switch code. The latter has a lower redundancy compared
to Construction 1, but suffers from a much higher average
encoding degree of d = (4/3)t = Θ(k0.415), compared
to O(log k) in Construction 1. In addition, unlike Con-
struction 1 which has constant decoding degree of 2, the
decoding degree of the subcube code is k. In particular,
consider 2t requests for any given information bit. Then
there exists a helper set of size lt = k.

2) Subset codes [1]: The subset code is closely related
to the simplex code we use for Construction 1 – in fact
the simplex code can be obtained as a special case. Fix
parameters w and K to be positive integers with w < K.
Consider subsets of [0,K − 1] and let the information
bit xT correspond to a subset T of size w. Then a subset
code with parameters K and w is a code whose codeword
bits are indexed by subsets of [0,K−1] with size at most
w. Every codeword bit xS is given by

∑
S⊆T, |T |=w xT .

Hence, we have the codeword length n =
∑w
j=0

(
K
j

)
and

the dimension k =
(
K
w

)
. It can be seen that if we set

w = K − 1 we get a code that is isomorphic to the
simplex code. Setting w < K−1 increases the dimension
of the code and reduces the code length, thus resulting in
a higher rate while trading off the request weight. Ishai
et. al [1] derived a clever randomized algorithm to decode
subset codes with high probability when w is a constant
fraction of K. But the resulting code parameters do not
give code families with R ≈ k, and the probabilistic
asymptotic analysis of the decoder makes it hard to
evaluate the solvability for a fixed block-length code.

IV. CONSTANT ENCODING DEGREE CONSTRUCTIONS

In the previous section we constructed optimal-
redundancy switch codes that solve any-k requests with
decoding degree of 2. However, despite the significant
improvement over prior work, the average encoding de-
gree of Construction 1 is still logarithmic in k. For
the sake of low-complexity implementation in ultra-fast
switching environments, we now turn to seek switch-code
constructions with constant encoding degree that does not
grow with k. Moving to constant degrees comes with the
caveat that the redundancy must grow as mandated by
Corollary 5. Here we consider the case of degree d = 3,
which is the first non-trivial case because d = 1 is pure
replication, and d = 2 has a trivial optimal solution of tak-

9

ing the XORs of all pairs of information bits in addition
to the systematic bits. Optimal codes with d = 3 may give
a more reasonable tradeoff between encoding complexity
and redundancy. Unfortunately, finding optimal d = 3
switch codes for any-k requests turned out rather difficult.
Hence the codes we construct in this section address a
weaker – but well motivated – request model.

Definition 16 (one-burst request) A request is called a
one-burst request if its request vector L = (l0, . . . , lk−1)
has at most one element strictly greater than 1. The value
of the multiplicity satisfying l > 1 is called the burst
length, and all the information symbols j such that lj = 1
are called uniques.

One-burst requests are especially important in switching
applications. When the information-symbol indices are
associated with input ports, one-burst requests can be
used to multiply-serve the port that instantaneously has
the longest queue of pending requests, thus shortening the
worst-case delay of packets. A quantitative justification of
the one-burst request model now follows with an illustra-
tive example. Suppose the information indices that are
needed for read come from some probability distribution.
An information index i ∈ {0, . . . , k − 1} is needed
for read `i times (from different generations), and for
simplicity we assume that the `is are Poisson distributed
i.i.d. with a load parameter λ. From these random indices
the read requests to the switch code are generated. Note
that the total number of needed symbols (sum of all `i)
may be larger than k, in which case the read controller
chooses a size-k subset of symbols to request from the
switch code, and queues the rest for a subsequent request.
Our main interest in the following example is to see how
large λ must be as a function of the switch-code request
model such that k symbols can be read in one time unit.

Define ` to be the random variable that represents the
number of elements read in one time unit. We want to
find λ such that the expectation E(`) = k. Note that
requiring a high λ implies a high queuing load, and long
delays of symbol (packet) reads. First, without any switch
code, symbol i is read only if `i > 1, for all i. Let 1i
be the indicator random variable for the event {`i > 1}.
Thus,

E(`) = E(

k−1∑
i=0

1i) = kE(1i) = k(1− e−λ),

which is equal to k only when λ → ∞. Second,
with an any-k switch code, the number of read ele-
ments is

∑k−1
i=0 `i. Thus, E(`) = k if λ = 1. In

between, with a one-burst switch code, the number of
read elements is the maximal `i plus all other 1j .
We take k = 10, 20, 30, 100, 1000 as examples. From
order statistics [10], E(`) = k corresponds to λ ≈
1.41, 1.73, 1.95, 2.71, 4.45, respectively. Compared to the
no coding case where λ → ∞, one-burst codes provide
a much more graceful intermediate solution. In addition

to this expected analysis, the ability to serve the longest
queue with a burst request effectively trims all significant
deviations from short balanced queue lengths.

The switch codes of this section are constructed to
guarantee decoding of one-burst requests. We note that
the redundancy lower bound of Corollary 5 applies even
for the weaker one-burst model. This can be seen from
the fact that the particular request used in the proof of
Proposition 4 and hence Corollary 5 is a one-bust request
with burst length k and no uniques. For d = 3, the
redundancy should thus be n − k > k(k − 1)/3. In fact
the constructions in this section matches this lower bound,
and hence are optimal given the encoding degree.

A. Framework from block designs

A natural tool to construct switch codes with constant
encoding degree is combinatorial block designs. A block
design is a set of elements together with a family of sub-
sets or blocks whose members satisfy certain properties.
We pursue this direction here with two constructions in
the next two sub-sections. It is important to note that one
can not reduce the switch-code construction problem to
finding block designs in existing families. The problem
is that the properties of the block designs available in the
literature are not sufficient to get the required solvability
for the switch code. Instead, the first of our constructions
will derive a sufficiently strong block design from scratch,
and the second will work a modification of a specific
block design family to get another one that works. We
next define the terminology and notation that will be
useful for the subsequent constructions.

When block designs are used to construct switch codes,
an element corresponds to an information bit, and a block
(or subset) represents a parity bit, summing (XORing)
the information elements contained in it. The constructed
switch code is composed of the information bits (ele-
ments) and the parity bits (blocks). For simplicity, we
also view every information bit as a subset of size 1. For
example, the bits ui+uj+uh, uj+uh+ul are associated
with the blocks {i, j, h}, {j, h, l}, respectively. In this
example we have an intersection of size 2 between the two
blocks. Since {j, h} ⊂ {i, j, h} and {j, h} ⊂ {j, h, l},
we say that the pair {j, h} appears in both of these
blocks. Two blocks of size 3 with intersection size 2 are
central in our constructions, because they represent code
bits with encoding degree 3 that can be used to solve
an information bit with decoding degree 3. In particular,
information bit {i} can be recovered by taking the sum
of the following subsets:

{l}, {i, j, h}, {j, h, l}. (5)

We call these 3 code bits helpers for the element i, where
the set of size 1 is called a systematic helper and the sets
of size 3 are called parity helpers.

Next we define a type of block design whose properties
are desirable but not sufficient for a switch code.

10

Definition 17 A balanced incomplete block design
(BIBD) with parameters (k, b, α, r, t, λ) is a system with

1) a total of k elements, P = {0, 1, . . . , k − 1},
2) b blocks, B = {B1, B2, . . . , Bb}, whereB ⊆ P for

all B ∈ B,
3) each block with size α, namely, |B| = α for all

B ∈ B,
4) every element repeats r times, i.e., |{B ∈ B : i ∈

B}| = r for all i ∈ P , and
5) every subset of size t appears exactly λ times, i.e.,
|{B ∈ B : B′ ⊆ B}| = λ for all B′ ⊆ P, |B′| = t.

A triple system with λ = 2 is a BIBD such that
each block contains α = 3 elements out of a total of
k elements, and every t = 2 elements appears exactly
twice in the blocks.

Since the code is systematic and a request might require
k bits from the same element, we require that every
element repeats r = k − 1 times in the blocks. From
the definition one can see that a carefully designed triple
system may give a degree-3 switch code. By simple
counting argument, we see that the number of parity bits
is b = k(k − 1)/3, and is optimal by Corollary 5.

Example 18 Consider the following triple system with
k = 6 elements and k(k − 1)/3 = 10 blcoks: {0, 1, 2},
{0, 2, 3}, {0, 1, 4}, {1, 2, 5}, {0, 3, 5}, {2, 3, 4}, {0, 4, 5},
{1, 4, 3}, {1, 5, 3}, {2, 5, 4}. Every element repeats k −
1 = 5 times. Consider the corresponding switch code with
6 systematic bits and 10 parity bits. Suppose the request
vector is L = (6, 0, 0, 0, 0, 0)), then we can solve it in the
following way:

{0} (6)
{1}, {0, 3, 5}, {1, 5, 3}
{2}, {0, 4, 5}, {2, 5, 4} (7)
{3}, {0, 1, 4}, {1, 4, 3} (8)
{4}, {0, 2, 3}, {2, 3, 4}
{5}, {0, 1, 2}, {1, 2, 5}

We can see that every code bit was used exactly once,
hence we are able to solve bit {0} six times from disjoint
helper sets. Similarly, one can check that it is possible to
solve any bit six times from disjoint sets. And also any
one-burst together with arbitrary uniques can be solved
with disjoint helper sets, as long as the request weight is
k = 6. For example, for L = (3, 1, 0, 0, 1, 1) we can use
equations (6)(7)(8) and singletons {1}, {4}, {5}.

Motivated by this example, in the following sub-
sections we construct families of switch codes from triple
systems.

B. Linear construction

In the following construction, which we call the lin-
ear construction, the solvability of one-burst requests

is proven with an explicit decoding algorithm. The key
idea is to have a simple way to pick the pair (j, h)
in (5) given the requested information bit {i} and the
systematic helper {l}. One candidate of a simple mapping
from (i, l) to (j, h) is a linear function. The following
construction uses a block design specified through such
a linear mapping.

In the construction we assume that all elements of the
block design and operations are for the finite field Fk, for
a prime k. But the resulting switch code is still binary.

Construction 2 (linear construction) Pick a prime k >
3, such that−3 is a quadratic residue modulo k. For every
distinct pair of i, l ∈ Fk, define (j, h) as functions of (i, l)
by the following linear mapping, i, j, h, l ∈ Fk:[

j
h

]
= A

[
i
l

]
=

[
a b
c d

] [
i
l

]
.

We denote by this linear mapping (i, l) 7→ (j, h). Here
the coefficients are

a = d =
1

2
+

√
−3

6
, b = c =

1

2
−
√
−3

6
. (9)

Then take blocks {i, j, h}, {j, h, l} for all quadruples
(j, h, i, l) that satisfy the linear system, and remove mul-
tiplicities. Use each block as a parity bit in the codeword,
and include systematic bits in the codeword.

An example of Construction 2 for k = 7 is given in
Figure 5. We list some of the calculations leading to the
blocks of Figure 5. For k = 7 we have

A =

[
2 6
6 2

]
.

To see, for example, how block 1 in Figure 5 is obtained,
we show in the following table the mapping of three pairs
of (i, l) indices to (j, h) indices

(i, l) (j, h) blocks {i, j, h}, {j, h, l}
(0, 1) (6, 2) {0, 6, 2}, {6, 2, 1}
(4, 2) (6, 0) {4, 6, 0}, {6, 0, 2}
(3, 6) (0, 2) {3, 0, 2}, {0, 2, 6}

In fact, if we swap the roles of i, l, we get the same table
again with j, h swapped. We treat the instances as the
same one after swapping i, l and j, h. Therefore the block
{0, 2, 6} is generated three times, once in each of the
listed (i, l) 7→ (j, h) mappings. This means that, in effect,
the block can be used for three different (unordered)
request and helper pairs (i, l).

A similar enumeration for k = 19 gives 114 blocks,
where the mapping is

A =

[
17 3
3 17

]
.

Before formally showing that Construction 2 solves
one-burst requests, we first prove some facts about the

11

block index 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 0 2 0 3 0 1 0 2 0 1 3 1

block elements 2 2 4 4 4 4 1 3 2 3 1 5 5 2
6 6 5 5 6 6 3 4 3 5 5 6 6 4

Fig. 5. A linear construction with k = 7 and 14 blocks. Each column is a block. Notice that every block can be used as a parity helper for six
possible elements. Take block 1 as an example: blocks 1,2 can help solve element 0 or 1; blocks 1,5 can help solve element 2 or 4; blocks 1,9
can help solve element 3 or 6.

linear mapping A when k > 3 is a prime and −3 is a
quadratic residue modulo k.

Lemma 19 (Uniqueness) For any pair (j, h) there is a
unique pair (i, l) such that (i, l) 7→ (j, h).

Proof: This follows directly from the invertibility
of A, implied by det(A) =

√
−3/3 6= 0.

Lemma 20 (Completeness) For any pair of distinct in-
dices (i, l), the mapping (i, l) 7→ (j, h) results in i, l, j, h
that are all distinct.

Proof: The possibility of j = h is excluded by the
symmetries a = d, b = c in A. Assume by contradiction
that the mapping gives j = i. (The other violating cases
j = l, h = i, h = l can be similarly contradicted.) In
that case we have ai+ bl = i, which after substitution of
a,b from (9) gives b(l− i) = 0, a contradiction given that
i 6= l.

The meaning of Lemma 20 is that every pair of requested
symbol i and systematic helper l uniquely defines two
corresponding parity helpers {i, j, h}, {l, j, h}.

Lemma 21 (Symmetry) If (i, l) 7→ (j, h), then (l, i) 7→
(h, j).

Lemma 21 follows directly by the symmetries a = d,
b = c in A. This lemma implies that we can exchange
the roles of requested symbol and systematic helper and
get the same parity helper sets.

Lemma 22 (Multiplicity) Every parity helper set
{i, j, h} is generated by three distinct instances of the
mapping A, where swapping the requested symbol and
the systematic helper does not count as a new instance.

Proof: If the helper set {i, j, h} exists in the
construction it means that two of its elements, (j, h)
without loss of generality, are the image of the mapping
A when acting on a pair (i, l), for some element l.
That is, (i, l) 7→ (j, h), and from Lemma 19 the pair
(i, l) is unique to generate {i, j, h} with (j, h) as the
image. Exchanging the roles of i, j, h, there are at most 3
instances that generates the helper set. Next we examine
the element

l′ ,
j − bh
a

.

By the relations ai + bl = j, bi + al = h we write
j − bh = (a − b2)i + (b − ab)l. Now for the specific
parameters a = 1

2 +
√
−3
6 , b = 1

2 −
√
−3
6 , we have

a− b2

a
=

1− ab
b

,
b− ab
a

= −a
2

b
,

which gives the first equality in

i− ah
b

=
j − bh
a

= l′.

Now in addition we have the relations

ah+ bl′ = i, bh+ al′ = j,

which imply that (h, l′) 7→ (i, j), and thus show another
instance of the helper set {i, j, h}. In a similar way we
can show that {i, j, h} is also generated by the mapping
(j, l′′) 7→ (h, i), for

l′′ =
h− aj
b

=
i− bj
a

.

By Lemma 19 the latter two instances of {i, j, h} are also
uniquely generated by (h, l′) and (j, l′′), respectively. By
Lemma 20 the 3 instances are all distinct.

We are now ready to prove the properties of the linear
construction.

Theorem 23 Construction 2 solves any one-burst request
of weight k with decoding degree 3, and has k(k− 1)/3
parity bits, where k > 3 is a prime and −3 is a quadratic
residue modulo k.

Proof: First we show the number of parity bits.
By Lemmas 20, 21, every pair of (unordered) distinct
indices from {1, . . . , k} defines two parity helper sets. By
Lemma 22 every parity helper set is generated by three
pairs of indices. Thus all together there are

(
k
2

)
× 2/3 =

k(k − 1)/3 parity bits.

Next we show that any one-burst request is solvable.
Let L be the request, and denote by m the bit index
with lm > 1 in L. If no such m exists, the request can
be trivially solved from the systematic bits. Because the
request weight is

∑k−1
i=0 li = k, we know that there are

lm−1 bit indices that are not requested. We denote the set
of these indices by U , with |U | = lm − 1. Now to solve
L we take all index pairs (m,u) : u ∈ U , and for each
such pair apply the mapping (m,u) 7→ (ju, hu). Then we
solve each of lm−1 requests of m using the parity helper
sets {m, ju, hu}, {u, ju, hu} and the systematic bit {u}.
The remaining request of m is solved from the systematic

12

bit, and the requests of the uniques {i 6= m : i /∈ U} are
also solved from their systematic bits.

To prove that decoding always succeeds, we need to
show that there is no set {x, y, z} that is generated twice.
We first observe that if there exists such a set it does not
contain m: two sets {m, ju, hu} and {m, jv, hv} must be
distinct by Lemma 19, and by Lemma 20 m cannot be
in a set {u, ju, hu} for any u ∈ U . So we now only need
to prove that for distinct u, v ∈ U , we get {u, ju, hu} 6=
{v, jv, hv} as sets. Assume by way of contradiction that
{u, ju, hu} = {v, jv, hv}. It is sufficient to consider the
two possible cases below, and the other two possible cases
are symmetrically identical.

• For some y, (m,u) 7→ (v, y) and (m, v) 7→ (u, y).
From linearity we get that (0, u − v) 7→ (v − u, 0),
but this violates Lemma 20 requiring all-distinct
elements in the mapping.

• For some y, (m,u) 7→ (v, y) and (m, v) 7→ (y, u).
From linearity we get that (0, u−v) 7→ (v−y, y−u).
But this requires v − y = b(u − v) and y − u =
a(u−v), which sums to a+b = −1, a contradiction
to (9).

Hence the helper sets are disjoint, and the proof is
completed.

We note here that the construction does not always
work for a general type of request. For example, if the
request is L = (3, 4, 0, 0, 0, 0, 0) (with two bursts) for the
code in Figure 5, then it is not possible to find distinct
sets {x, y, z} for recovering both bits {0} and {1} from
parity helper sets.

Finally, we show that there exit infinitely many in-
put/request sizes that satisfy the constraint in Construction
2. More specifically, by the results from Number Theory
[11], we can obtain the input/request sizes k supported
by the linear construction, as characterized in the follow-
ing lemma. Then by Dirichlet’s Theorem [11], we can
conclude that Construction 2 gives an infinite family of
codes.

Lemma 24 The following three conditions are equivalent
for a prime k > 3:
(i) −3 is a perfect square mod k.
(ii) (k − 1)/3 is an integer.
(iii) k ≡ 1 mod 6.
Moreover, there are infinitely many k satisfying the above
conditions.

Proof: By the result of [11, Theorem 96, page
75], condition (i) is equivalent to condition (iii). One
can easily check the equivalence of (ii) and (iii). By
Dirichlet’s Theorem [11, Theorem 15, page 13], for given
positive coprime numbers a, b, there are infinitely many
primes of the form a×n+ b for n ∈ Z+. Thus there are
infinitely many k satisfying condition (iii).

C. Top-down construction

In this sub-section our objective is to construct a
switch-code family for one-burst requests, which gives
codes for more values of k than offered by Construction 2
in Section IV-B. In particular, the top-down construction
will be shown to give switch codes for any k ≡ 1, 4
mod 12, not necessarily a prime number. Moreover,
the top-down construction can be easily generalized to
parity degrees d > 3. The disadvantage of the top-down
construction over the previous linear construction is that it
can only guarantee decoding a burst of length (k−1)/3+1
or less.

The main idea of the top-down construction is to obtain
parity helper sets of size 3 by breaking blocks of size 4
into triples, in the way described below. Let us start with
an example. Consider the block {i, l, j, h} of size 4 and
we use its subsets of size 3 as parity sets:

{i, l, j}, {i, l, h}, {i, j, h}, {l, j, h}. (10)

For any two elements m,u ∈ {i, l, j, h}, we can solve bit
m using the systematic bit u and the two triples

{i, l, j, h}\{m}, (11)

{i, l, j, h}\{u}, (12)

as parity helper sets.

Construction 3 (top-down construction) Let D4 be a
BIBD with k elements, and k(k − 1)/12 blocks of size
4. Moreover, every element repeats (k − 1)/3 times in
D4, and every pair appears once. We call such BIBD a
quadruple system. For each block {i, l, j, h} of D4 take
the four sets {i, l, j}, {i, l, h}, {i, j, h}, {l, j, h} as parity
sets, and include systematic bits in the codeword.

Regard the size-3 sets taken by Construction 3 as the
blocks of a block design D. It is easy to check that D
is a triple system with k(k − 1)/3 blocks, k − 1 repeats,
and every pair appears exactly twice. Before showing the
properties of Construction 3, let us examine an example
of a quadruple system D4.

Example 25 Take D4 as the BIBD with k = 25 elements
and 50 blocks of size 4 (see [12]). Every integer in [0, 24]
is represented as 5i+ j, for some i, j ∈ [0, 4]. The design
is formed by dicyclic solution in two families:

5(a, a, a+ 1, a+ 4) + (b, b+ 1, b, b+ 4),

5(c, c, 2 + c, 3 + c) + (d, d+ 2, d, d+ 3),

where a, b, c, d ∈ [0, 4] and additions inside brackets
are computed modulo 5. For example {0, 1, 5, 24} is the
quadruple corresponding to a = 0, b = 0 in the first
family, and {8, 5, 18, 21} corresponds to c = 1, d = 3 in
the second family. When using this D4 in Construction 3
we transforms the 50 blocks into 200 triples.

13

Fig. 6. Example of decoding a request with burst length 9, where T = {1, 2, . . . , 8} are unrequested elements. The element requested with
multiplicity is the root of the tree 0. The underlined element in each child of 0 is a systematic helper used to solve 0. For the children sets
{19, 20, 21} and {12, 14, 22}, all elements are requested, and therefore the chosen systematic helpers 21 and 12 need 5 and 7, respectively, as
their helpers.

To understand how Construction 3 solves one-burst re-
quests, we give a decoding example for the D4 of Exam-
ple 25. Let the request be L = (9, 0, . . . , 0, 1, . . . , 1), that
is, bit 0 is requested with multiplicity 9, bits 1, . . . , 8 are
not requested, and bits 9, . . . , 24 are uniques. To solve
the request, we draw a tree rooted at the element with
the burst request, 0 in this example. The children of the
root 0 are all triples whose union with 0 are blocks in
D4. For k = 25 there are 8 such triples, see Figure 6.

In each child of 0, if the triple contains an unrequested
element u, we solve 0 with systematic bit u and two parity
helper triples as specified in (11), (12), where m = 0. For
example, we solve 0 by {1} and {0, 5, 24}, {1, 5, 24}, by
{4} and {0, 9, 23}, {4, 9, 23}, and so on. For the child
triples that do not have an unrequested element, pick an
arbitrary element m in the triple and use it as the system-
atic helper. However, since m is also requested, we solve
it using any unused and unrequested element {v} and par-
ity helpers {m, j(m, v), h(m, v)}, {v, j(m, v), h(m, v)}
coming from D4’s block {m, v, j(m, v), h(m, v)}. For
example, in the triple {19, 20, 21} of Figure 6 all symbols
are requested, so we choose m = 21 as the systemic
helper and solve it with the help of the unused and
unrequested {v = 5}, together with triples from the
block {8, 5, 18, 21} in D4. Then we are free to use the
systematic bit {m} to solve 0 with the child triple – in
the example we use {21} and {0, 19, 20},{19, 20, 21} to
solve 0.

We formalize the above procedure with a greedy de-
coder, given in Algorithm 1, for the maximal burst length
(k − 1)/3 + 1. In the notation of Algorithm 1, bit a
is requested with multiplicity b, bits a1, . . . , ab−1 are
not requested, and bits [0, k − 1] \ {a, a1, . . . , ab−1} are
requested once. The algorithm uses the tree of depth 1
rooted at bit a similar to Figure 6. From each child-triple
of a Algorithm 1 assigns an element hi as the systematic
helper to solve a, together with two corresponding parity
helpers. In Line 4, hi is assigned as an unrequested
element. When hi is assigned in Line 11, hi is both a
requested element and a helper for a. Then the algorithm
assigns in Line 12 an unused and unrequested element
ai as the systematic helper to solve hi, together with
two corresponding parity helpers. Finally, the uniques
excluding hi’s in Line 11 are solved by singletons. One

can easily see that the decoding degree is 3.

Algorithm 1 Decoding algorithm for top-down Construc-
tion 3 with one burst of length b = (k− 1)/3 + 1 for bit
a.

1: Initialize a set T as the unrequested elements T =
{a1, . . . , ab−1}.

2: for i = 1 to b− 1 do
3: if there exists a member of T in child i of a then
4: assign this member as hi
5: remove this member from T
6: solve a with systematic helper hi
7: end if
8: end for
9: for i = 1 to b− 1 do

10: if hi is not assigned then
11: assign any element in child i as hi
12: assign any member in T as helper for hi (w.l.o.g.

call this member ai)
13: remove this member from T
14: solve a with systematic helper hi
15: solve the unique hi with systematic helper ai
16: end if
17: end for
18: solve the remaining uniques by singletons

We are now ready to prove that Construction 3 with
Algorithm 1 guarantees decoding success.

Theorem 26 Construction 3 solves any one-burst request
with burst length at most (k − 1)/3 + 1 with decoding
degree 3.

Proof: Let us first show that Algorithm 1 solves
requests with one burst of length b = (k − 1)/3 + 1. We
first check that the systematic helpers are disjoint. Since
each index pair appears once in D4, and the children of a
correspond to the blocks containing a in D4, we know the
elements of the children are all distinct. Hence hi 6= hj
for i 6= j. When hi is assigned in Line 11, we know that
ai 6= hi since hi is a requested element but ai is not.

We next need to show that the parity helpers used in
this assignment are also distinct. We use the ordered-pair
notation (m,u) to denote that element m is solved with

14

element u as systematic helper. We consider two pairs
(m1, u1) and (m2, u2) in the following 4 cases.

• (a, hi) and (a, hj) for some i 6= j ∈ [1, b− 1], each
assigned in Line 4 or 11 of Algorithm 1. Since any
pair appears once in D4 and hi 6= hj , we know
the quadruples containing {a, hi} and {a, hj} are
distinct, moreover, the parity helpers are distinct.

• (hi, ai) and (hj , aj) for some i 6= j ∈ [1, b − 1],
each assigned in Line 12. Note that by the above
decoding algorithm hi, hj , ai, aj are all distinct. The
corresponding parities are

{hi, x, y}, {x, y, ai}

{hj , z, w}, {z, w, aj}

for some x, y, z, w. The former are sub-blocks
of A = {hi, ai, x, y} and the latter of B =
{hj , aj , z, w}, both in D4. Since D4 contains each
pair only once, these assignments share a par-
ity only if A = B, or equivalently {x, y} =
{hj , aj}, {z, w} = {hi, ai}. But even in this case,
all the 4 parity helpers are distinct.

• (a, hi) and (hj , aj) for some i 6= j ∈ [1, b − 1],
the first assigned in Line 4 or 11 and the second in
Line 12. Like in the previous case a, hi, hj , aj are
all distinct, and therefore the parities are distinct.

• (a, hi) and (hi, ai) for some i ∈ [1, b− 1], the first
assigned in Line 11 and the second in Line 12 of the
same iteration. But notice that ai does not belong to
the i-th child of a, otherwise it would have been
assigned in Line 4. So {a, hi} and {hi, ai} appear
as pairs in different blocks of D4, and therefore the
parity helper subsets of these blocks must be distinct.

Finally, suppose the burst length is smaller than (k −
1)/3 + 1. A simple modification of Algorithm 1 can
address this case. Suppose some ai is also requested,
i ∈ [1, b− 1]. If ai was assigned as a helper of a, do not
use it to solve a but read ai instead. If ai was assigned
as a helper of hi, do not use hi to solve a, but read ai, hi
instead.

The following shows the existence of the top-down
construction by the existence of D4 (see e.g. [13]).

Corollary 27 There exists an (n, k) switch code with
n = k + k(k − 1)/3 that solves any one-burst request
of weight no more than (k − 1)/3 + 1, for any k ≡ 1, 4
mod 12.

This construction can be generalized to parities that are
XOR of more than three elements. For example, if one
has a block design of block size d+ 1, then by similarly
breaking it down to blocks of size d, one may use one
systematic helper and two parity helpers to solve a bit.
Meanwhile since the parity has higher degree, we may
expect to get smaller redundancy.

V. CONCLUDING REMARKS

The constructions given in this paper provide guaran-
teed, maximally parallel, efficient reconstruction of data
from a distributed memory. While all three switch-code
constructions are optimal, the amount of redundancy they
use may be too high for a cost-effective deployment in
switches. Reducing the code redundancy may be achieved
if (and only if) some relaxations of the problem model
are applied. For example, further restricting the type of
packet requests seems most promising for that objective.

In addition, the focus of this paper is on codes that
guarantee worst-case decoding performance, while in
real-world switching it may suffice to provide proba-
bilistic guarantees assuming some distribution on the
requests. Examples of probabilistic decoding can be found
for locally decodable codes [4] and batch codes [1].
We conjecture that the redundancy of switch codes can
be reduced under probabilistic decoding, with arbitrarily
small error probability.

We have restricted our encoders to be intra-generation
and fixed, which is motivated by lowering the complexity
of the writing process to the memory banks. However, it
remains open to demonstrate whether there is advantage
of inter-generation and non-fixed encoders. Notice that
under inter-generation encoders, requests from multiple
generations can be decoded jointly, and the disjointedness
of the helper sets is no longer a necessary constraint. As a
result, more flexibility is allowed for designing the codes,
and may lead to better redundancy.

APPENDIX
HEURISTIC SEARCH ALGORITHM

In this section, we describe the heuristic search algo-
rithm used in the proof of Lemma 11, shown in Algorithm
2. In this algorithm, the input L = (l0, l1, . . . , lK−1) is
a request vector with weight w(L) = 2K−1 − K. Even
though we did not prove that this algorithm guarantees
a type I solution, we ran the algorithm and successfully
found type I solutions for all requests L with l0 > l1 >
. . . > lK−1 and weight w(L) = 2K−1 −K, 3 6 K 6 7.
In fact, we further reduced the amount of search using
recursion as described in the proof of Lemma 11 (i).

First, we define two functions used in the algorithm.
Let I be a set of integers. For i ∈ I , define a function
∆i as follows. For T ⊆ I ,

∆i(T) =

{
T ∪ {i}, if i /∈ T,
T\{i}, else.

For a set X ⊆ P(I), where P(I) is the power set of I ,
we write

∆i(X) = {∆i(T) : T ∈ X}.

For a set X , let rand(X) be a function that returns a
row vector of all elements in X randomly ordered. This
random function is used in Line 10, where row vector

15

Algorithm 2 Find type I solution for request vector L. The input L = (l0, l1, . . . , lK−1) is a request vector with
weight w(L) = 2K−1 −K, K > 3. The output is the type I solution for L.

1: L0 ← L
2: for i = 0 to K − 2 do

3:

Suppose Li = (0, . . . , 0, ai, ai+1, . . . , aK−1)
Compute Fi = (0, . . . , 0, ai, 0, . . . , 0)
Compute Li+1 ← (0, . . . , 0, 0, bai+1

2 c, . . . , baK−1

2 c)
Compute Pi+1 ← (0, . . . , 0, 0, ai+1 mod 2, . . . , aK−1 mod 2)

4: end for
5: loop
6: Initialize available set AV0 to be all non-singleton elements, AV0 ← {T ⊆ {0, 1, . . . ,K − 1} : |T | > 2}
7: for i = 0 to K − 2 do
8: for every requested symbol r in Pi+1 do
9: Set the preference set, PR← {T ∈ AVi : ∆i(T) /∈ AVi}

10: Set the candidate vector, CN ← (rand(PR), rand(AVi\PR))
11: Search for every element T of CN . Use helper pair {T,∆r(T)} for request r if ∆r(T) ∈ AVi
12: Remove T,∆r(T) from AVi
13: If no solution was found, go to Line 6
14: end for
15: AVi+1 ← {T ⊆ {i+ 1, . . . ,K − 1} : T ∈ AVi,∆i(T) ∈ AVi}
16: end for
17: Noticing LK−1 = (0, . . . , 0), assign the solution for PK−1 as empty
18: for i = K − 2 to 0 do
19: For every helper pair {T,∆r(T)} for Li+1, construct another helper pair {∆i(T),∆i(∆r(T))} for Li+1,

where T ⊆ {i+ 1, . . . ,K − 1}
20: From AVi remove all solutions to 2Li+1

21: Find helpers T,∆i(T) ∈ AVi for requests of Fi
22: If no solution was found for Fi, go to Line 6
23: Construct solution to Li as the solutions to Fi, Pi+1, 2Li+1

24: end for
25: end loop

CN is set to be a concatenation of the two random row
vectors.

The algorithm works as follows: we first decompose
the request vector L as in Lines 1 to 4. After that, we
try to find a type I solution to L using forward iterations
(Lines 6 to 16) and backward iterations (Lines 17 to 24).
These iterations are repeated multiple loops (Lines 5 and
25). For every loop, we randomly search for solutions. If
the search fails, we start a new loop (Lines 13 and 22).

We first decompose request L in K − 1 iterations as
in Lines 1 to 4. We denote by Li the remaining vector
in iteration i, for 0 6 i 6 K − 2, and set L0 ← L. The
first i−1 coordinates of Li are zeros, for 1 6 i 6 K−2.
In each iteration, suppose the remaining vector is Li =
(0, . . . , 0, ai, . . . , aK−1). Let us denote

Fi = (0, . . . , 0, ai, 0, . . . , 0),
Li+1 = (0, . . . , 0, 0, bai+1

2 c, . . . , b
aK−1

2 c),
Pi+1 = (0, . . . , 0, 0, ai+1 mod 2, . . . , aK−1 mod 2).

Then Li is decomposed into 3 parts:

Li = Fi + Pi+1 + 2Li+1.

Note that when i = K − 2, suppose LK−2 =

(0, . . . , 0, aK−2, aK−1), then

aK−1 6
lK−1
2K−2

6
2K−1 −K

2K−2
< 2.

Therefore, aK−1 = 0 or 1, and

LK−1 = (0, 0, . . . , 0).

In forward iterations (Lines 6 to 16), we find a type
I solution for every Pi+1, i = 0, . . . ,K − 2. In order to
solve Pi+1, we use AVi ⊆ P({i, . . . ,K − 1}) to store
all available elements. For iteration i = 0, AVi is all
non-singleton elements (Line 6). The forward iteration
i is illustrated in Figure 7 (a). For every request r of
Pi+1, i + 1 6 r 6 K − 1, we randomly pick a helper
pair {T,∆r(T)}, both of which are available (Line 11).
Then the helpers are marked unavailable (Line 12). For
iteration i + 1, an element T ⊆ {i + 1, . . . ,K − 1} is
available if both T,∆i(T) ∈ AVi (Line 15). This means
that if only one of T,∆i(T) is unavailable for iteration
i, one element is “wasted”. The wasted elements will not
be used as helpers in future forward iterations. Therefore,
we would like to avoid waste as much as possible. We
note that when i > 1, the wasted elements may still be
used as helpers in backward iterations 0, 1, . . . , i−1. The
reason of choosing AVi+1 as Line 15 will be clear later.

16

solution to Li+1xxxxxx

xxxx

solution
to Fi

solution to Li+1

//////

//////

AVi+1xxxxxx

xxxx

//////

//////
unavailable for AVi

solution to Pi+1

wasted

xxx

////

Δi(AVi+1)
(a)

(b)

Fig. 7. (a) Forward iteration i, (b) backward iteration i. In both figures, above the horizontal line are all elements of P({i+ 1, . . . ,K − 1}),
and below the horizontal line are all elements of ∆i(P({i+ 1, . . . ,K− 1})). In (a), at the beginning of the forward iteration i, elements “xxxx”
are unavailable. Then we search for the solution to Pi+1, represented by the ovals. Finally AVi+1 are assigned as in Line 15, and elements “///”
are wasted. In (b), at the beginning of the backward iteration i, solution to Li+1 is already found in AVi+1, shown above the horizontal line.
We duplicate it in ∆i(AVi+1), shown below the horizontal line. Moreover, solution to Pi+1 is also known. We search for the solution to Fi,
and thus obtain the solution to Li.

In order to expedite the search, we do not search
exhaustively. Instead we search for a helper where T is
from a preference set PR (Line 10). The set PR ⊆ AVi is
defined in Line 9. One can see that if we use T ∈ PR as a
helper, then ∆i(T) is already unavailable, which reduces
waste in Line 15.

Suppose that after the forward iterations we have
found a solution to Pi+1 from P({i, . . . ,K − 1}), for
i = 0, . . . ,K − 2. Next we find a solution to Li from
P({i, . . . ,K−1}), for all i = K−1,K−2, . . . , 0 (Lines
17 to 24) in the backward iterations. This is illustrated
in Figure 7 (b). For the initial iteration, i = K − 1,
the solution to LK−1 = (0, . . . , 0) is empty (Line 17).
For iteration i < K − 1, given a helper pair {T,∆r(T)}
for Li+1, we construct another pair {∆i(T),∆i(∆r(T))}
(Line 19). Then we look for solutions to Fi from AVi
(Line 21). Finally the solution to Li is composed of the
solutions to Fi, Pi+1, 2Li+1 (Line 23).

Lemma 28 If a solution to L is found in Algorithm 2,
then it is a valid type I solution.

Proof: It is easy to see that the helpers found in
Lines 11, 19, and 21 are correct. Next we show that the
helpers are disjoint and type I.

We claim that the solution to Li (Line 23) is a subset
of AV ′i, where AV ′i is the availability set at Line 8 for
forward iteration i. Namely, AV ′0 is defined in Line 6, and
AV ′i+1 is defined in Line 15, i = 0, . . . ,K − 2. Clearly,
at any step after Line 8, AVi ⊆ AV ′i .

This claim is proved by induction. For i = K −
1, the solution is empty, so the claim holds. Suppose
the claim holds for iteration i + 1. So at Line 19,
T,∆r(T) ∈ AVi+1 ⊂ AVi, and by Line 15 we conclude
that ∆i(T),∆i(∆r(T)) are also in AVi. So the solutions
to 2Li+1 are in AV ′i . By Line 11 and Line 21, the
solutions to Pi+1 and Fi are also in AV ′i . Namely, the
solution to Li is a subset of AV ′i , thus the claim holds
for iteration i.

Note that AV ′0 are all the non-singleton elements as
in Line 6. Moreover, every used solution is marked

unavailable (Line 20). We conclude that if solution to
L = L0 is found, then it is valid and type I.

REFERENCES

[1] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes
and their applications,” in Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pp. 262–271, ACM,
June 2004.

[2] A. Rawat, Z. Song, A. Dimakis, and A. Gal, “Batch codes through
dense graphs with high girth,” in Information Theory Proceedings
(ISIT), 2015 IEEE International Symposium on, IEEE, June 2015.

[3] H. Lipmaa and V. Skachek, “Linear batch codes,” in Proc. 4th
International Castle Meeting on Coding Theory and Applications,
Palmela, Portugal, September 2014.

[4] S. Yekhanin, “Locally decodable codes,” Foundations and Trends
in Theoretical Computer Science, vol. 6, no. 3, pp. 139–255, 2012.

[5] F. Oggier and A. Datta, “Self-repairing homomorphic codes for
distributed storage systems,” in Computer Communications, the
29th IEEE Intl. Conference on (INFOCOM), IEEE, April 2011.

[6] L. Pamies-Juarez, H. D. L. Hollmann, and F. E. Oggier, “Lo-
cally repairable codes with multiple repair alternatives,” CoRR,
vol. abs/1302.5518, 2013.

[7] A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” in Information
Theory (ISIT), 2014 IEEE International Symposium on, June 2014.

[8] I. Tamo and A. Barg, “Bounds on locally recoverable codes with
multiple recovering sets,” in Information Theory (ISIT), 2014 IEEE
International Symposium on, June 2014.

[9] W. Huffman and V. Pless, Fundamentals of Error-Correcting
Codes. Cambridge, UK: Cambridge university press, 2003.

[10] B. Arnold, N. Balakrishnan, and H. Nagaraja, A First Course in
Order Statistics. Society for Industrial and Applied Mathematics,
2008.

[11] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers (Fifth Edition). Oxford University Press, 1980.

[12] R. Fisher and F. Yates, Statistical tables for biological, agricul-
tural, and medical research. Longman Group United Kingdom,
June 1995.

[13] C. J. Colbourne and J. H. Dinitz, Handbook of Combinatorial
Designs (Second Edition). CRC Press, 2007.

Zhiying Wang received the B.Sc. degree in Information Electronics
and Engineering from Tsinghua University in 2007, M. Sc. and Ph.D
degrees in Electrical Engineering from California Institute of Technol-
ogy in 2009 and 2013, respectively. She was a postdoctoral fellow
in Department of Electrical Engineering, Stanford University. She is
currently Assistant Professor at Center for Pervasive Communications
and Computing, Univeristy of California, Irvine. Dr. Wang received NSF
Center for Science of Information (CSoI) Postdoctoral Research Fellow,
2013. She was the recipient of IEEE Communication Society Data

17

Storage Best Paper Award for 2013. Her research focuses on information
theory, coding theory, with an emphasis on coding for storage devices
and systems and compression for genomic information.

Han Mao Kiah received his Ph.D. degree in mathematics from the
Nanyang Technological University, Singapore in 2014. From 2014 to
2015, he was a Postdoctoral Research Associate at the Coordinated Sci-
ence Laboratory, University of Illinois at Urbana-Champaign. Currently,
he is a lecturer at the School of Physical and Mathemati cal Sciences,
Nanyang Technological University, Singapore. His research interests
include combinatorial design theory, coding theory, and enumerative
combinatorics.

Yuval Cassuto (S’02-M’08-SM’14) is a faculty member at the Andrew
and Erna Viterbi Department of Electrical Engineering, Technion – Is-
rael Institute of Technology. His research interests lie at the intersection
of the theoretical information sciences and the engineering of practical
computing and storage systems.

During 2010-2011 he has been a Scientist at EPFL, the Swiss Federal
Institute of Technology in Lausanne. From 2008 to 2010 he was a
Research Staff Member at Hitachi Global Storage Technologies, San
Jose Research Center. From 2000 to 2002, he was with Qualcomm,
Israel R&D Center, where he worked on modeling, design and analysis
in wireless communications.

He received the B.Sc degree in Electrical Engineering, summa cum
laude, from the Technion, Israel Institute of Technology, in 2001, and
the MS and Ph.D degrees in Electrical Engineering from the California
Institute of Technology, in 2004 and 2008, respectively.

Dr. Cassuto has won the 2010 Best Student Paper Award in data
storage from the IEEE Communications Society, as well as the 2001
Texas Instruments DSP and Analog Challenge $100,000 prize.

Jehoshua Bruck is the Gordon and Betty Moore Professor of compu-
tation and neural systems and electrical engineering at the California
Institute of Technology (Caltech). His current research interests include
information theory and its applications to memory systems, including
molecular memories (DNA), associative memories (the brain), and
nonvolatile memories (flash).

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engi-
neering from the Technion-Israel Institute of Technology, in 1982 and
1985, respectively, and the Ph.D. degree in electrical engineering from
Stanford University, in 1989.

His industrial and entrepreneurial experiences include working with
IBM Research where he participated in the design and implementation
of the first IBM parallel computer; cofounding and serving as Chairman
of Rainfinity (acquired in 2005 by EMC), a spin-off company from Cal-
tech that created the first virtualization solution for Network Attached
Storage; as well as cofounding and serving as Chairman of XtremIO
(acquired in 2012 by EMC), a start-up company that created the first
scalable all-flash enterprise storage system.

Dr. Bruck is a recipient of the Feynman Prize for Excellence
in Teaching, the Sloan Research Fellowship, the National Science
Foundation Young Investigator Award, the IBM Outstanding Innovation
Award and the IBM Outstanding Technical Achievement Award.

