048704/236803
 Seminar on Coding for
 Non-Volatile Memories

SLC, MLC and TLC Flash

High Voltag	
	01
MLC Flash	00
Cell 4 States	10
	11

	h Vo
	011
	010
TLC	000
Flash	001
3 Bits Per Cell	101
8 States	100
	110
	111
	Vol

Flash Memory Structure

- A group of cells constitute a page
- A group of pages constitute a block
- In SLC flash, a typical block layout is as follows

page 0	page 1
page 2	page 3
page 4	page 5
.	\cdot
\cdot	\cdot
page 62	page 63

Flash Memory Structure

- In MLC flash the two bits within a cell DO NOT belong to the same page - MSB page and LSB page
- Given a group of cells, all the MSB's constitute one page and all the LSB's constitute another page

Row index	MSB of first 2 2^{14} cells	LSB of first 214 cells	MSB of last 2^{14} cells	LSB of last 2^{14} cells
0	page 0	page 4	page 1	page 5
1	page 2	page 8	page 3	page 9
2	page 6	page 12	page 7	page 13
3	page 10	page 16	page 11	page 17
\vdots	\vdots	\vdots	\vdots	\vdots
30	page 118	page 124	page 119	page 125
31	page 122	page 126	page 123	page 127

Flash Memory Structure

MSB Page CSB Page LSB Page MSB Page CSB Page LSB Page

Row index	MSB of first 216 cells	CSB of first 216 cells	LSB of first 216 cells	MSB of last 216 cells	CSB of last 216 cells	LSB of last 216 cells
0	page 0			page 1		
1	page 2	page 6	page 12	page 3	page 7	page 13
2	page 4	page 10	page 18	page 5	page 11	page 19
3	page 8	page 16	page 24	page 9	page 17	page 25
4	page 14	page 22	page 30	page 15	page 23	page 31
\vdots	\vdots		\vdots	\vdots		\vdots
62	page 362	page 370	page 378	page 363	page 371	page 379
63	page 368	page 376		page 369	page 377	
64	page 374	page 382		page 375	page 383	
65	page 380			page 381		

Flash Memory Structure

- Why to split cell bits to different pages?
- Fast writing
- Fast reading
- Reduces the BER
- Reduces the inter-cell interference (ICI)
- Side effects
- Different BER to different pages
- Different writing and reading times for different pages
- Pages can affect other ones even if they don't share related information

Raw BER Results

BER per page for MLC block

ECC Comparison $R \approx 0.9$

ECC Comparison $R \approx 0.925$

Partial Cell State Usage

- Store either one or two bits in every cell
- For one bit, only the MSB pages
- For two bits, only the MSB and CSB pages
- Two cases:
- The partial storage is introduced at the beginning
- The partial storage is introduced after 2000 normal program/erase cycles
High Voltage

011
010
000
001
101
100
110
111

Low Voltage

Partial Cell State Usage - BER

Organization of flash memory

- Flash is a re-writable semiconductor memory
- Organization of flash memory
- Contains thousands of blocks
- A block contains typically 64 pages
- A page is typically 4 KB , smallest unit
- Operations on flash memory
- Page-level read/write operations
- Block-level erase operations

Block

| | Page | | |
| :--- | :--- | :--- | :--- | :--- |
| | Page | | |
| | Page | | |
| | Page | | |
| | | | |

Flash memory: Two limitations

-Limitation 1: block erase
-Limitation 2: non-support of overwrite

- To change one page, must copy-erase-write
-"Write amplification" Changing one page requires 64 page writes!
-Undesirable:
-reduces system performance
-reduces flash memory device longevity

Flash memory: Out-of-place write

-Limitation 1: block erase
-Limitation 2: non-support of overwrite

- To change one page,
- Mark the old page as invalid
- Write the new data into a free page
-Invalid pages must be reclaimed

Flash memory: Garbage collection

-Reclaim the invalid pages into free pages
-Steps:

- Choose a block for garbage collection
- Copy all valid pages out
- Erase the block
- Copy the valid pages back
-Causes undesired physical writes (write amplification)

Flash Transition Table (FTL)

- A table mapping the physical page of each logical page
- Table Size = TS = \# logical pages*log(\#physical pages) Z= \# pages in a block
- Example:
- Flash storage of $32 G B$ with 64 pages of 2 KB per block
- \#logical pages = 32GB/2KB = 2^{24}
- If \#logical pages = \#physical pages, then $T S=2^{24 \star} \log \left(2^{24}\right) b=2^{24 *} 3 B=48 \mathrm{MB}$
- The table needs to be saved in the flash when power is down and rebuilt again when power is on

System

Example of Writing Flash Memory

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space stationary condition: Logical memory is always full (worst case)

System

Garbage Collection

Physical Space: (16 pages in 4 blocks)	Valid	Invalid	Valid	Valid
	Invalid	Valid	Valid	Valid
	Valid	Valid	Invalid	Valid
	Valid	Invalid	Valid	Valid

Time to erase
Greedy Garbage collection:
> Block with most invalid pages
Only two writes needed

System

Garbage Collection

Physical Space: (16 pages in 4 blocks)	Valid
	Invalid
	Valid
	Valid

Valid	Valid
Valid	Valid
Invalid	Valid
Valid	Valid

Invalid
Valid
Valid
Invalid

System

Garbage Collection

Physical Space: (16 pages in 4 blocks)	Valid	Valid	Valid
	Invalid	Valid	Valid
	Valid	Invalid	Valid
	Valid	Valid	Valid
\leftarrow "Block queue": Older blocks/more invalid pages			

Invalid
Valid
Valid
Invalid

System

Garbage Collection

Physical Space: (16 pages in 4 blocks)	Valid	Valid
	Invalid	Valid
	Valid	Invalid
	Valid	Valid
Temporary Storage	\leftarrow "Block queue": Invalid	
	Valid	
	Valid	
		Invalid

System

Garbage Collection

Logical Space: (12 pages)	$\downarrow \stackrel{\downarrow}{\downarrow}$	$\begin{aligned} & \downarrow \\ & \stackrel{\downarrow}{4} \\ & \downarrow \\ & \downarrow \end{aligned}$	\downarrow
Physical Space: (16 pages in 4 blocks)	Valid	Valid	Valid
	Invalid	Valid	Valid
	Valid	Invalid	Valid
	Valid	Valid	Valid

\square

System

Garbage Collection

Physical Space: (16 pages in 4 blocks)	Valid	Valid	Valid	
	Invalid	Valid	Valid	
	Valid	Invalid	Valid	
	Valid	Valid	Valid	
\leftarrow "Block queue": Older blocks/more invalid pages				

| Temporary |
| ---: | :--- |
| Storage |
| Valid |
| Valid |

System

Garbage Collection

Physical Space: (16 pages in 4 blocks)	Valid	Valid	Valid	
	Invalid	Valid	Valid	Valid
	Valid	Invalid	Valid	Valid
	Valid	Valid	Valid	

Time to erase

Greedy Garbage collection:
> Block with most invalid pages
Only two writes needed

Garbage Collection

- Read/write pages quickly
- Erase blocks slowly
- Erase before write (no updates)

Garbage Collection

- Out of place writes replace updates
- Logical page \neq Physical page Overprovisioned (OP) Capacity

Garbage Collection

A	B	C	D
0000	0000	0000	0000
0000	0000	0000	0000
0000	0000	0000	0000

- Garbage Collection (GC) generates extra writes
- Write Amplification (WA) = (user writes $+G C$ writes)/user writes
- Larger OP \rightarrow Lower WA \rightarrow Less erasures
- How does it all work together?

Greedy Garbage Collection

- Write amplification $=\frac{\text { \# Physical writes }}{\text { \# Logical writes }}$
- Overprovisioning $=(T-U) / U$;
$\mathrm{T}=$ \#physical blocks, $\mathrm{U}=$ \#logical blocks
- Question: How are the overprovisioning factor and write amplification related?
- Theorem [Hu \& Haas '10]: Greedy garbage collection is optimal in order to reduce the write amplification (for uniform writing)

Analysis

- Write amplification \#Physical writes
- Overprovisioning $=(T-U) / U$;
$\mathrm{T}=$ \#physical blocks, $\mathrm{U}=$ \#logical blocks
- Question: How are the overprovisioning factor and write amplification related?

Random Writes (4K Sustained)

Analysis

- Write amplification $=\frac{\text { \# Physical writes }}{\# \text { Logical writes }}$
- Overprovisioning $=(T-U) / U$;
$\mathrm{T}=$ \#physical blocks, $\mathrm{U}=$ \#logical blocks
- Question': How are the overprovisioning factor and write amplification related, under random uniform writing?
- $N=\#$ logical page writes ; $M=\#$ physical page writes
- $E=\#$ block erasures $=M / Z, Z=\#$ pages in a block
- On average: $Y=a^{\prime} Z$ valid pages in an erased block
- $M=N+E Y$
$-E=M / Z=(N+E Y) / Z ;(Z-Y) E=N ; E=N /(Z-Y) ;$

$$
E=N / Z\left(1-a^{\prime}\right)
$$

- Question: What is the connection $b / w a=U / T$ and $a^{\prime}=Z / Y$?
- Answer: $a=\left(a^{\prime}-1\right) / \ln \left(a^{\prime}\right)$ (Menon '95, Desnoyers '12)

Other Variations of GC

- Wear Leveling algorithms to balance the number of times each block is erased
- Mapping in the block level: mapping between logical and physical blocks
- Reduce the FTL size
- Other variations that take into account hot and cold data
- Usually performance is analyzed for random distribution but practical purposes take the Zipf distribution and benchmarks

