## Technion

Seminar on Coding for Non-Volatile Memories 236803/048704 - CS/EE Departments, Technion

## MEMRISTORS / RESISTIVE MEMORIES

## Non-Volatile Memory Progression

 density
functionality

## Outline

- Memristors
- Promising storage technology
- Sneak Paths
- Main functional limitation
- Coding for Sneak-Path mitigation
- Sneak path elimination
- Sneak path as random error source


## Memristors

- 2008 Hewlett Packard



## Crossbar Arrays







## Part 1

## Sneak path elimination

## Sneak Path

- An array $\mathbf{A}$ has a sneak path of length $\mathbf{2 k + 1}$ affecting the (i,j) cell if
- $a_{i j}=0$
- There exist $r_{1}, \ldots, r_{k}$ and $c_{1}, \ldots c_{k}$ such that

$$
a_{\mathrm{ic}_{1}}=a_{\mathrm{r}_{1} \mathrm{c}_{1}}=a_{\mathrm{r}_{1} \mathrm{c}_{2}}=\cdots=a_{\mathrm{r}_{\mathrm{k}} \mathrm{c}_{\mathrm{k}}}=a_{\mathrm{rkj}}=1
$$

- An array A satisfies the sneak-path constraint if it has no sneak paths and then is called a sneak-path free array



## Characterization of Sneak Paths

- Theorem: An array A has a sneak path if and only if it has an isolated zero-rectangle
- Proof:



## Row/Column Overlap Condition

- Lemma:

An array has no isolated zero-rectangles iff the 1 s in every two rows/columns either completely overlap or are disjoint.


Complete overlap

## Encoding Sneak-Path Free Arrays

Column partition


Row<br>partition

(®) $\approx 2 n \log n$ arrays, when $n=m$

## Grounding - an EE Solution



## EE or IT?



High read power

| 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |

Poor capacity

A Mixed Solution


## Grounding

- Solution: ground a smaller number of rows and combine with the coding solutions of the sneak path
- Two approaches to choose the grounded set

1. Grounding fixed subsets


## Grounding

- Solution: ground a smaller number of rows and combine with the coding solutions of the sneak path
- Two approaches to choose the grounded set

1. Grounding fixed subsets
2. Grounding around the read row


## Comparison

| $b$ | $\mathbb{C}_{1}(b)=\frac{\log (b+1)}{b}$ | $\mathbb{C}_{2}(b)=\mathbb{C}_{\frac{b-1}{2}, \infty}$ |
| :---: | :---: | :---: |
| 2 | 0.792 | - |
| 3 | 0.667 | 0.694 |
| 4 | 0.580 | - |
| 5 | 0.517 | 0.551 |
| 6 | 0.468 | - |
| 7 | 0.423 | 0.465 |




## Part 2

Sneak paths as a random error source

## The Sneak-Path as Z Channel



Errors are deterministic given array values

| 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 |  | 1 | 0 |

## Sneak-Path Severity Factors

1. Array dimensions m,n


- Large array $\rightarrow$ high vulnerability (more paths)

2. 0-1 bias q

- More " 1 " $s \rightarrow$ more sneak paths
- (All" " "s $\rightarrow$ no sneak paths)


## The Sneak-Path Z Channel



Errors are probabilistic given array parameters:

1. Array dimensions $m, n$
2. 0-1 bias q

$$
\operatorname{Pr}\left(a_{i j}=1\right)=q \quad \operatorname{Pr}\left(a_{i j}=0\right)=1-q
$$

## The Transition Probability

- Theorem:
$P(m, n, q)=1-\sum_{u=0}^{m-1} \sum_{v=0}^{n-1}\binom{m-1}{u}\binom{n-1}{v} q^{u+v}(1-q)^{m-1-u+n-1-v+u v}$
- Idea:



## Transition Probability - Array Size



## Transition Probability - Aspect Ratio



## Joint-Probability Analysis

- Fact: sneak-path errors not independent within array
- Intuition: cells in same row/column share " 1 "s
- Theorem:
$\operatorname{Pr}\left(\bar{e}_{i, j}, \bar{e}_{i^{\prime}, j}\right)=$


## Joint-Probability: No Error



## Joint-Probability: Error



