

Seminar on Coding for Non-Volatile Memories 236803/048704 – CS/EE Departments, Technion

MEMRISTORS / RESISTIVE MEMORIES

Non-Volatile Memory Progression

functionality

Outline

- Memristors
 - Promising storage technology
- Sneak Paths
 - Main functional limitation
- Coding for Sneak-Path mitigation
 - Sneak path elimination
 - Sneak path as random error source

Memristors

Crossbar Arrays

Part 1

Sneak path elimination

Sneak Path

- An array A has a sneak path of length 2k+1 affecting the (i,j) cell if
 - a_{ij}=0
 - There exist $\mathbf{r}_1, \dots, \mathbf{r}_k$ and $\mathbf{c}_1, \dots, \mathbf{c}_k$ such that $\mathbf{a}_{ic_1} = \mathbf{a}_{r_1c_1} = \mathbf{a}_{r_1c_2} = \dots = \mathbf{a}_{r_kc_k} = \mathbf{a}_{r_kj} = \mathbf{1}$
- An array A satisfies the sneak-path constraint if it has no sneak paths and then is called a sneak-path free array

Characterization of Sneak Paths

• Theorem: An array A has a sneak path if and only if it has an isolated zero-rectangle

• Proof:

Row/Column Overlap Condition

• <u>Lemma</u>:

An array has **no isolated zero-rectangles** iff the 1s in every two rows/columns either **completely overlap or are disjoint**.

Encoding Sneak-Path Free Arrays

Row partition

••

≈2n log n arrays, when n=m

Grounding – an EE Solution

High read power

Poor capacity

A Mixed Solution

- Solution: ground a smaller number of rows and combine with the coding solutions of the sneak path
- Two approaches to choose the grounded set
 - 1. Grounding fixed subsets

- Solution: ground a smaller number of rows and combine with the coding solutions of the sneak path
- Two approaches to choose the grounded set
 - 1. Grounding **fixed subsets**
 - 2. Grounding around the read row

Comparison

Part 2

Sneak paths as a random error source

The Sneak-Path as Z Channel

Errors are deterministic given array values

Sneak-Path Severity Factors

- 1. Array dimensions m,n
 - Large array \rightarrow high vulnerability (more paths)

n

m

- 2. 0-1 bias q
 - More "1"s \rightarrow more sneak paths
 - (All "1"s \rightarrow no sneak paths)

The Sneak-Path Z Channel

Errors are probabilistic given array parameters: 1. Array dimensions m,n n

2. 0-1 bias q

 $\Pr(a_{ij} = 1) = q$ $\Pr(a_{ij} = 0) = 1 - q$

The Transition Probability

• <u>Theorem</u>:

$$P(m, n, q) = 1 - \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} \binom{m-1}{u} \binom{n-1}{v} q^{u+v} (1-q)^{m-1-u+n-1-v+uv}$$

Transition Probability – Array Size

Transition Probability – Aspect Ratio

Joint-Probability Analysis

- Fact: sneak-path errors not independent within array
- Intuition: cells in same row/column share "1"s

• <u>Theorem:</u>

$$\Pr(\bar{e}_{i,j}, \bar{e}_{i',j}) =$$

Joint-Probability: No Error

Joint-Probability: Error

